ON FREIMAN'S 3K - 4 THEOREM

Prem Prakash Pandey
Department of Mathematics, IISER Berhampur, Berhampur, Odisha, India
premshivaganga@gmail.com

Received: 5/17/17, Revised: 9/28/17, Accepted: 2/7/18, Published: 2/19/18

Abstract

In this article we establish Freiman's $3 k-4$ Theorem, under some restrictions, for the groups $\mathbb{Z} \times G$, where G is any abelian group. Some consequences are also derived. Furthermore, the arguments of the article extend to cover the cases when G is non-abelian.

1. Introduction

Let G be an abelian group (written additively), and let A and B be finite subsets of G. The sumset of A and B is defined as $A+B:=\{a+b: a \in A, b \in B\}$. If $G=\mathbb{Z}$, the group of integers, then it is well known that

$$
\begin{equation*}
|A+B| \geq|A|+|B|-1 \tag{1}
\end{equation*}
$$

The size of the cardinality $|A+B|$ has bearing on the structure of the sets A and B. In relation (1) equality holds if and only if A and B are arithmetic progressions with the same common differences. For the cyclic group $G=\mathbb{Z} / p \mathbb{Z}$ of prime order, the analogue of (1) is given by the classical theorem of Cauchy-Davenport (see for example [14] or [12]). For subsets A and B of $\mathbb{Z} / p \mathbb{Z}$ one has

$$
\begin{equation*}
|A+B| \geq \min \{p,|A|+|B|-1\} \tag{2}
\end{equation*}
$$

In [15], Vosper proved that if $|A|+|B|-1<p$, then equality in (2) holds if and only if A and B are arithmetic progressions with the same common differences.

In [5], Freiman considered the group $G=\mathbb{Z}$ and proved the following structure theorem.

Theorem 1 ($3 k-4$ Theorem). If A is a set of integers of cardinality $k \geq 2$ and the inequality $|A+A| \leq 3 k-4$ holds, then A is a subset of an arithmetic progression of length $k+b$. Here b is given by $|A+A|=2 k-1+b$.

Extending this theorem to other groups is a well-pursued problem (see the $3 k-4$ conjecture in [11] or see $[2,6,7,8,9,10,13])$. In this article we consider groups of the form $\mathbb{Z} \times G$, where G is any abelian group, and prove the following theorem.

Theorem 2. Let $k \geq 3$ be any integer and G be an abelian group. Consider a subset $\mathcal{A}=\left\{\left(a_{i}, x_{i}\right): 1 \leq i \leq k\right\}$ of $\mathbb{Z} \times G$ such that the projection to the first coordinate, restricted to \mathcal{A}, is injective. If $|\mathcal{A}+\mathcal{A}| \leq 3 k-4$, then \mathcal{A} is a subset of an arithmetic progression of length $k+b$, where $|\mathcal{A}+\mathcal{A}|=2 k-1+b$.

It is expected that the assumption "the projection to the first coordinate, restricted to \mathcal{A}, is injective" in Theorem 2 may be dropped (see [11] or [3]). In this direction we mention the works of Deshouillers and Freiman [4], where they prove a structure theorem (Theorem 2 in [4]) for subsets \mathcal{A} of $\mathbb{Z} \times \mathbb{Z} / d \mathbb{Z}$, without any assumption on the projection to the first coordinate, but under a stronger assumption on the sumset $|\mathcal{A}+\mathcal{A}|$. In [1] (see Theorem 1), authors have improved the result of Deshouillers and Freiman to cover all subsets \mathcal{A} of $\mathbb{Z} \times \mathbb{Z} / d \mathbb{Z}$ with $|\mathcal{A}+\mathcal{A}|<2.5|\mathcal{A}|$. It seems that the method of [1] can be improved to cover sets with doubling constant more than 2.5 . But, to us, it seems that it will be very lengthy and it is not clear if one can obtain a $3 k-4$ type theorem along those lines.

2. Proof of Theorem 2

Before proceeding with the proofs we make some simplifications. Without loss of generality (as 2-isomorphisms take arithmetic progressions to arithmetic progressions, and translations and multiplications by a constant are 2 -isomorphisms), we assume that $a_{1}=0<a_{2}<\ldots<a_{k}$ and the greatest common divisor of a_{1}, \ldots, a_{k} is 1 . We put $A=\left\{a_{1}, \ldots, a_{k}\right\}$, and $R=\min \left\{k, a_{k}-k+3\right\}$. We shall continue with these notations and assumptions throughout the article.

