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Abstract
A repdigit is a natural number greater than 10 which has all of its base-10 digits
the same. In this paper we find all examples of two repdigits adding to a square.
The proofs lead to interesting questions about consecutive quadratic residues and
non-residues, and provide an elementary application of elliptic curves.

1. Preliminaries and Notation

The fictional trilogy Lord of the Rings by J. R. R. Tolkein [4] opens with the joint
birthday party of the “hobbits,” Bilbo and Frodo. The head table seats 144 which,
we are told, is the sum of “eleventy-one” and thirty-three, the respective ages of
the two hobbits. A repdigit is a positive integer all of whose (base-10) digits are the
same. Prof. Tolkein has provided us with an example of two repdigits adding to a
perfect square: 111 + 33 = 144. In this paper we find all examples of two repdigits
summing to a square.

While The Online Encyclopedia of Integer Sequences at https://oeis.org
(A010785) allows 1-digit numbers to be repdigits, in this paper we will not (since
nothing is repeated.) In this way, we avoid examples like 2 + 2 = 4 and 7 + 9 = 16.
Also, if we add a repdigit consisting of an even number of 9’s to 1 (a 1-digit repdigit)
the result is an even power of 10, which is a perfect square. We prefer to avoid these
cases and assume all repdigits are greater than 10.

For the sake of definiteness, if a is a decimal digit, the repdigit aa . . . a, consisting
of m a’s, will be denoted am. In this notation, the example above reads 13+32 = 122.
A little algebra yields the formula:



INTEGERS: 17 (2017) 2

am = aa . . . a = a(11 . . . 1) = a

✓
10m � 1

9

◆
.

The main result of the present paper is a complete classification of perfect squares
that are the sum of two repdigits.

Theorem 1. The only perfect squares that are sums of two repdigits are the fol-
lowing:

112 = 99 + 22 = 88 + 33 = 77 + 44 = 66 + 55
122 = 111 + 33
382 = 1111 + 333

2112 = 44444 + 77.

In Sections 2 and 3 we use congruence conditions to show that if am + bn is a
perfect square then one of m or n is less than 6 and eliminate as many cases as
possible. In Section 4, we handle the remaining cases by using results about integer
points on elliptic curves and conclude the proof of Theorem 1. In Section 5 we raise
some further questions.

2. A Couple of Pleasant Properties of Base-10

Of course, once our result is proven in base-10, we would want to generalize to other
bases. However, 10� 1 is a perfect square, a property of 10 not true of most bases,
so the problem may be much harder in non-decimal bases. Another happy accident
is that there is a useful string of consecutive quadratic non-residues modulo 106,
which is not to be expected using other bases. Both of these properties are used
in the proof of our first theorem, where we show that in the case of two repdigits
adding to a square, at least one of the repdigits has fewer than 6 digits:

Theorem 2. Let a and b be non-zero base-10 digits. If am + bn is a perfect square,
with m � n � 2, then n < 6.

Proof. Suppose that am + bn = k2 for some integer k, and that m and n are both
at least 6. Then using our formula above, we have

a

✓
10m � 1

9

◆
+ b

✓
10n � 1

9

◆
= k2

which simplifies to

a10m + b10n � (a + b) = (3k)2. (1)
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Since m and n � 6, we can reduce this last equation modulo 106 to get

�(a + b) ⌘ (3k)2 (mod 106).

Because a and b are non-zero base-10 digits, �(a+b) must be an integer between
�2 and �18, inclusive. The congruence above insists that �(a + b) is a quadratic
residue modulo 106. But inspection of Table A in the Appendix shows that this is
impossible. That is, the last column in the table consists of all X’s, which means
that none of the numbers �2,�3,�4, . . . ,�18 is a quadratic residue modulo 106.
We conclude that n < 6.

3. Congruence Considerations

The rest of this paper is devoted to showing that m must also be less than 6. So
we now assume that m � 6 and start eliminating cases. Our definition of repdigit
implies that m and n are both at least 2, so reducing Equation (1) modulo 102 gives
us

�(a + b) ⌘ (3k)2 (mod 102).

