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Abstract
In this article, we prove the finiteness of the positive integral solutions of

k+1\¢ E+1\¢
I (x—T) = (:chT) +o+(y—1)°
for any given integer ¢ > 1 and an odd integer k > 1. Moreover, when k = 3 and
¢ = 2,3 and 5, we explicitly compute the positive integral solutions using the elliptic
logarithmic method.

1. Introduction

Let £ > 1 be an odd positive integer and ¢ > 1 be given integer. We say a
positive integer x is a k-gap balancing number of order £, if there exists an integer
y >« + (k + 3)/2 such that

k+1\* k4 1\¢
1Z+2£+~~+(a:—T) :<x+T) +o 4 (y— 1)~ (1)
This was introduced in the paper of Rout and Panda [10]. In the literature, the
classical case k = 1 and £ = 1 was introduced in [1], and in this case z is called a
balancing number. Further, in [4], the case k = 1 and ¢ > 1 was considered and the

following conjecture was stated.

Conjecture 1. For any given integer y > 2, the integer x = 1 is the only positive
integral solution of the equation

a2t @-)' 42 =2+ @+ )+ + (-1 (2)



INTEGERS: 18 (2018) 2

If ¢ = 2, solving (2) is equivalent to solving the Thue equations m3 + 2n® = 11
or 33. But the only integral solution of m? + 2n3 = 11 is (m,n) = (3,—2) and
therefore the only positive integral solution of (2) is (y,z) = (2,1) which is trivial.
Also, m3+2n3 = 33 has no integral solution. Thus, altogether for £ = 2, Conjecture
1 is true. Conjecture 1 is also true for £ = 3 [11] and ¢ = 5 [5]. Using a result of
Bilu and Tichy [2] on the Diophantine equation f(z) = g(y), for a fixed integer
£ > 1, Ingram [5] proved that the equation (2) has at most finitely many solutions
by keeping x and y as unknowns with x <y — 1.

The balancing numbers are further generalized as follows. For fixed positive
integers p and ¢, we call a positive integer = (< y — 2) a (p, q)-balancing number if

1p+2p+...+<x_1>17:(x+1>Q+...+(y_1)q (3)

holds for some natural number y. Liptai et al. [7] proved the finiteness of the
number of solutions of (3).

For an arbitrary odd integer £ > 1 and ¢ = 1, (1) has some classes of solutions
which were given in [10]. In this article, we study the explicit positive integral
solutions of (1) with k = 3 and ¢ = 2,3 and 5. First, we shall prove the general
case as follows.

Theorem 1. For fized £ > 1 and an odd positive integer k > 1, (1) has finitely
many positive integral solutions.

We prove Theorem 1 along the same line of proof given in [7]. Moreover, using the
explicit lower bound for linear forms in elliptic logarithms given in [3], we construct
rational points of certain elliptic curves and prove the following results.

Theorem 2. 1. Ifk =3 and £ = 2 then (1) has precisely one solution, namely,
(z,y) = (44,56).

2. The equation (1) has no positive integral solution, when k =3 and ¢ = 3.
3. The equation (1) has no positive integral solution, when k =3 and ¢ = 5.

Theorem 2, part 1 asserts that the analogue of Conjecture 1 is not true for (1)
with k =3 and ¢ = 2.
In the proof of Theorem 2, we use the notations as in [13].

2. Proof of Theorem 1
For any integer £ > 1, let us denote

Se(z) =14+ 204+ (z — 1)". (4)
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Then note that the polynomial Sy(x) € Q[z] and is of degree £ + 1 whose leading
coefficient is 1/(¢ + 1). It is known that for an odd integer ¢ > 1, we can express

() = vy <<x _ ;>2>

for some polynomial v, (z) € Q[x] of degree (£ + 1)/2.

To prove Theorem 1, we need the following result of Rakaczki [8].

Theorem 3. Let m be a positive integer. For any polynomial g(x) € Q[x] of degree
> 2, the Diophantine equation

Sm(z) = g(y)

has finitely many integer solutions in x and y, unless (m,g(x)) is a special pair
where all the 7 types of special pairs are defined in [8].

Proof of Theorem 1. Let £ > 1 be a fixed integer and k£ > 1 be an odd positive
integer. Then we want to prove that

k+1\° k+1)°

has finitely many integer solutions. First we rewrite (5) as

k4 1\° E—1\°
(l‘-i-%) _A,_..._|_(y_1)e:1£+2Z+...+(y_1)5_<1Z+...+<J;+T))

— Su(y)— S (er %) .