To prove Theorem 2 we introduce the concept of "structured sets". For a pair (X, A) of subsets of \mathbb{Z} with $X \subset A$, we use the notation $X^{(1)}=(X+X-X) \cap A$ and for $i>1$ we shall write $X^{(i)}=\left(X^{(i-1)}\right)^{(1)}$. We define $X^{(\infty)}=\cup_{i \geq 1} X^{(i)}$. Note that the definition of $X^{(\infty)}$ depends on the pair (X, A).

A subset A of \mathbb{Z} is called a structured set if there is a two element subset $X=$ $\left\{g_{1}, g_{2}\right\} \subset A$ such that $g_{2}-g_{1}=1$ and $A=X^{(\infty)}$. A subset $\mathcal{A} \subset \mathbb{Z} \times G$ is said to be structured if the image $\pi_{1}(\mathcal{A})$ of the first projection is a structured subset of \mathbb{Z} and there are $x, y \in G$ satisfying $x_{i}=a_{i} x+y$. The motivation for this definition is based on the following.

Consider a subset $\mathcal{A}=\left\{\left(a_{i}, x_{i}\right): 1 \leq i \leq s\right\}$ of $\mathbb{Z} \times G$, with small doubling, so that the implication $a_{i}+a_{j}=a_{k}+a_{l} \Longrightarrow x_{i}+x_{j}=x_{k}+x_{l}$ is true. It is natural to expect that there are elements $x, y \in G$ such that $x_{i}=a_{i} x+y$, for all i. Along the lines of the work of the author [13], we prove that the sets with small doubling
are structured sets. In this direction we prove the following theorem.
Theorem 3. Let $k \geq 3$ be any integer and G be an abelian group. Consider a subset $\mathcal{A}=\left\{\left(a_{i}, x_{i}\right): 1 \leq i \leq k\right\}$ of $\mathbb{Z} \times G$ such that the projection to the first coordinate, restricted to \mathcal{A}, is injective. If $|\mathcal{A}+\mathcal{A}| \leq 3 k-4$, then \mathcal{A} is 2 -isomorphic to a structured set.

We will use Theorem 3 to prove Theorem 2. We begin with the following elementary lemma.

Lemma 1. We have $|A+A| \geq 2 k+R-3$.
Proof. Note that $R \leq k$. If the lemma does not hold then we have $|A+A|<$ $2 k+R-3 \leq 3 k-3$. Thus $|A+A|=2 k-1+b$ with $b<k-2$. Now by Theorem 1 we see that A is contained in an arithmetic progression of length $k+b$. Hence we have $a_{k} \leq k+b-1$ and consequently $R \leq b+2$. This gives $2 k+R-3 \leq 2 k-1+b=|A+A|$, which is a contradiction to our assumption $|A+A|<2 k+R-3$.

We have one more elementary lemma.
Lemma 2. If a_{k-1} and a_{k} are not successive terms of any arithmetic progression containing A, then, for $B=\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}$, we have $|A+A| \geq|B+B|+3$.

Proof. Note that $a_{k}+a_{k}, \ldots, a_{k}+a_{1}$ are k distinct elements in $A+A$. Clearly $a_{k}+a_{k}, a_{k}+a_{k-1}$ are not in $B+B$. We claim that there is $i<k-1$ such that $a_{k}+a_{i}$ is not in $B+B$, this will prove the lemma.

We consider the decreasing arithmetic progression $c_{1}=a_{k}, c_{2}=a_{k-1}, c_{3}=a_{k}-$ $2\left(a_{k}-a_{k-1}\right), \ldots$ Then A is not contained in the arithmetic progression c_{1}, c_{2}, \ldots. If $a_{k}+a_{k-2} \in B+B$ then $a_{k}+a_{k-2}=2 a_{k-1}$ and consequently $a_{k-2}=c_{3}$. Thus, either $a_{k}+a_{k-2} \notin B+B$ or $a_{k-2}=c_{3}$. If former is the case then the claim is established. In the latter case, i.e. $a_{k-2}=c_{3}$, the element a_{k-2} lies in the arithmetic progression c_{1}, c_{2}, \ldots. Continuing this way we conclude that either there is some $i<k-1$ such that $a_{k}+a_{i}$ is not in $B+B$ or A is contained in the arithmetic progression c_{1}, c_{2}, \ldots. Since A is not contained in the arithmetic progression c_{1}, c_{2}, \ldots, the claim is established.