Inspection of the second column of Table A shows us that �(a + b) ⌘ �4,�11,
or �16 (mod 102), which divides our work into three cases.

Case 1: (a+b) = 4. In this case the only possibilities are (a, b) = (3, 1), (2, 2), or (1, 3).
Also note that, from Table A, �4 is a quadratic non-residue modulo 104, so we must
have n < 4 in this case. (Else, we reduce Equation (1) modulo 104 and get a con-
tradiction.) Thus, the only possibilities are:

3m + 11, 2m + 22, 1m + 33, 3m + 111, 2m + 222, and 1m + 333.

Four of these six subcases can be eliminated by congruence considerations. If we
put the case 3m + 11 into Equation (1) and reduce modulo 106, we have

3 · 10m � 3 + 102 � 1 ⌘ 96 ⌘ (3k)2 (mod 106).

A solution to this congruence implies 96 + d106 = x2 for some integers d and
x. Factoring 25 from the left side gives us 25(3 + 2d · 56) = x2. The quantity in
parentheses is odd, and so x2 must be exactly divisible by 25, which is impossible.
In other words, 96 is not a quadratic residue of 106, so there is no solution. In the
future, we will just use Maple to compute whether a number is a quadratic residue.

With a similar calculation, the three subcases 1m + 33, 2m + 222 and 1m + 333
require 296, 1996 and 2996, respectively, to be quadratic residues modulo 106. Maple
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outputs that all three of them are quadratic nonresidues, so we have eliminated these
three subcases. We will handle the remaining cases 2m + 22 and 3m + 111 later.

Case 2: (a + b) = 11. In this case the possibilities are (a, b) = (2, 9), (3, 8), (4, 7),
(5, 6), (6, 5), (7, 4), (8, 3), or (9, 2). Note that if n � 3, then modulo 103, Equation
(1) reduces to �11 ⌘ (3k)2 (mod 103), and that �11 is a quadratic nonresidue of
103. Therefore n = 2 is the only possibility. This leaves us with 8 subcases: 2m +99,
3m + 88, 4m + 77, 5m + 66, 6m + 55, 7m + 44, 8m + 33, and 9m + 22.

As we did in Case 1, we put each of these subcases in Equation (1) and reduce
modulo 106. Respectively, these congruences require 889, 789, 689, 589, 489, 389,
289 and 189 to be quadratic residues modulo 106. Maple outputs that 789, 589, 389
and 189 are quadratic non-residues module 106, so we have eliminated the subcases
3m+88, 5m+66, 7m+44 and 9m+22. The other four subcases we save for Section 4.

Case 3: (a+ b) = 16. In this case the possibilities are (a, b) = (7, 9), (8, 8) or (9, 7).
The (8, 8) subcase would have 8m +8n = k2, in which case k would be even and we
could divide the equation by 4 to get 2m +2n = (k/2)2, which is one of our leftover
subcases from Case 1. When 2m + 22 is eliminated in Section 4, it will take this
subcase with it.

From Theorem 1, n  5, so the possibilites are 9m + 77, 9m + 777, 9m + 7777,
9m + 77777, 7m + 99, 7m + 999, 7m + 9999, and 7m + 99999. We again put each
subcase into Equation (1) and reduce modulo 106. Respectively, 700�16, 7000�16,
70000�16, 700000�16, 900�16, 9000�16, 90000�16 and 900000�16 are required to
be quadratic residues modulo 106. But only 700000�16, 90000�16 and 900000�16
are. So we are left with only 9m +77777, 7m +9999, and 7m +99999 as possibilities
in this case.

It turns out that 90000� 16 and 700000� 16 are not quadratic residues modulo
7, so we can also eliminate 9m + 77777 and 7m + 9999 from the list.

4. Elliptic Curve Considerations

We have eliminated all cases except this short list: 2m + 22, 3m + 111, 2m + 99,
4m + 77, 6m + 55, 8m + 33 and 7m + 99999. Each of these cases will be broken into
three subcases depending on the character of m modulo 3. In most cases, this will
eliminate the case. In the rest, we will discover the known solutions to the problem.
We will rely on SAGE to find all the integer points on the elliptic curves which
arise.

