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Abstract
In an unpublished problem collection, Motzkin asks, how dense can a set S of
positive integers be, if no two elements of S are allowed to di↵er by an element of
the given set P of positive integers? The maximal density of such sets, denoted
by µ(P), is known for |P|  2, and several other partial results are also known for
the general case. We find some bounds and a few exact values of µ(P), where the
elements Pi of the set P are defined by Pi := Pi�1+Pi�2, i � 2 with P0 = a, P1 = b.
Notice that the elements of the sequence {Pi} satisfy the same recurrence relation as
that satisfied by the well-known Fibonacci numbers Fi with arbitrary initial values.
Since Pi = aFi�1 + bFi for all i � 0, these numbers are also known as weighted
Fibonacci numbers. This work generalizes an earlier work of Pandey on Fibonacci
numbers.

1. Introduction

Let S be any set of nonnegative integers and let S(x) denote the number of elements
n 2 S such that 1  n  x, x 2 R. The upper density of S, denoted by �(S), is
defined by �(S) := lim

x!1
S(x)/x. Given the set of positive integers P, S is said to
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be a P-set if a 2 S, b 2 S implies that a� b /2 P. The parameter of interest is the
maximal density of a P-set, defined by

µ(P) := sup
S

�(S),

where the supremum is taken over all P-sets S. Cantor and Gordon [2] establish
the existence of µ(P) for any P and solve the problem for |P|  2. They also prove
that

µ(P) � (P) := sup
gcd(c,m)=1

1
m

min
p2P

|cp|m, (1.1)

where |x|m denotes the absolute value of the absolutely least remainder of x modulo
m. A remark of Haralambis [6], gives an equivalent formulation for the right-hand
expression of the above inequality. Hence, we can write

(P) = max
m=p+q

1km
2

1
m

min
p2P

|kp|m, (1.2)

where p and q are any two distinct elements of P, with the condition that P has
only finitely many elements.

A result of Cantor and Gordon [2] reduces the calculation of µ(P) for any general
set P to those sets P whose elements are relatively prime. Haralambis [6] gives a
useful upper bound for µ(P) and provides an expression for µ(P) for most members
of the families {1, j, k}, and {1, 2, j, k}. Liu and Zhu [9] determine the value of µ(P)
for most of the almost di↵erence closed sets P. They [10] further compute µ(Da,b,m)
for 1 < a  b < m�1, where Da,b,m = [1, a�1][ [b+1,m�1]. Gupta and Tripathi
[5] determine µ(P) where elements of P are in arithmetic progression. Pandey and
Tripathi ([12], [13]) discuss this quantity for the families P = {a, b, n(a + b)} and
for the sets related to arithmetic progressions.

In this paper, we consider the problem of determining µ(P) for the set P =
{a, b, a+ b, . . . , aFk�1 + bFk} with gcd(a, b) = 1. We write P = {P0, P1, P2, . . . , Pk},
with P0 = a, P1 = b and Pi = Pi�1 + Pi�2 for i � 2. The well known Fibonacci
sequence {Fi}i�0 and Lucas sequence {Li}i�0 are the special cases of the sequence
{Pi}i�0. In Section 2, we evaluate a lower bound for µ(P) with |P| > 5, by using
some identities of the Fibonacci and Lucas sequences and the definition (1.2) of
(P). Whereas, for |P|  4, (P) and µ(P) have been studied by Cantor and
Gordon [2], and Liu and Zhu [9]. In Section 3, we investigate the values of (P)
and µ(P) when |P| = 5.

The parameters µ(P) and (P) are interesting and useful in the study of some
other number theory as well as graph theory problems. The graph-theoretic con-
nection of µ(P) is the fractional chromatic number of the distance graph generated
by P. For more detail, one may refer ([3], [9]). The parameter (P), is related to
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the well-known conjecture on diophantine approximation due to Wills [15] and in-
dependently by Cusick [4], now known as the lonely runner conjecture due to Bienia
et al. [1].

Due to Cantor and Gordon [2], µ(P) = (P) for all P with |P|  2. Hence, it is
very natural to ask the question of whether µ(P) = (P) when |P| = 3. Haralambis
[6] and Liu and Zhu [9] have shown the existence of some infinite families of four-
element sets with (P) < µ(P). We give an infinite family of five-element sets P
with (P) < µ(P) in the last section.

2. Main Results

Before we go to our main results we give some identities concerning the Fibonacci
and Lucas sequences, denoted respectively by {Fi}i�0 and {Li}i�0, in the lemma
given below. Notice that both Fibonacci and Lucas sequences are also defined for
negative indices, denoted respectively by F�n = (�1)n+1Fn and L�n = (�1)nLn.
Hence, the identities given below are satisfied for all indices.

Lemma 2.1. For all integers m,n, k, and i, we have

1. Fn+2 � Fn�2 = Ln = Fn�1 + Fn+1.

2. Fn�2 + Fn+2 = 3Fn.

3. Ln�1 + Ln+1 = 5Fn.

4. FmFn+1 � Fm+1Fn = (�1)nFm�n.

5. Fn+k + (�1)kFn�k = LkFn.

6. L2n�1Li � 5Fi�1F2n = (�1)i+1L2n�i.

7. Li =

8>>><
>>>:

5
i
2P

k=1
(�1)k�1Fi�(2k�1) + (�1) i

2 L0, if i is even;

5
i�1
2P

k=1
(�1)k�1Fi�(2k�1) + (�1)

i�1
2 L1, if i is odd.