Proof. (Theorem 3) We use induction on k. For $k=3$, we have $|A+A| \geq 5$ and $3 k-4=5$. Thus

$$
\begin{equation*}
|\mathcal{A}+\mathcal{A}|=|A+A|=3 k-4 \tag{3}
\end{equation*}
$$

Since $\min (A)=0$ and $\operatorname{gcd}(A)=1$, by Equation (3) we have $A=\{0,1,2\}$. Also, Equation (3) forces $x_{i}+x_{j}=x_{k}+x_{l}$, whenever $a_{i}+a_{j}=a_{k}+a_{l}$. Let $x, y \in G$ be such that $x_{1}=a_{1} x+y$ and $x_{2}=a_{2} x+y$. If $x_{3} \neq a_{3} x+y$, then $|\mathcal{A}+\mathcal{A}|>|A+A|=3 k-4$, which is a contradiction. Thus \mathcal{A} is a structured set.

Now we assume that $k>3$ and put $\mathcal{B}=\left\{\left(a_{i}, x_{i}\right): 1 \leq i \leq k-1\right\}$. We consider following two cases.

Case 1: \mathcal{B} is a structured set. Since \mathcal{B} is structured, $\pi_{1}(\mathcal{B})$ is structured and there exist $x, y \in G$ such that $x_{i}=a_{i} x+y$ for all $i \leq k-1$. If $(\mathcal{B}+\mathcal{B}) \cap\left(\left(a_{k}, x_{k}\right)+\mathcal{B}\right) \neq \emptyset$ then there are indices $u, v, w \leq k-1$ such that

$$
\left(a_{k}, x_{k}\right)+\left(a_{u}, x_{u}\right)=\left(a_{v}, x_{v}\right)+\left(a_{w}, x_{w}\right) .
$$

From this we see that $a_{k}=a_{v}+a_{w}-a_{u}$ and $x_{k}=x_{v}+x_{w}-x_{u}$. Now it immediately follows that \mathcal{A} is structured. We may now assume that $(\mathcal{B}+\mathcal{B}) \cap\left(\left(a_{k}, x_{k}\right)+\mathcal{B}\right)=\emptyset$, so that $|\mathcal{A}+\mathcal{A}| \geq|\mathcal{B}+\mathcal{B}|+|\mathcal{B}|$; the consideration of $\left(a_{k}, x_{k}\right)+\left(a_{k}, x_{k}\right)$ leads to

$$
\begin{equation*}
|\mathcal{A}+\mathcal{A}| \geq|\mathcal{B}+\mathcal{B}|+|\mathcal{B}|+1 \tag{4}
\end{equation*}
$$

Using the trivial lower bound on the first coordinate we find

$$
\begin{equation*}
|\mathcal{B}+\mathcal{B}| \geq 2|\mathcal{B}|-1 \tag{5}
\end{equation*}
$$

Using this in (4) we get

$$
|\mathcal{A}+\mathcal{A}| \geq 3|\mathcal{B}|=3 k-3
$$

which is a contradiction. This contradiction proves the theorem in this case.

Case 2: \mathcal{B} is not structured. By the induction hypothesis we get $|\mathcal{B}+\mathcal{B}| \geq$ $3(k-1)-3$. If $a_{k-1} \neq a_{k}-1$, then using Lemma 2 , with $A=\pi_{1}(\mathcal{A})$ and $B=\pi_{1}(\mathcal{B})$, one immediately obtains $|\mathcal{A}+\mathcal{A}| \geq|\mathcal{B}+\mathcal{B}|+3 \geq 3 k-3$, which is a contradiction.