We start with 8m + 33. Suppose m = 3l for some integer l. Then Equation (1)
becomes 8 · 103l + 300 � (8 + 3) = (3k)2. If we set y = 3k and x = 2 · 10l, the
equation is y2 = x3 + 289. According to Siegel’s famous theorem [3], this curve
can have only finitely many integral points. SAGE 6.7 implements an algorithm
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due to Peth, Zimmer, Gebel, and Herrmann [2], which will find all integral points
on an elliptic curve. SAGE outputs that the only integer points on this curve are
(�4, 15), (0, 17) and (68, 561). We can observe that none of the x-values are of the
form 2 · 10l, which eliminates this possibility.

Next suppose that m = 3l+1 for some integer l. Equation (1), for this case, reads
8 · 103l+1 +289 = (3k)2. Multiply through by 100 to get 8 · 103l+3 +28900 = (30k)2.
Set x = 2 · 10l+1 and y = 30k and we have y2 = x3 + 28900. SAGE outputs that
the only integer point on this curve is (0, 170) and since 0 6= 2 · 10l+1, we have
eliminated this case.

Next suppose that m = 3l + 2 for some integer l. Equation (1), for this case
reads 8 · 103l+2 + 289 = (3k)2. Multiply through by 104 to get 8 · 103l+6 + 289 ·
1002 = (300k)2. Set y = 300k and x = 2 · 10l+2 and we have y2 = x3 + 2890000.
SAGE outputs that the only integer points on this curve are (�136, 612), (0, 1700),
(200, 3300) and (425, 8925). Looking at the x-values, we see one that fits: 200 =
2 · 10l+2. So l = 0 and m = 2 and we are led to the solution 88 + 33 = 121.

The other cases yield similarly. If m = 3l + r, with r = 0, 1, or 2, then we
multiply Equation (1) by a210r to get

a3103(l+r) + a210r(b10n � (a + b)) = (3a · 10rk)2.

Then we set x = a10l+r, y = 3a · 10rk and N = a210r(b10n � (a + b)) to get the
elliptic curve

y2 = x3 + N.

Then we use SAGE to compute all the integer points on the curve. If any of
those points have x-coordinate of the form a · 10p, then we might have a solution
(and in each case, it will turn out that m < 6.) If not, the case is eliminated. In
the case a = 8, which is already a cube, it is su�cient to multiply Equation (1) by
10r, as we did above. Table B in the Appendix summarizes the calculations, where
r is the least non-negative residue of m modulo 3. Whenever the x-coordinate of
an integer point matches the form a10l+r, we put that number in bold in the last
column of the table. In each such case, l = 0 or 1, which means that m < 6.

Proof of Theorem 1. Therefore every case of the sum of two repdigits equaling a
square must have repdigits of 5 or fewer digits. There are only 45 repdigits of 2, 3,
4 or 5 digits, so that leaves us 45 · 46/2 = 1035 cases to check. This is easily done
and we find the complete list of solutions as in the statement.
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5. Further Observations and Questions

The proof of Theorem 2 relies entirely on the fact that there is a convenient string
of consecutive quadratic non-residues modulo 106 (due mostly to the fact that 10
is even.) Finding strings of consecutive quadratic residues and non-residues has
been studied. (See [1] and [5].) Certainly base-10 is special, but there are some
observations in other bases:

We noted above that there is a family of solutions 22+99 = 33+88 = 44+77 =
55+ 66 = 112 in base 10. In an arbitrary base c � 2, we have (c + 1)2 = (c� k)(c +
1) + (k + 1)(c + 1) for 1  k  c � 1. This shows that there is a similar family
regardless of the choice of base.

Similarly, (c + 2)2 = c2 + 4c + 4 = 1(c2 + c + 1) + 3(c + 1) shows that 111 + 33 =
is a square in every base. Also (2c2 + c + 1)2 = 4c4 + 4c3 + 5c2 + 2c + 1 =
4(c4 +c3 +c2 +c+1)+(c�3)(c+1), so 44444+77 is just the base 10 manifestation
of this identiy.