Proof. Identities (1), (2), and (3) are simple to observe. Identities (4) and (5) may
be found in Koshy [8]. We prove identities (6) and (7) below.

6. We have
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L2n�1Li � 5Fi�1F2n

= L2n�1Li �
�
Li�2 + Li

�
F2n (using identity (3))

=
�
L2n�1 � F2n

�
Li � Li�2F2n

= LiF2n�2 � Li�2F2n

= (�1)iF2n�i�2 � (�1)i�2F2n�i+2 (using identity (5))
= (�1)iF2n�i�2 � (�1)iF2n�i+2

= (�1)i+1
�
F2n�i+2 � F2n�i�2

�
= (�1)i+1L2n�i (using identity (1)).

7. Recursively using identity (3), we get

Li = 5Fi�1 � Li�2

= 5
�
Fi�1 � Fi�3 + · · · + (�1)k�1Fi�(2k�1)

�
+ (�1)kLi�2k.

Thus, for even i,

Li = 5
� i

2X
k=1

(�1)k�1Fi�(2k�1)

�
+ (�1)

i
2 L0;

and for odd i,

Li = 5
� i�1

2X
k=1

(�1)k�1Fi�(2k�1)

�
+ (�1)

i�1
2 L1.

We write all possible initial values of P0 = a and P1 = b modulo 5. There are
a total of twenty-five choices for the pair (a, b). But the choice (a, b) = (5m, 5l),
always yields gcd(a, b) � 5. So, we consider only the remaining twenty-four cases.
In the following five lemmas, we compute a lower bound of µ(P) for all possible
choices of pairs (a, b) of initial values.

Lemma 2.2. Let P = {P0, P1, P2, . . . , Pk}, where Pi = aFi�1 + bFi for all i � 0
and 4n+1  k  4n+4 with n � 1. If (a, b) 2 {(5m, 5l +1), (5m+1, 5l +4), (5m+
2, 5l + 2), (5m + 3, 5l), (5m + 4, 5l + 3) : l,m 2 N [ {0}} with gcd(a, b) = 1, then

(P) � 1
5
� 2L2n�1

5(aL2n+1 + bL2n+2)
.
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Proof. Clearly, we have 2b � a ⌘ 2 (mod 5) and a + 3b ⌘ 3 (mod 5). Set q =
P2n+1 + P2n+3 = aL2n+1 + bL2n+2. Then

q = aL2n+1 + bL2n+2

= a
�
F2n + F2n+2

�
+ b
�
3F2n+2 � 2F2n

�
= (a� 2b)F2n + (a + 3b)F2n+2

⌘ �2F2n + 3F2n+2

⌘ 2
�
4F2n+2 � F2n

�
⌘ 2
�
F2n�2 + F2n

�
⌘ 2L2n�1 (mod 5).

Let p = q�2L2n�1
5 . We have

2b
�
p� F2n�1

�
� a

�
p + 2F2n

�
=

�
2b� a

�
p�

�
2bF2n�1 + 2aF2n

�
= (2b� a)

q � 2L2n�1

5
�

�
2bF2n�1 + 2aF2n

�

=
(2b� a)q

5
�

2
�
a(5F2n � L2n�1) + b(5F2n�1 + 2L2n�1)

�
5

=
(2b� a)q

5
� 2(aL2n+1 + bL2n+2)

5

=
2b� a� 2

5
q.

Hence,
a(p + 2F2n) ⌘ 2b(p� F2n�1) (mod q). (2.3)

We have q ⌘ �2F2n + 3F2n+2 ⌘ 2F2n+1 + F2n+2 ⌘ L2n+2 (mod 5). Next, let
gcd(a, q) = d and gcd(b, q) = d0. This implies that d|L2n+2, which implies d 6⌘ 0
(mod 5) and d divides 2(p� F2n�1) = 2(q�L2n+2)

5 . Hence, there exists an integer x
such that

ax ⌘ 2(p� F2n�1) (mod q). (2.4)

Similarly, d0|L2n+1, which implies d0 6⌘ 0 (mod 5) and d0 divides (p + 2F2n) =
(q�2L2n�1)

5 + 2F2n = (q+2L2n+1)
5 . Hence there exists an integer y such that

by ⌘ (p + 2F2n) (mod q). (2.5)

Moreover, congruence (2.3) implies that there is a common solution x� of the con-
gruences (2.4) and (2.5), i.e.,

ax� ⌘ 2(p� F2n�1) (mod q),
and bx� ⌘ (p + 2F2n) (mod q).
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The common solution is justified as follows: From (2.3), (2.4), and (2.5), we have
that

ab(x� y) ⌘ 2b(p� F2n�1)� a(p + 2F2n) ⌘ 0 (mod q).