Therefore, (1) becomes

iz =550+ 84 5) = i) ©
Let
gx) = 252@*%)+(xf%)é+,,,+(x+%>f
. sg(xf%%gl(gH%)' .

Clearly, g(x) is a polynomial in Q[x] of degree £+ 1. Also, by the definition of g(x),
it is clear that the degrees of all terms in g(x) except the first term is ¢.

With these notations, it is now enough to prove that there are only finitely many
integer solutions to the equation Sy(y) = g(z).
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On the contrary, we assume that the equation Sy(y) = g(«) has infinitely many
integer solutions. Then, by Theorem 3, we must have the pair (¢, g(x)) as one of
the 7 special pairs described in [8].

Type I. g(z) = S¢(¢(x)) for some non-constant polynomial ¢(z) € Q[x].

In this case, by comparing the degrees from both sides, we get ¢(z) = uz+v where

u,v € Q with u # 0. Then the leading coefficient of Sp(g(x)) is %.
leading coefficient of g(z) is 24%1 Hence, u‘*! = 2, which implies that v = 2 and
¢ = 0. This is a contradiction to £ > 1.

However, the

Type IL. / is an odd integer, g(x) = 1¢(d(x)q(z)?) for some non-zero polynomial
q(z) € Q[z], and §(z) € Q[z] is a linear polynomial.

By comparing the degrees, in this case, we conclude that degree of §(x)q(x)? is

equal to 2. But this is not possible as d(z) is a linear polynomial.

Type III. / is an odd integer and g(x) = ,(cd(x)!) for some ¢ € Q\{0}, and ¢t > 3
is an odd integer.

In this case, the degree of ¥, (cd(z)?) is greater than (¢(¢ + 1))/2. Since (t(¢ +
1))/2 > £+ 1, it follows that the degree of g(x) is greater than ¢ + 1, which is a
contradiction.

Type IV. / is an odd integer and g(z) = ¢((ad(z)? + b)q(x)?) with a,b € Q\{0}.

Here we see, by comparing degrees, that ¢ is linear (say 6 = wz + v) and
q(x) = q, a constant (non-zero). The leading coefficient of ¥ ((ad(x)? + b)q(x)?) is
(au?q?)+1)/2 Hence by comparing the leading coefficients, we get

(auqu)(eJrl)/2 = 2 implies ¢ < 1,
a contradiction to ¢ > 1.
Type V. is an odd integer and g(z) = ¥¢(q(z)?).

By comparing the degrees, we conclude that ¢(z) = uz +wv is a linear polynomial
with u # 0. Note that the leading coefficient of 1,(q(z)?) is u**1/(I +1). As the
leading coefficient of g(x) is 2/(¢ + 1), we have

w1 =2 implies u =2 and ¢ =0,
a contradiction to ¢ > 1.

Type VI /=3 and g(z) = §(x)q(x)%.
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Since the degree of S3(x) is 4 and d(z) is a linear polynomial, we get a contra-
diction, by comparing the degrees of both sides.

Type VIL ¢ =3 and g(x) = q(z)%.

In this case, q(x) must be a quadratic polynomial, say, q(r) = uz? + vz +w €
Q[z]. Therefore, by comparing the leading coefficients, we get u? = 2, which is a
contradiction to u € Q.

This proves that (6) has only finitely many integer solutions. ]

3. Proof of Theorem 2

Case 1. (k=3 and { =2).
In this case, we completely solve the following equation

24224 (-2 =(+2% 4+ +9° (8)

over integers. Indeed, we shall prove the following statement: The equation (8) has
only one integral solution (x,y) = (44,55). Equivalently, we have only one relation
of the form

12422 4 ... 4422 =462 + - + 55°. (9)

The idea is to use the well-known formula

<, ala+1)(2a+1)
LU

in (8) to convert it into an elliptic curve and look for an integral point of that elliptic
curve. By applying this formula in (8), after writing (8) as

Pt (2-2)2 = (124224 -+ (2+1)%) +(24+2)2 +. . 4y — (1P 422+ -+ (2+1)?),

and by using the change of variable v := 2z and v := 2y + 1, we arrive at the cubic
equation
2u? 4 52u = v* — v. (10)

Note that the asymptote of (10) is v = au, where « is a real cube root of 2. Now,
using Magma, we see that the transformation
_ —2u+2704v 140610

X=——— Y=-— (11)
52u + v 52u + v

yields a minimal model for (10), i.e.,

E: Y?=X34+312X — 281212. (12)
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One can compute the Mordell-Weil group for the elliptic curve given in (12) and
the group is E(Q) X Z & Z & Z. By Mordell’s theorem, this group is generated by
the points P; = (64, 30), P> = (76,426) and P35 = (88,654).