In the more special case that c = m2 � 1, we have the identity c5 + c4 + 4c3 +
4c2 + 4c + 4 = (c + 1)(c2 + 2)2 = m2(c2 + 2)2, which is to say (111111)c + (3333)c

is a square.
The most interesting solutions to our equation seem to come in groups. It seems

111+33 = 122 and 1111+333 = 382 are related, as are 4+77 = 92, 44+77 = 112 and
44444+77 = 2212. We also have the infinite number of solutions 92m +1 = (10m)2,
if we allow 1-digit solutions. As far as we know, this is accidental, but perhaps there
is a useful reason behind this. If so, we wonder whether there is a solution to the
problem that does not rely on SAGE computing on elliptic curves.

As mentioned earlier, the case of base 10 is easier than some others. Of particular
note is base 7, where there are a number of examples, the most striking of which is

480602 = 2309763600 = (11111111111)7 + (3333333)7.

It seems di�cult to use modular arithmetic to put a bound on m and n subject to

a · 7m � 1
6

+ b · 7n � 1
6

= x2.

The solutions to this equation are a subset of those to

Au5 + Bv5 + Cx5 = 6w2x3.

This defines a (possibly singular) surface of general type, and it is conjectured by
Bombieri and Lang that the rational points on a surface of general type lie on a
finite union of curves. This supports our suspicion that there should only be finitely
many solutions, but a proof eludes us.
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Appendix: Tables

Table A: Quadratic residues modulo 10n. In the following table, generated
with Maple, the entry is O if �(a + b) is a quadratic residue modulo 10k and X
otherwise.

�(a + b) 102 103 104 105 106

�2 X X X X X

�3 X X X X X

�4 O O X X X

�5 X X X X X

�6 X X X X X

�7 X X X X X

�8 X X X X X

�9 X X X X X

�10 X X X X X

�11 O X X X X

�12 X X X X X

�13 X X X X X

�14 X X X X X

�15 X X X X X

�16 O O O O X

�17 X X X X X

�18 X X X X X
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Table B: Summary of Calculations

Case r x y N x-coords

8m + 33 0 2 · 10l 3k 289 �4, 0, 68

8m + 33 1 2 · 10l+1 30k 28900 0

8m + 33 2 2 · 10l+2 300k 2890000 �136, 0,200, 425

7m + 99999 0 7 · 10l 21k 44099216 10577

7m + 99999 1 7 · 10l+1 210k 4409921600 �1064

7m + 99999 2 7 · 10l+2 2100k 440992160000 �5936,�5900,�5516, 2800,

20825, 21056, 721364000

6m + 55 0 6 · 10l 18k 17604 �20,�12, 816

6m + 55 1 6 · 10l+1 180k 1760400 �120, 24, 160, 14640

6m + 55 2 6 · 10l+2 1800k 176040000 600

4m + 77 0 4 · 10l 12k 11024 1

4m + 77 1 4 · 10l+1 120k 1102400 �100,�95,�16,40, 160,

584, 1420, 26764

4m + 77 2 4 · 10l+2 1200k 110240000 �464,�400, 64,400,

425, 625, 1076,

4000, 1154800

3m + 111 0 3 · 10l 9k 8964 21

3m + 111 1 3 · 10l+1 90k 896400 �96,�80,�15, 25,

40, 49, 120, 256,

280, 1200, 16576

3m + 111 2 3 · 10l+2 900k 89640000 �375, 124,300,

700, 5241

2m + 99 0 2 · 10l 6k 3556 none

2m + 99 1 2 · 10l+1 60k 355600 �55,�40, 144, 4320

2m + 99 2 2 · 10l+2 600k 35560000 �216,200, 704, 800,

1500, 1800, 7400

199200

2m + 22 0 2 · 10l 6k 784 �7, 0, 8, 56

2m + 22 1 2 · 10l+1 60k 78400 �40, 0, 56, 140, 480

2m + 22 2 2 · 10l+2 600k 7840000 �175, 0, 224, 800