Moreover, by the definitions of d and d0, it follows that gcd(ab, q) = dd0. Therefore,
x� y is divisible by q

dd0 . Since gcd(d, d0) = 1, we know from Bézout’s identity that
there exist integers u and v such that

(x� y)dd0

q
= ud + vd0.

This leads us to consider the integer z defined by

z := x� v
q

d
= y + u

q

d0
.

Clearly, from the definition of d and d0, the integer z verifies az ⌘ ax and bz ⌘ by
modulo q.

Since Pi = aFi�1 + bFi, we have

Pix� ⌘ Fi�1

�
2(p� F2n�1)

�
+ Fi(p + 2F2n)

= p(2Fi�1 + Fi) + 2(FiF2n � Fi�1F2n�1)

=
q � 2L2n�1

5
Li + 2

�
(�1)i�1F2n�i+1 + Fi�1F2n

�
(using identity (4))

=
qLi � 2(L2n�1Li � 5Fi�1F2n)

5
+ (�1)i�12F2n�i+1

=
qLi � (�1)i+12L2n�i

5
+ (�1)i�12F2n�i+1 (using identity (6))

=
qLi � (�1)i+12(L2n�i � 5F2n�i+1)

5

=
qLi + (�1)i+12L2n�i+2

5
(mod q).

Let i be even. By identity (7), we have

Pix ⌘ (�1)
i
2

 
qL0 � (�1) i

2 2L2n�i+2

5

!
(mod q).

Therefore,

Pix� ⌘
⇢ qL0�2L2n�i+2

5 (mod q), if i ⌘ 0 (mod 4);
� qL0+2L2n�i+2

5 (mod q), if i ⌘ 2 (mod 4).

Next, let i be odd. We have

Pix ⌘ (�1)
i�1
2

 
qL1 + (�1)

i�1
2 L2n�i+2

5

!
(mod q).



INTEGERS: 17 (2017) 7

Therefore,

Pix� ⌘
⇢ qL1+2L2n�i+2

5 (mod q), if i ⌘ 1 (mod 4);
� qL1�2L2n�i+2

5 (mod q), if i ⌘ 3 (mod 4).

Thus, we see that

min
0i(2n+2)

{|Pix�|q} =
q � 2L2n�1

5
.

Using identity (5), for 0  i  2n + 2, we have that

(a) F4n+3�i = (�1)iFi�1 + F2n+2�i(F2n + F2n+2),

(b) F4n+4�i = (�1)iFi + F2n+2�i(F2n+1 + F2n+3).

By a simple manipulation, we get P4n+4�i = (�1)iPi + F2n+2�i(P2n+1 + P2n+3) =
(�1)iPi + F2n+2�iq. Thus, P4n+4�ix� ⌘ (�1)iPix� (mod q). Therefore,

min
0i(4n+4)

{|Pix�|q} =
q � 2L2n�1

5
.

Notice that this absolute minimum is obtained corresponding to the congruences
P3x� ⌘ P4n+1x� ⌘ q�2L2n�1

5 (mod q). Therefore, for 4n + 1  k  4n + 4,

min
0ik

{|Pix�|q} =
q � 2L2n�1

5
.

Thus, by definition (1.2) of (P), we get

(P) � 1
5
� 2L2n�1

5(aL2n+1 + bL2n+2)
.

This completes the proof.

Lemma 2.3. Let P = {P0, P1, P2, . . . , Pk}, where Pi = aFi�1+bFi for all i � 0 and
4n�1  k  4n+2 and n � 1, k 6= 3, 4. If (a, b) 2 {(5m, 5l+2), (5m+1, 5l), (5m+
2, 5l + 3), (5m + 3, 5l + 1), (5m + 4, 5l + 4) : l,m 2 N[ {0}} with gcd(a, b) = 1, then

(P) � 1
5
� L2n�1

5(aL2n�1 + bL2n)
.

Proof. Clearly, we have 2b � a ⌘ 4 (mod 5) and 3b � 4a ⌘ 1 (mod 5). Set q =
P2n�1 + P2n+1 = aL2n�1 + bL2n. Then

q = aL2n�1 + bL2n

= (4a� 3b)F2n + (�a + 2b)F2n+2

⌘ 4F2n � F2n+2

⌘ F2n�2 + F2n

⌘ L2n�1 (mod 5).
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Let p = q�L2n�1
5 . We have

ap ⌘ b(2p + F2n) (mod q). (2.6)

Again 2q ⌘ 3F2n�2F2n+2 = F2n�2�F2n+2 = �L2n (mod 5). Next, let gcd(a, q) =
d, and gcd(b, q) = d0. This implies that d|L2n, which implies d 6⌘ 0 (mod 5) and d
divides (2p + F2n) = 2(q�L2n�1)

5 + F2n = 2q+L2n

5 . Hence, there exists an integer x
such that

ax ⌘ (2p + F2n) (mod q). (2.7)

Similarly, d0|L2n�1, which implies d0 6⌘ 0 (mod 5) and d0 divides p = (q�L2n�1)
5 .

Hence, there exists an integer y such that

by ⌘ p (mod q). (2.8)

Moreover, as in Lemma 2.2, congruence (2.6) implies that there is a common solution
x� of the congruences (2.7) and (2.8), i.e.,

ax� ⌘ 2p + F2n (mod q),
and bx� ⌘ p (mod q).

