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Abstract
In this article we establish Freiman’s 3k — 4 Theorem, under some restrictions,
for the groups Z x GG, where GG is any abelian group. Some consequences are also
derived. Furthermore, the arguments of the article extend to cover the cases when
G is non-abelian.

1. Introduction

Let G be an abelian group (written additively), and let A and B be finite subsets
of G. The sumset of A and B is defined as A+ B :={a+b:a € Ab e B}. If
G = Z, the group of integers, then it is well known that

|A+B| = |A] +[B| - 1. (1)

The size of the cardinality | A+ B| has bearing on the structure of the sets A and
B. In relation (1) equality holds if and only if A and B are arithmetic progressions
with the same common differences. For the cyclic group G = Z/pZ of prime order,
the analogue of (1) is given by the classical theorem of Cauchy-Davenport (see for
example [14] or [12]). For subsets A and B of Z/pZ one has

A+ B| > min{p, |4] + [B| - 1}. (2)

In [15], Vosper proved that if |A| + |B| — 1 < p, then equality in (2) holds if and
only if A and B are arithmetic progressions with the same common differences.

In [5], Freiman considered the group G = Z and proved the following structure
theorem.

Theorem 1 (3k —4 Theorem). If A is a set of integers of cardinality k > 2 and the
inequality |A + A| < 3k — 4 holds, then A is a subset of an arithmetic progression
of length k +b. Here b is given by |A+ A| =2k —1+b.
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Extending this theorem to other groups is a well-pursued problem (see the 3k —4
conjecture in [11] or see [2, 6, 7, 8, 9, 10, 13]). In this article we consider groups of
the form Z x G, where GG is any abelian group, and prove the following theorem.

Theorem 2. Let k > 3 be any integer and G be an abelian group. Consider a
subset A = {(a;, ;) : 1 < i < k} of Z x G such that the projection to the first
coordinate, restricted to A, is injective. If |[A + A| < 3k — 4, then A is a subset of
an arithmetic progression of length k + b, where |A + A| =2k —1+b.

It is expected that the assumption “the projection to the first coordinate, re-
stricted to A, is injective” in Theorem 2 may be dropped (see [11] or [3]). In this
direction we mention the works of Deshouillers and Freiman [4], where they prove
a structure theorem (Theorem 2 in [4]) for subsets A of Z x Z/dZ, without any as-
sumption on the projection to the first coordinate, but under a stronger assumption
on the sumset |A 4+ A|. In [1] (see Theorem 1), authors have improved the result of
Deshouillers and Freiman to cover all subsets A of Z x Z/dZ with |A+ A| < 2.5|A].
It seems that the method of [1] can be improved to cover sets with doubling con-
stant more than 2.5. But, to us, it seems that it will be very lengthy and it is not
clear if one can obtain a 3k — 4 type theorem along those lines.

2. Proof of Theorem 2

Before proceeding with the proofs we make some simplifications. Without loss of
generality (as 2-isomorphisms take arithmetic progressions to arithmetic progres-
sions, and translations and multiplications by a constant are 2-isomorphisms), we
assume that a1 =0 < ay < ... < ai and the greatest common divisor of aq,...,ax
is1. We put A ={aq,...,ar}, and R = min{k,ar, — k+ 3}. We shall continue with
these notations and assumptions throughout the article.

To prove Theorem 2 we introduce the concept of “structured sets”. For a pair
(X, A) of subsets of Z with X C A, we use the notation X(V) = (X + X — X)N A
and for i > 1 we shall write X = (X0=1)(1) We define X (=) = U;>, X, Note
that the definition of X(°°) depends on the pair (X, A).

A subset A of Z is called a structured set if there is a two element subset X =
{91,92} C A such that g — g1 =1 and A = X (%) A subset A C Z x G is said to
be structured if the image 1 (A) of the first projection is a structured subset of Z
and there are x,y € G satisfying x; = a;x +y. The motivation for this definition is
based on the following.

Consider a subset A = {(a;,2;) : 1 < i < s} of Z x G, with small doubling, so
that the implication a; + a; = ay + a; = x; + x; = 2}, + 27 is true. It is natural
to expect that there are elements x,y € G such that x; = a;x + y, for all i. Along
the lines of the work of the author [13], we prove that the sets with small doubling
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are structured sets. In this direction we prove the following theorem.

Theorem 3. Let k > 3 be any integer and G be an abelian group. Consider a
subset A = {(a;,2;) : 1 < i < k} of Z x G such that the projection to the first
coordinate, restricted to A, is injective. If |A+A| < 3k —4, then A is 2-isomorphic
to a structured set.

We will use Theorem 3 to prove Theorem 2. We begin with the following ele-
mentary lemma.

Lemma 1. We have |A+ A| > 2k + R — 3.