When $a_{k-1}=a_{k}-1$, one can solve for $x, y \in G$ satisfying $x_{k}=a_{k} x+y$ and $x_{k-1}=a_{k-1} x+y$. Observe that, by considering first coordinates, the two elements $\left(a_{k}+a_{k}, x_{k}+x_{k}\right)$ and $\left(a_{k}+a_{k-1}, x_{k}+x_{k-1}\right)$ are in $\mathcal{A}+\mathcal{A}$ but not in $\mathcal{B}+\mathcal{B}$. If there is an $i<k-1$ such that $\left(a_{k}+a_{i}, x_{k}+x_{i}\right) \notin \mathcal{B}+\mathcal{B}$ then we get $|\mathcal{A}+\mathcal{A}| \geq|\mathcal{B}+\mathcal{B}|+3 \geq 3 k-3$, which is a contradiction. Hence $\left(a_{k}+a_{i}, x_{k}+x_{i}\right) \in \mathcal{B}+\mathcal{B}$ holds for all $i<k-1$. Since $\left(a_{k}+a_{k-2}, x_{k}+x_{k-2}\right) \in \mathcal{B}+\mathcal{B}$, using order relation of \mathbb{Z}, we obtain $a_{k}+a_{k-2}=2 a_{k-1}$ and $x_{k}+x_{k-2}=2 x_{k-1}$. As a consequence $x_{k-2}=a_{k-2} x+y$. This proves that the set $\left\{\left(a_{k-2}, x_{k-2}\right),\left(a_{k-1}, x_{k-1}\right),\left(a_{k}, x_{k}\right)\right\}$ is a structured set. Continuing this way we see that \mathcal{A} is a structured set.

We now deduce Theorem 2 from Theorem 3. We have $|A+A| \leq 3|A|-4$. By Lemma $12 k+R-3 \leq 3 k-4$. Thus, $R \leq k-1$ and $a_{k}=k+R-3$. Consequently, A is contained in the interval $[0, k+R-3]$ and lies in an arithmetic progression of length $k+R-2$.

By Theorem 3, there exist $x, y \in G$ such that $x_{i}=a_{i} x+y$, for all i. Thus \mathcal{A} is contained in an arithmetic progression of length $k+R-2$.

We have $|A+A|=|\mathcal{A}+\mathcal{A}|=2 k-1+b$. From Lemma 1 one has $2 k+R-3 \leq$
$2 k-1+b$, that is, $R-2 \leq b$. Consequently, \mathcal{A} is contained in an arithmetic progression of length $k+b$.

Next we give some consequences of Theorem 3. We have not seen these results in literature, and these are easily deduced from Theorem 3.

Corollary 1. Let A be a subset of $k \geq 3$ integers with $\min (A)=0$ and the greatest common divisor of the elements of A is 1 . If A is not a structured set, then $|A+A|>$ $3|A|-4$.

Proof. Let G be any finite abelian group. Consider the subset $\mathcal{A}=\{(a, 0): a \in A\}$ of $\mathbb{Z} \times G$. If $|A+A| \leq 3|A|-4$, then Theorem 2 will give that \mathcal{A} is a structured set, and by definition, so is A.

The following corollary gives a sufficient condition for a subset of \mathbb{Z} to be a structured set.

Corollary 2. Let $N \geq 2$, and $A \subset[0, N-1]$. If $|A| \geq 2 N / 3+1$, then A is a structured set.

Proof. For $N \leq 4$, it is easy to see that A is structured. So assume $N \geq 5$. It is clear that the greatest common divisor of elements of A is 1 . With a translation, we can assume that $\min (A)=0$.

Here, $A+A \subset[0,2 N-2]$ and hence $|A+A| \leq 2 N-1$. Since $2 N / 3+1 \leq|A|$, we get $2 N-1 \leq 3|A|-4$. Thus, A satisfies the hypothesis of Corollary 1, and it follows that, up to a translation, A is a structured set. Since translates of structured sets are structured, it follows that, A is structured.

The set $A=[0, N-1] \backslash\{a<N: a \equiv 2(\bmod 3)\}$ is not a structured set, though $|A| \geq 2 N / 3$. But in this case we note that the sumset $A+A$ has cardinality bigger than $3|A|-4$.

3. Non-abelian Groups

In this section we briefly mention how Theorem 3 (and hence Theorem 2) can be proved when G is a non-abelian group (in which case we use multiplication as operation of G). We continue with the notations of Section 2 . In this case we define a subset $\mathcal{A} \subset \mathbb{Z} \times G$ to be a structured set if the image $\pi_{1}(\mathcal{A})$ of the first projection is a structured subset of \mathbb{Z}, and there are commuting elements $x, y \in G$ satisfying $x_{i}=x^{a_{i}} y$.