Since Pi = aFi�1 + bFi, we have

Pix� ⌘ Fi�1(2p + F2n) + Fi(p)
= p(2Fi�1 + Fi) + F2nFi�1

= pLi + F2nFi�1

=
(q � L2n�1)Li + 5F2nFi�1

5

=
qLi � (L2n�1Li � 5F2nFi�1)

5

=
qLi � (�1)i+1L2n�i

5
(mod q) (using identity (6)).

Let i be even. By identity (7), we have

Pix ⌘ (�1)
i
2

 
qL0 + (�1) i

2 L2n�i

5

!
(mod q).

Therefore,

Pix� ⌘
⇢ qL0+L2n�i

5 (mod q), if i ⌘ 0 (mod 4);
� qL0�L2n�i

5 (mod q), if i ⌘ 2 (mod 4).
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Next, let i be odd. We have

Pix ⌘ (�1)
i�1
2

 
qL1 � (�1)

i�1
2 L2n�i

5

!
(mod q).

Therefore,

Pix� ⌘
⇢ qL1�L2n�i

5 (mod q), if i ⌘ 1 (mod 4);
� qL1+L2n�i

5 (mod q), if i ⌘ 3 (mod 4).

Thus, we see that

min
0i(2n)

{|pix�|q} =
q � L2n�1

5
.

Using identity (5), for 0  i  2n, we have that

(a) F4n�1�i = (�1)iFi�1 + F2n�i(F2n�2 + F2n),

(b) F4n�i = (�1)iFi + F2n�i(F2n�1 + F2n+1).

By a simple manipulation, we get P4n�i = (�1)iPi + F2n�i(P2n�1 + P2n+1) =
(�1)iPi + F2n�iq. Thus, P4n�ix� ⌘ (�1)iPix� (mod q). Whereas, P4n+1 x� ⌘
(P0 � P1)x� ⌘ p + F2n (mod q) and P4n+2 x� = (P4n+1 + P4n)x� ⌘ P4n+1x� +
P0x� ⌘ 3p + 2F2n ⌘ �(2p � F2n�1) (mod q). Therefore, min

0i(4n+2)
{|Pix�|q} =

q�L2n�1
5 . Notice that this absolute minimum is obtained corresponding to the con-

gruences P1x� ⌘ �P4n�1x� ⌘ q�L2n�1
5 (mod q). Therefore, for 4n�1  k  4n+2,

min
0ik

{|Pix�|q} =
q � L2n�1

5
.

Thus, by definition (1.2) of (P), we get

(P) � 1
5
� L2n�1

5(aL2n�1 + bL2n)
.

This completes the proof.

Lemma 2.4. Let P = {P0, P1, P2, . . . , Pk}, where Pi = aFi�1 + bFi for all i � 0
and 4n  k  4n + 3 with n � 1, k 6= 4. If (a, b) 2 {(5m, 5l + 3), (5m + 1, 5l +
1), (5m+2, 5l +4), (5m+3, 5l +2), (5m+4, 5l) : l,m 2 N[ {0}} with gcd(a, b) = 1,
then

(P) � 1
5
� L2n�1

5(aL2n+1 + bL2n+2)
.
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Proof. Clearly, we have 2b � a ⌘ 1 (mod 5) and 3b + a ⌘ 4 (mod 5). Set q =
P2n+1 + P2n+3 = aL2n+1 + bL2n+2. Then

q = (a� 2b)F2n + (a + 3b)F2n+2

⌘ 4F2n � F2n+2

= F2n�2 + F2n

⌘ L2n�1 (mod 5).

Let p = q�L2n�1
5 . We have

a(p + F2n) ⌘ b(2p� F2n�1) (mod q). (2.9)

We also have 2q ⌘ 2(�F2n +4F2n+2) ⌘ �2F2n +3F2n+2 ⌘ 2F2n+1+F2n+2 ⌘ L2n+2

(mod 5). Next, let gcd(a, q) = d and gcd(b, q) = d0. This implies that d|L2n+2, which
implies d 6⌘ 0 (mod 5) and d divides (2p�F2n�1) = (2q�L2n+2)

5 . Hence, there exists
an integer x such that

ax ⌘ (2p� F2n�1) (mod q). (2.10)

Similarly, d0|L2n+1, implies d0 6⌘ 0 (mod 5) and d0 divides (p + F2n) = (q+L2n+1)
5 .

Hence, there exists an integer y such that

by ⌘ (p + F2n) (mod q). (2.11)

Moreover, congruence (2.9) implies that there is a common solution x� of the con-
gruences (2.10) and (2.11), i.e.,

ax� ⌘ 2p� F2n�1 (mod q),
and bx� ⌘ p + F2n (mod q).