Proof. Note that R < k. If the lemma does not hold then we have |4 + A| <
2k+ R—3 <3k—3. Thus |A+ A| = 2k — 1+ b with b < k — 2. Now by Theorem 1
we see that A is contained in an arithmetic progression of length k+b. Hence we have
ar, < k+b—1 and consequently R < b+2. This gives 2k+R—3 < 2k—1+b = |A+A|,
which is a contradiction to our assumption |A + A| < 2k + R — 3. O

We have one more elementary lemma.

Lemma 2. If ay_1 and ap are not successive terms of any arithmetic progression
containing A, then, for B = {a1,az,...,a5_1}, we have |A+ A| > |B + B| + 3.

Proof. Note that ax + ak,...,ar + a1 are k distinct elements in A + A. Clearly
ar + a,ar + ap_1 are not in B + B. We claim that there is ¢ < k — 1 such that
ar + a; is not in B + B, this will prove the lemma.

We consider the decreasing arithmetic progression ¢y = ag, ca = ag—1,c3 = ap —
2(ax —ag—1),.... Then A is not contained in the arithmetic progression ¢y, ca, . ... If
ar+ax_o € B+ B then ay+ar_o = 2a;_1 and consequently ax_o = c3. Thus, either
aptag_o &€ B+Borap_s = cs. If former is the case then the claim is established. In
the latter case, i.e. ax_o = c3, the element a;_o lies in the arithmetic progression
c1,C2,.... Continuing this way we conclude that either there is some ¢ < k — 1
such that ar + a; is not in B + B or A is contained in the arithmetic progression
€1,Ca,. ... Since A is not contained in the arithmetic progression ¢y, co, . . ., the claim
is established. O

Proof. (Theorem 3) We use induction on k. For k = 3, we have |A + A| > 5 and
3k —4 =5. Thus

A+ Al=]A+ Al =3k—4. (3)
Since min(A) = 0 and ged(A) = 1, by Equation (3) we have A = {0,1,2}. Also,
Equation (3) forces x;+x; = xp+x;, whenever a;+a; = ar+a;. Let z,y € G be such
that 1 = ayx+y and 2 = asx+y. If x3 # azz+y, then [A+A| > |A+A| = 3k—4,
which is a contradiction. Thus A is a structured set.
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Now we assume that k£ > 3 and put B = {(a;, ;) : 1 <i <k —1}. We consider
following two cases.

Case 1: B is a structured set. Since B is structured, 71 (B) is structured and there
exist z,y € G such that z; = a;z+y foralls < k—1. If (B+B)N((ak,zx)+B) #0
then there are indices u,v,w < k — 1 such that

(ak,xk) + (au,xu) = (@mxv) + (aﬂhxw)'

From this we see that ar = a, +a, —a, and xx = z, + 2, — 2. Now it immediately
follows that A is structured. We may now assume that (B +B) N ((ag, zr) +B) = 0,
so that |A + A| > |B + B| + |B|; the consideration of (ag,xr) + (ak, zx) leads to

|[A+A|>|B+B|+|B|+1. (4)
Using the trivial lower bound on the first coordinate we find
|B + B| >2|B| - 1. (5)

Using this in (4) we get
A+ A| > 3|B| =3k -3,

which is a contradiction. This contradiction proves the theorem in this case.

Case 2: B is not structured. By the induction hypothesis we get |B + B| >
3(k—1)—3. If ax—1 # ar—1, then using Lemma 2, with A = 71(A) and B = m1(B),
one immediately obtains |A + A| > |B + B| + 3 > 3k — 3, which is a contradiction.

When a1 = ar — 1, one can solve for z,y € G satisfying xx = axr + y and
Ti_1 = ax—1¢ +y. Observe that, by considering first coordinates, the two elements
(ag+ak, zp+ai) and (ap+ag—1, zp+xK_1) are in A+A but not in B+B. If there is an
i < k—1such that (ax+a;, xp+x;) € B+B then we get |A+A| > |B+B|+3 > 3k—3,
which is a contradiction. Hence (ax+a;, xx+x;) € B+B holds for all ¢ < k—1. Since
(ap+ag—2, Tr+x—2) € B+B, using order relation of Z, we obtain ax+ap_2 = 2a,—1
and x; + xp_o = 2xp_1. As a consequence xx_o = ap_ox +y. This proves that the
set {(ak—2,%k—2), (@k—1,2K-1), (ak,zx)} is a structured set. Continuing this way
we see that A is a structured set. O

We now deduce Theorem 2 from Theorem 3. We have |A + A| < 3|A4| — 4. By
Lemma 1 2k + R—3 < 3k —4. Thus, R < k—1 and ay = k+ R — 3. Consequently,
A is contained in the interval [0,k + R — 3] and lies in an arithmetic progression of
length £ + R — 2.

By Theorem 3, there exist z,y € G such that z; = a;x + y, for all . Thus A is
contained in an arithmetic progression of length k£ + R — 2.

We have |[A+ A| = |A+ A| =2k —1+b. From Lemma 1 one has 2k + R — 3 <
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2k — 1+ b, that is, R — 2 < b. Consequently, A is contained in an arithmetic
progression of length k + b.