Proof. (Theorem 3, when G is non-abelian) We use induction on k. For $k=3$, we have $|A+A| \geq 5$ and $3 k-4=5$. Thus

$$
\begin{equation*}
|\mathcal{A}+\mathcal{A}|=|A+A|=3 k-4 \tag{6}
\end{equation*}
$$

Since $\min (A)=0$ and $\operatorname{gcd}(A)=1$, by Equation (6) we have $A=\{0,1,2\}$. Also, Equation (6) forces $x_{i} x_{j}=x_{k} x_{l}$, whenever $a_{i}+a_{j}=a_{k}+a_{l}$. Let $x, y \in G$ be such that $x_{1}=x^{a_{1}} y$ and $x_{2}=x^{a_{2}} y$ (which is always possible, as $a_{1}=0, a_{2}=1$). From Equation (6) it follows that $x_{1} x_{2}=x_{2} x_{1}$. From this it is clear that x and y commute. As $a_{1}+a_{3}=2 a_{2}$, we have $x_{1} x_{3}=x_{2}^{2}$. From which it follows that $x_{3}=x^{a_{3}} y$. Thus \mathcal{A} is a structured set.

Now we assume that $k>3$ and put $\mathcal{B}=\left\{\left(a_{i}, x_{i}\right): 1 \leq i \leq k-1\right\}$.
Case 1: \mathcal{B} is a structured set. Since \mathcal{B} is structured, $\pi_{1}(\mathcal{B})$ is structured and there exist commuting elements $x, y \in G$ such that $x_{i}=x^{a_{i}} y$ for all $i \leq k-1$. If $(\mathcal{B}+\mathcal{B}) \cap\left(\left(a_{k}, x_{k}\right)+\mathcal{B}\right) \neq \emptyset$ then there are indices $u, v, w \leq k-1$ such that

$$
\left(a_{k}, x_{k}\right)+\left(a_{u}, x_{u}\right)=\left(a_{v}, x_{v}\right)+\left(a_{w}, x_{w}\right) .
$$

From this we see that $a_{k}=a_{v}+a_{w}-a_{u}$ and $x_{k}=x_{v} x_{w} x_{u}^{-1}$. Now it immediately follows that \mathcal{A} is structured.

We may now assume that $(\mathcal{B}+\mathcal{B}) \cap\left(\left(a_{k}, x_{k}\right)+\mathcal{B}\right)=\emptyset$, so that $|\mathcal{A}+\mathcal{A}| \geq$ $|\mathcal{B}+\mathcal{B}|+|\mathcal{B}| ;$ the consideration of $\left(a_{k}, x_{k}\right)+\left(a_{k}, x_{k}\right)$ leads to

$$
\begin{equation*}
|\mathcal{A}+\mathcal{A}| \geq|\mathcal{B}+\mathcal{B}|+|\mathcal{B}|+1 \tag{7}
\end{equation*}
$$

Using the trivial lower bound on the first coordinate we find

$$
\begin{equation*}
|\mathcal{B}+\mathcal{B}| \geq 2|\mathcal{B}|-1 \tag{8}
\end{equation*}
$$

Using this in (7) we get

$$
|\mathcal{A}+\mathcal{A}| \geq 3|\mathcal{B}|=3 k-3
$$

which is a contradiction. This contradiction proves the theorem in this case.