Since Pi = aFi�1 + bFi, we have

Pix� ⌘ Fi�1(2p� F2n�1) + Fi

�
�(p + F2n)

�
= p(2Fi�1 + Fi) + (FiF2n � Fi�1F2n�1)

=
q � L2n�1

5
Li + ((�1)i�1F2n�i+1 + Fi�1F2n) (using identity (4))

=
qLi � (L2n�1Li � 5Fi�1F2n)

5
+ (�1)i�12F2n�i+1

=
qLi � (�1)i+1L2n�i

5
+ (�1)i�1F2n�i+1 (using identity (6))

=
qLi � (�1)i+1(L2n�i � 5F2n�i+1)

5

=
qLi + (�1)i+1L2n�i+2

5
(mod q).
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Let i be even. By identity (5), we have

Pix� ⌘ (�1)
i
2

 
2q � (�1) i

2 L2n�i+2

5

!
(mod q).

Therefore,

Pix� ⌘
⇢ 2q�L2n�i+2

5 (mod q), if i ⌘ 0 (mod 4);
�2q+L2n�i+2

5 (mod q), if i ⌘ 2 (mod 4).

Next, let i be odd. We have

Pix ⌘ (�1)
i�1
2

 
L1 q + (�1)

i�1
2 L2n�i+2

5

!
(mod q).

Therefore,

Pix� ⌘
⇢ q+L2n�i+2

5 (mod q), if i ⌘ 1 (mod 4);
� q�L2n�i+2

5 (mod q), if i ⌘ 3 (mod 4).

Thus, we see that

min
0i(2n+2)

{|Pix�|q} =
q � L2n�1

5
.

Using identity (5), for 0  i  2n + 2, we have that

(a) F4n+3�i = (�1)iFi�1 + F2n+2�i(F2n + F2n+2),

(b) F4n+4�i = (�1)iFi + F2n+2�i(F2n+1 + F2n+3).

By a simple manipulation, we get P4n+4�i = (�1)iPi + F2n+2�i(P2n+1 + P2n+3) =
(�1)iPi + F2n+2�iq. Thus, P4n+4�ix� ⌘ (�1)iPix� (mod q). Therefore,

min
0i(4n+4)

{|Pix�|q} =
q � L2n�1

5
.

Notice that this absolute minimum is obtained corresponding to the congruences
P3x� ⌘ P4n+1x� ⌘ q�2L2n�1

5 (mod q). Therefore, for 4n + 1  k  4n + 4,

min
0ik

{|Pix�|q} =
q � L2n�1

5
.

Thus, by definition (1.2) of (P), we get

(P) � 1
5
� L2n�1

5(aL2n+1 + bL2n+2)
.

This completes the proof.
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Lemma 2.5. Let P = {P0, P1, P2, . . . , Pk}, where Pi = aFi�1 + bFi and 4n  k 
4n+3 with n � 1. If (a, b) 2 {(5m, 5l+4), (5m+1, 5l+2), (5m+2, 5l), (5m+3, 5l+
3), (5m + 4, 5l + 1) : l,m 2 N [ {0}} with gcd(a, b) = 1, then

(P) � 1
5
� L2n�1

5(aL2n + bL2n+1)
.

Proof. Clearly, we have 2a + b ⌘ �1 (mod 5) and 3a � b ⌘ �4 (mod 5). Set
q = P2n + P2n+2 = aL2n + bL2n+1. Then

q = aL2n + bL2n+1

= (2a + b)F2n+2 � (3a� b)F2n

⌘ �F2n+2 + 4F2n

⌘ F2n�2 + F2n

⌘ L2n�1 (mod 5).

Let p = q�L2n�1
5 . We have

a(2p + F2n) ⌘ �b(p + F2n) (mod q). (2.12)

We also have q ⌘ L2n�1 � 5F2n ⌘ �L2n+1 (mod 5). Next, let gcd(a, q) = d and
gcd(b, q) = d0. This implies that d|L2n+1, which implies d 6⌘ 0 (mod 5) and d divides
(p + F2n) = (q+L2n+1)

5 . Hence, there exists an integer x such that

ax ⌘ �(p + F2n) (mod q). (2.13)

Similarly, d0|L2n, implies d0 6⌘ 0 (mod 5) and d0 divides (2p + F2n) = 2(q�L2n�1)
5 +

F2n = (2q+2L2n)
5 . Hence, there exists an integer y such that

by ⌘ (2p + F2n) (mod q). (2.14)

Moreover, congruence (2.12) implies that there is a common solution x� of the
congruences (2.13) and (2.14), i.e.,

ax� ⌘ �(p + F2n) (mod q),
and bx� ⌘ 2p + F2n (mod q).
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Since Pi = aFi�1 + bFi, we have

Pix� ⌘ Fi�1 (�(p + F2n)) + Fi(2p + F2n)
= p(2Fi � Fi�1) + F2nFi�2

= p(Li�1) + F2nFi�2

=
(q � L2n�1)(Li�1) + 5F2nFi�2

5

=
qLi�1 � (L2n�1Li�1 � 5F2nFi�2)

5

=
qLi�1 � (�1)iL2n�i+1

5
(mod q) (using identity (6)).

Let i be even. By identity (7), we have

Pix ⌘ (�1)
i�2
2

 
L1 q � (�1)

i+2
2 L2n�i+1

5

!
(mod q).

Therefore,

Pix� ⌘
⇢
� q+L2n�i+1

5 (mod q), if i ⌘ 0 (mod 4);
q�L2n�i+1

5 (mod q), if i ⌘ 2 (mod 4).