Next we give some consequences of Theorem 3. We have not seen these results
in literature, and these are easily deduced from Theorem 3.

Corollary 1. Let A be a subset of k > 3 integers with min(A) = 0 and the greatest
common divisor of the elements of A is 1. If A is not a structured set, then |A+A| >
3|A| — 4.

Proof. Let G be any finite abelian group. Consider the subset A = {(a,0) : a € A}
of Z x G. If |A+ A] < 3|A| — 4, then Theorem 2 will give that A is a structured
set, and by definition, so is A. O

The following corollary gives a sufficient condition for a subset of Z to be a
structured set.

Corollary 2. Let N > 2, and A C [0,N — 1]. If |A| > 2N/3 4+ 1, then A is a
structured set.

Proof. For N < 4, it is easy to see that A is structured. So assume N > 5. It is
clear that the greatest common divisor of elements of A is 1. With a translation,
we can assume that min(A4) = 0.

Here, A+ A C [0,2N —2] and hence |[A+ A| < 2N —1. Since 2N/3+1 < |A|, we
get 2N —1 < 3| A| —4. Thus, A satisfies the hypothesis of Corollary 1, and it follows
that, up to a translation, A is a structured set. Since translates of structured sets
are structured, it follows that, A is structured. O

The set A=[0,N—1]\{a < N:a =2 (mod 3)} is not a structured set, though
|A| > 2N/3. But in this case we note that the sumset A + A has cardinality bigger
than 3|A| — 4.

3. Non-abelian Groups

In this section we briefly mention how Theorem 3 (and hence Theorem 2) can
be proved when G is a non-abelian group (in which case we use multiplication as
operation of G). We continue with the notations of Section 2. In this case we define
a subset A C Z x G to be a structured set if the image w1 (A) of the first projection
is a structured subset of Z, and there are commuting elements z,y € G satisfying
x; = x%y.

Proof. (Theorem 3, when G is non-abelian) We use induction on k. For k = 3, we
have |A+ A| > 5 and 3k — 4 = 5. Thus

A+ Al =|A+ A =3k —4. (6)
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Since min(A) = 0 and ged(A) = 1, by Equation (6) we have A = {0, 1,2}. Also,
Equation (6) forces z;2; = xpx;, whenever a; +a; = ap + a;. Let z,y € G be
such that z; = 2%y and x9 = z%2y (which is always possible, as a3 = 0,a2 = 1).
From Equation (6) it follows that zi29 = zox;. From this it is clear that  and
y commute. As a; + az = 2ag, we have rix3 = x% From which it follows that
x3 = x™y. Thus A is a structured set.

Now we assume that & > 3 and put B = {(a;,x;) : 1 <i <k —1}.

Case 1: B is a structured set. Since B is structured, m1(B) is structured and
there exist commuting elements z,y € G such that x; = 2%y for all i < k — 1. If
(B + B) N ((ak,zx) + B) # O then there are indices u,v,w < k — 1 such that

(a'kaxk:) + (auzxu) = (ava-rv) + (awzxw)-

From this we see that ay = a, + a,, — a,, and @, = r,7,2, . Now it immediately
follows that A is structured.

We may now assume that (B + B) N ((ag,zx) + B) = 0, so that |A + A| >
|B + B| + |B|; the consideration of (ax,zx) + (ak,zx) leads to

[A+A|>|B+B|+|B|+1. (7)
Using the trivial lower bound on the first coordinate we find
|B + B| > 2|B| — 1. (8)

Using this in (7) we get
A+ Al > 3|B| = 3k — 3,

which is a contradiction. This contradiction proves the theorem in this case.

Case 2: B is not structured. By induction hypothesis we get |[B+B| > 3(k—1)—3.
If ag—1 # ar — 1, then using Lemma 2, with A = 7;(A) and B = m;(B), one im-
mediately obtains |[A + A| > |B 4+ B| + 3 > 3k — 3, which is a contradiction.
Similarly we otain a contradiction if xxrr_1 = zp_12x. Thus, we assume that
TrTip—1 = Tip_1Tk and ax_1 = ar — 1. One can solve for x,y € G satisfying
T = %y and zp_q = x%'y. Since xj and zp_; commute, it follows that x
and y commute. Observe that, by considering first coordinate, the two elements
(ar+ag, xpzy) and (ag +ak—1, T2rx—1) are in A+ A but not in B+ B. If there is an
i < k—1such that (ay+a;, zxz;) € B+B then we get |[A+A| > |B+B|+3 > 3k—3,
which is a contradiction. Hence (ag + a;, zx2;) € B+ B holds for all i < k—1. Since
(ap+ag—2,xpTK—2) € B+ B, using order relation of Z, we obtain ay +ag_o = 2a_1
and zprEp_o = ziil. As a consequence xp_o = x*-2y. This proves that the set
{(ak-2,2k—2), (ak—1,2K-1), (ak, zx)} is a structured set. Continuing this way we
see that A is a structured set. O
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