Case 2: \mathcal{B} is not structured. By induction hypothesis we get $|\mathcal{B}+\mathcal{B}| \geq 3(k-1)-3$. If $a_{k-1} \neq a_{k}-1$, then using Lemma 2 , with $A=\pi_{1}(\mathcal{A})$ and $B=\pi_{1}(\mathcal{B})$, one immediately obtains $|\mathcal{A}+\mathcal{A}| \geq|\mathcal{B}+\mathcal{B}|+3 \geq 3 k-3$, which is a contradiction. Similarly we otain a contradiction if $x_{k} x_{k-1}=x_{k-1} x_{k}$. Thus, we assume that $x_{k} x_{k-1}=x_{k-1} x_{k}$ and $a_{k-1}=a_{k}-1$. One can solve for $x, y \in G$ satisfying $x_{k}=x^{a_{k}} y$ and $x_{k-1}=x^{a_{k-1}} y$. Since x_{k} and x_{k-1} commute, it follows that x and y commute. Observe that, by considering first coordinate, the two elements $\left(a_{k}+a_{k}, x_{k} x_{k}\right)$ and $\left(a_{k}+a_{k-1}, x_{k} x_{k-1}\right)$ are in $\mathcal{A}+\mathcal{A}$ but not in $\mathcal{B}+\mathcal{B}$. If there is an $i<k-1$ such that $\left(a_{k}+a_{i}, x_{k} x_{i}\right) \notin \mathcal{B}+\mathcal{B}$ then we get $|\mathcal{A}+\mathcal{A}| \geq|\mathcal{B}+\mathcal{B}|+3 \geq 3 k-3$, which is a contradiction. Hence $\left(a_{k}+a_{i}, x_{k} x_{i}\right) \in \mathcal{B}+\mathcal{B}$ holds for all $i<k-1$. Since $\left(a_{k}+a_{k-2}, x_{k} x_{k-2}\right) \in \mathcal{B}+\mathcal{B}$, using order relation of \mathbb{Z}, we obtain $a_{k}+a_{k-2}=2 a_{k-1}$ and $x_{k} x_{k-2}=x_{k-1}^{2}$. As a consequence $x_{k-2}=x^{a_{k-2}} y$. This proves that the set $\left\{\left(a_{k-2}, x_{k-2}\right),\left(a_{k-1}, x_{k-1}\right),\left(a_{k}, x_{k}\right)\right\}$ is a structured set. Continuing this way we see that \mathcal{A} is a structured set.

Acknowledgements. We would like to thank the anonymous referee for improving the presentation of the article.

References

[1] R. Balasubramanian, P. P. Pandey, On a theorem of Deshouillers and Freiman, European J. Comb., to appear.
[2] Y. Bilu, Structure of sets with small sumsets, Asterique 258 (1999), 77-108.
[3] Y. F. Bilu, V. F. Lev and I. Z. Ruzsa, Rectification principles in additive number theory, Discrete Comput. Geom. 19 (1998), 343-353.
[4] Jean-Marc Deshouillers, G. Freiman, A step beyong Kneser's theorem for finite abelian groups, Proc. London Math. Soc. 86 (2003), no. 1, 1-28.
[5] G. Freiman, On the addition of finite sets. I. Izv. Vyss. Ucebn. Zaved. Matematika 613 (1959), 202-213.
[6] G. Freiman, Inverse problems of the additive theory of numbers. On the addition of sets of residues with respect to a prime modulus, Dokl. Akad. Nauk SSSR 141 (1961) 571-573 (Russian), Soviet Math. Dokl. 2 (1961) 1520-1522 (English).
[7] G. Freiman, Foundations of a Structural Theory of set Addition, Translations of Mathematical Monographs 37, American Mathematical Society, Providence, RI, 1973.
[8] G. Freiman, Structure theory of set addition, Asterisque 258 (1999) 1-33.
[9] G. A. Freiman, M. Herzog, P. Longobardi, M. Maj, Small doubling in ordered groups, J. Aust. Math. Soc. 96 (2014), no. 3, 316-325.
[10] Y. Hamidoune, A. Llado, O. Sera, On subsets with small product in torsion free groups, Combinatorica 18 (4) (1998), 529-540.
[11] Y. Hamidoune, O. Serra, G. Zemor, t On the critical pair theory in $\mathbb{Z} / p \mathbb{Z}$, Acta Arithmetica, 121.2 (2006), 99-115.
[12] M. Nathanson, Additive Number Theory. Inverse Problems and the Geometry of Sumsets, Graduate Texts in Mathematics 165, Springer-Verlan, New York, 1996.
[13] P. P. Pandey, The $3 k-4$ Theorem for ordered groups, to appear in Bulletin of Aust. Math. Soc.
[14] T. Tao, V. Vu, Additive Combinatorics, Cambridge Studies in Mathematics 105, Cambridge, 2006.
[15] A. G. Vosper, The critical pairs of subsets of a group of prime order, J. London Math. Soc. 31 (1956) 200-205.