Next, let i be odd. Then, we have

Pix� ⌘ (�1)
i�1
2

 
2q � (�1)

i+1
2 L2n�i+1

5

!
(mod q).

Therefore,

Pix� ⌘
⇢ 2q+L2n�i+1

5 (mod q), if i ⌘ 1 (mod 4);
�2q�L2n�i+1

5 (mod q), if i ⌘ 3 (mod 4).

Thus, we see that

min
0i(2n+1)

{|Pix�|q} =
q � L2n�1

5
. (2.15)

Using identity (5), for 0  i  2n + 1, we have that

(a) F4n+1�i = (�1)i�1Fi�1 + F2n+1�i(F2n�1 + F2n+1),

(b) F4n+2�i = (�1)i�1Fi + F2n+1�i(F2n + F2n+2).

By a simple manipulation, we get P4n+2�i = (�1)i�1Pi + F2n+1�i(P2n + P2n+2) =
(�1)i�1Pi+F2n+1�iq. Thus, P4n+2�ix� ⌘ (�1)i�1Pix� (mod q) whereas P4n+3x� =
P4n+2x� + P4n+1x� ⌘ (�P0 + P1)x� ⌘ 3p + 2F2n ⌘ �(2p � F2n�1) (mod q).
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Therefore, min
0i(4n+3)

{|Pix�|q} = q�L2n�1
5 . Notice that this absolute minimum is

obtained corresponding to the congruences P2x� ⌘ �P4nx� ⌘ q�2L2n�1
5 (mod q).

Therefore, for 4n  k  4n + 3,

min
0ik

{|Pix�|q} =
q � L2n�1

5
.

Thus, by definition (1.2) of (P), we get

(P) � 1
5
� L2n�1

5(aL2n + bL2n+1)
.

This completes the proof.

The following corollary due to Pandey [11] may be obtained as a special case of
the above lemma.

Corollary 2.1. Let P = {F2, F3, . . . , Ft} and n � 1 be an integer such that 4n+2 
t  4n + 5, then

(P) � F2n+1

F2n+2 + F2n+4
.

Proof. If a = 1 and b = 2, then Pi = Fi+2. So, by the above lemma

(P) � 1
5
� L2n�1

5(L2n + 2L2n+1)

=
(L2n + 2L2n+1)� L2n�1

5(L2n+1 + L2n+2)

=
L2n + L2n+2

5L2n+3

=
5F2n+1

5L2n+3

=
F2n+1

F2n+2 + F2n+4
.

Lemma 2.6. Let P = {P0, P1, P2, . . . , Pk}, where Pi = aFi�1 + bFi for all i � 0
with k � 5. If (a, b) 2 {(5m+1, 5l+3), (5m+2, 5l+1), (5m+3, 5l+4), (5m+4, 5l+2) :
l,m 2 N⇤} with gcd(a, b) = 1, then

(P) � 1
5
.

Proof. Using identity (7), we may show that 5 does not divide Pi = aFi�1 + bFi for
any i and for any (a, b) 2 {(5m + 1, 5l + 3), (5m + 2, 5l + 1), (5m + 3, 5l + 4), (5m +
4, 5l + 2) : l,m 2 N[ {0}}. Set c = 1 and m = 5. Then, by definition (1.1) of (P),
we have (P) � 1

5 . This completes the proof.
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Corollary 2.2. Let L = {L0, L1, . . . , Lk} with k � 3. Then µ(L) = 1
5 .

Proof. If a = 2 and b = 1, then Pi = 2Fi�1 + Fi = Li. So P = L. Hence, from the
above lemma µ(L) � (L) � 1

5 . On the other hand, by a result of Liu and Zhu [9],
µ({L0, L1, L2, L3}) = µ{2, 1, 3, 4} = 1

5 , which gives µ(L)  µ({L0, L1, L2, L3}) = 1
5 .

Hence, µ(L) = 1
5 .

3. The Values of (P) and µ(P) When |P|  5

Consider the set P = {a, b, a + b, . . . , aFk�1 + bFk} with gcd(a, b) = 1. Cantor and
Gordon [2] completely determined both (P) and µ(P) when k = 0 or k = 1.

Theorem 3.1 ([2], Theorem 3). Let P = {a} or P = {a, b} with gcd(a, b) = 1 and
both a and b are odd. Then µ(P) = (P) = 1

2 .

Theorem 3.2 ([2], Theorem 4). Let P = {a, b} with gcd(a, b) = 1 and a and b are
of opposite parity. Then µ(P) = (P) = a+b�1

2(a+b) .

For k = 2 or P = {a, b, a+b}, Rabinowitz and Proulx [14] gave a lower bound for
µ(P) and conjectured that the bound is the exact value. Liu and Zhu [9] confirmed
their conjecture and completely determined the values of (P) and µ(P).

Theorem 3.3 ([9], Theorem 3.1). Let P = {a, b, a + b}, where 0 < a < b and
gcd(a, b) = 1. Then

µ(P) = (P) =

8>>>><
>>>>:

1
3 , if b ⌘ a (mod 3);

2a+b�1
3(2a+b) , if b ⌘ a + 1 (mod 3);

a+2b�1
3(a+2b) , if b ⌘ a + 2 (mod 3).

They [9] further computed the value of (P) for the four-element set P =
{x, y, y � x, x + y}, y > x and gave a better lower bound than (P) for µ(P) when
both x and y are odd. The case when x and y are of opposite parity, has been
settled by Kemnitz and Kolberg [7].

Theorem 3.4 ([9], Lemma 4.1). Let P = {x, y, y � x, y + x}, y > x, where
gcd(x, y) = 1. If x = 2k + 1 and y = 2m + 1, then µ(P) � (k+1)m

4(k+1)m+1 . If x, y
are of opposite parity, then µ(P) = 1/4.

Theorem 3.5 ([9], Corollary 5.3). Let P = {x, y, y � x, y + x} with gcd(x, y) = 1.
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Let �4(n) denote bn
4 c/n. Then

(P) =

8>>>>>>>>>><
>>>>>>>>>>:

�4(2y + x), if x ⌘ 0 (mod 4) and y ⌘ 3 (mod 4), or
if x ⌘ 1 (mod 4) and y ⌘ 0 (mod 4), or
if x ⌘ 3 (mod 4) and y ⌘ 1, 3 (mod 4);

�4(2y + x), if x ⌘ 0 (mod 4) and y ⌘ 1 (mod 4), or
if x ⌘ 1 (mod 4) and y ⌘ 3 (mod 4), and y < 3x

�4(2y � x), if x ⌘ 3 (mod 4) and y ⌘ 0 (mod 4), or
if x ⌘ y ⌘ 1 (mod 4), or
if x ⌘ 1 (mod 4) and y ⌘ 3 (mod 4), and y � 3x.

Liu and Zhu [9] also gave an infinite family of sets P satisfying (P) < µ(P).
For k = 3 or P = {a, b, a + b, a + 2b} = {b, a + b, a, a + 2b}, using the results

discussed in [9] for P = {x, y, y � x, y + x}, we can estimate the value of µ(P) and
achieve (P).

The rest of this section deals with the case k = 4, i.e., when P = {a, b, a + b, a +
2b, 2a + 3b}.

Lemma 3.1. Let P = {a, b, a + b, a + 2b, 2a + 3b} with gcd(a, b) = 1. Then (P) 
µ(P)  1/4.

Proof. Since both the sets {b, a + b, a, a + 2b} and {a + b, a + 2b, b, 2a + 3b} are
proper subsets of P, we have, µ(P)  µ({b, a + b, a, a + 2b}) and µ(P)  µ({a +
b, a + 2b, b, 2a + 3b}). One can easily verify that for all pairs of values of a, b with
gcd(a, b) = 1, either b and a+b or a+b and a+2b are of opposite parity. Therefore,
using Theorem 3.4, (P)  µ(P)  1/4.

Theorem 3.6. Let P = {a, b, a + b, a + 2b, 2a + 3b} with gcd(a, b) = 1. If a and b
both are odd, then µ(P) = 1/4. In particular, (P) = µ(P) = 1/4, when both a and
b are 1 (mod 4) or both a and b are 3 (mod 4).

Proof. By Lemma 3.1, we have µ(P)  1/4. It su�ces to show that µ(P) � 1/4.
Note that P contains only one even element and that is a + b. We consider the set

S =
[
i�0

{2i(a + b), 2i(a + b) + 2, . . . , (2i + 1)(a + b)� 2}.

Clearly S is a periodic set with period 2(a+b). It is not di�cult to show that S is
a P-set and |S\{0, 1, . . . 2(a+b)�1}| = a+b

2 . Therefore, S has density a+b
2(2(a+b))=

1
4 .

This implies that µ(P) � 1/4.
However, when both a and b are 1 (mod 4), or both a and b are 3 (mod 4),

none of the elements in P is a multiple of 4. Let c = 1 and m = 4. Then,
min{|ca|m, |cb|m, |c(a+b)|m, |c(a+2b)|m, |c(2a+3b)|m} = 1. Therefore, by definition
(1.1) of (P), we have (P) � 1

4 . Hence, (P) = µ(P) = 1/4.
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In the next theorem, we evaluate (P), where P = {a, b, a + b, a + 2b, 2a + 3b}
for the remaining possible pairs (a, b).

Theorem 3.7. Let P = {a, b, a + b, a + 2b, 2a + 3b} with gcd(a, b) = 1. Let �4(n)
denote bn

4 c/n. Then

(P) =

8<
:

�4(2a + 2b), if b� a ⌘ 1 (mod 4);
�4(a + 3b), if b� a ⌘ 2 (mod 4);
�4(a + 3b), if b� a ⌘ 3 (mod 4).

Proof. Let �(P) be the corresponding value on the right-hand side of the equality.
First we show that �(P)  (P). Let � be either +1 or �1. We consider three
cases for three di↵erent values of �(P).

Case 1. (�(P) = �4(2a + 2b)).

In this case, b�a ⌘ 1 (mod 4). Set q = 2a+2b. We have q ⌘ 2 (mod 4). Choose
x� such that

ax� ⌘ �

✓
a + b� 1

2

◆
(mod q),

and bx� ⌘ �

✓
a + b + 1

2

◆
(mod q).

Then

(a + b)x� ⌘ � (a + b) (mod q).

Whereas,

(a + 2b) ⌘ �a (mod q),
and (2a + 3b) ⌘ b (mod q).

Therefore, min{|ax�|q, |bx�|q, |(a + b)x�|q, |(a + 2b)x�|q, |(2a + 3b)x�|q} = a+b�1
2 .

This implies that (P) � a+b�1
2(2a+2b) = �4(2a + 2b) = �(P).

Case 2. (�(P) = �4(a + 3b)).

In this case, b� a ⌘ 2 (mod 4). Set q = a + 3b. We have q ⌘ 2 (mod 4). Choose
x� such that

ax� ⌘ �

✓
a + 3b + 6

2

◆
(mod q),

and bx� ⌘ �

✓
a + 3b� 2

2

◆
(mod q).
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Since,

(a + b) ⌘ �2b (mod q),
(a + 2b) ⌘ �b (mod q),

and (2a + 3b) ⌘ a (mod q),

we have, min{|ax�|q, |bx�|q, |(a + b)x�|q, |(a + 2b)x�|q, |(2a + 3b)x�|q} = a+3b�2
4 .

This implies that (P) � a+3b�2
4(a+3b) = �4(a + 3b) = �(P).

Case 3. (�(P) = �4(a + 3b)).

In this case, b� a ⌘ 3 (mod 4). Set q = a + 3b. We have q ⌘ 1 (mod 4). Choose
x� such that

ax� ⌘ �

✓
a + 3b + 3

4

◆
(mod q) and bx� ⌘ �

✓
a + 3b� 1

4

◆
(mod q).

Since,

(a + b) ⌘ �2b (mod q),
(a + 2b) ⌘ �b (mod q),

and (2a + 3b) ⌘ a (mod q),

we have, min{|ax�|q, |bx�|q, |(a + b)x�|q, |(a + 2b)x�|q, |(2a + 3b)x�|q} = a+3b�1
4 .

This implies that (P) � a+3b�1
4(a+3b) = �4(a + 3b) = �(P).

To show that the equality holds, we observe that in all above cases, �(P) values
are equal to

max
⇢

p

q
:

p

q
<

1
4

and q divides the sum of two elements of P
�

.

It is known [6] that (P) is a fraction whose denominator always divides the sum
of some pair of elements in P. Using this fact and Theorem 3.5, we may verify that
for all pairs of the values of (a, b), (P) < 1

4 . Thus, we have (P)  �(P). This
completes the proof.

Remark 3.1. If one of a or b is 1 modulo 4 and other one is 3 modulo 4, then by
Theorems 3.6 and 3.7, we get (P) < µ(P) = 1/4.
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[1] W. Bienia, L. Goddyn, P. Gvozdjak, A. Sebö, and M. Tarsi, Flows, view obstructions and
the lonely runner, J. Combin. Theory Ser. B 72 (1998), 1–9.

[2] D. G. Cantor and B. Gordon, Sequences of integers with missing di↵erences, J. Combin.
Theory Ser. A 14 (1973), 281–287.

[3] G. Chang, D. D.-F. Liu, and X. Zhu, Distance graphs and T -colorings, J. Combin. Theory
Ser. B 75 (1999), 159–169.

[4] T. W. Cusick, View-obstruction problems in n-dimensional geometry, J. Combin. Theory
Ser. A 16 (1974), 1–11.

[5] S. Gupta and A. Tripathi, Density of M-sets in arithmetic progression, Acta Arith. 89 (1999),
255–257.

[6] N. M. Haralambis, Sets of integers with missing di↵erences, J. Combin. Theory Ser. A 23
(1977), 22–33.

[7] A. Kemnitz and H. Kolberg, Coloring of integer distance graphs, Discrete Math. 191 (1998),
113–123.

[8] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, 2001.

[9] D. D.-F. Liu and X. Zhu, Fractional chromatic number for distance graphs with large clique
size, J. Graph Theory 47 (2004), 129–146.

[10] D. D.-F. Liu and X. Zhu, Fractional chromatic number of distance graphs generated by
two-interval sets, European J. Combin. 29 (7) (2008), 1733–1742.

[11] R. K. Pandey, On some magnified Fibonacci numbers modulo a Lucas number, J. Integer
Seq. 16 (2013), Article 13.1.7, 7 pp.

[12] R. K. Pandey and A. Tripathi, A note on a problem of Motzkin regarding density of integral
sets with missing di↵erences, J. Integer Seq. 14 (2011), Article 11.6.3, 8 pp.

[13] R. K. Pandey and A. Tripathi, On the density of integral sets with missing di↵erences from
sets related to arithmetic progressions, J. Number Theory 131 (2011), 634–647.

[14] J. H. Rabinowitz and V. K. Proulx, An asymptotic approach to the channel assignment
problem, SIAM J. Alg. Disc. Methods 6 (1985), 507–518.

[15] J. M. Wills, Zwei Sätze uber inhomogene diophantische Approximation von Irrationalzahlen,
Monatsh. Math. 71 (1967), 263–269.