Since the point at infinity of this group is the limit point of points on (12) arising
from the asymptote of (10), we let Qo = (Xo(a),Yp(a)) as the point at infinity.
Therefore,

—2u 4 2704v

lim —
(u,v)—00 52u + v
-2+ 2704«

52+«
= a+ba+ca® (say).

XO (Oé)

Then, we get a = 0,b =52 and ¢ = —1, and hence Xo(a) = —a? + 52a. By similar
calculation, we get Yy(a) = 0.

Let P € E be an arbitrary point on F with integer co-ordinates u and v on (10).
Since F(Q) is generated by the points Py, Py and P;, we write

P =m1 Py + moPy + mgP3 where mq, mo, mg € Z.

Our aim is to get an upper bound for these m;’s. By letting M = max{|m]|, |mz|, |ms|},
we need to find the upper bound for M. One way to get an upper bound for M is
to apply the elliptic logarithmic method.
From (10), we get
d(u(v)) 30?2 -1
dv  6u?+52°
For v > 10,u(v) given by (10) can be viewed as a strictly increasing function of v.
Now, using Lemma 2 of [13], it follows from (11) that

dv 1dX
— = 13
6u2+52 2Y (13)
Therefore, we get
* 4 1 %o gx
[ 1 ”
» 6uZ+52 2 [y Y
One can observe from (10) that 6u? + 52 > 3v? for v > 10. Therefore, we have
< dv 1 [ dv 1
< Z — = 15
/U 6u? + 52 3/1, v?2 3o (15)
We let o)
ola) gx
L(P)= —/ d—
X Y

The main idea is to get the upper and lower bound for |L(P)| involving M. Indeed,
~ ax
X Y Xo(a) ¥ Xo(a) ¥ x Y

Xo(a) X o0
f/ ax _ i X — w(d(Qo) — $(P))
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where w = 0.302283.. .. is the real part of the fundamental period of E(C) and ¢ is
the elliptic logarithm. Thus, we get
L(P) = w(¢(Qo) — ¢(P))-
Also,
d(P) = ¢(m1 Py + mo Py + maP3) = mip(Pr) + mad(Pa) + msp(Ps) +mo
with mg € Z. Since ¢(P;) € [0,1), we see that
Imo| < [p(P) — (m1p(Pr) +mad(P) + ms(P3))| < 1+ 3M.

Let ug = wd(Qo),u1 = wop(P1),us = wd(P2) and us = wd(Ps). Then, by using
Zagier’s algorithm [14], we arrive at u; = 0.297514... uy = 0.242130...,u3 =
0.219679. .. and up = wp(Qp) = 0.151141. ... Since

X
Lp) = [ =w(6(@0) - o)

Xo
= Up — MUl — M2U2 — M3U3 — MoW,

by (14) and (15), we have

° dv 2
\L(P)|—2/U <o (16)

Since our aim to get the upper bound as a function of M, we need to replace v by
a function of M. Since the Néron-Tate height has the lower bound involving M as

h(P) > ¢; M? (17)

where ¢; = 0.3776939... is the least eigenvalue of the Néron-Tate height pairing
matrix, we use this height calculation as follows. First note that since v = au is the
asymptote, we see that cu — v < 0.002 for all v > 10 and hence u < (0.002 + v)/«.
Now we get an upper bound for the Weil height h(P) := h(X(P)) as follows:

h(X(P)) = logmax{| — 2u + 2704v|, |52u + v|} < log(|2u + 2704v])

.002
< log (2 (000|+v|) + 2704v|)
a

<log ((% + 2704>|v| + %)

< 7.906249 + log |v|. (18)

Silverman [9] proved that

2h(P) — h(P) < 8.7926994.
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Using (17) and this difference, we get
h(P) > 2¢; M? — 8.7926994. (19)
From (17), (18) and (19), we conclude that
~log |v] < 16.698948 — 0.7553879 M. (20)
Therefore, by (16), we get
|L(P)| < exp(16.293483 — 0.7553879M?). (21)
David [3] proved the general lower bound of |L(P)| as follows:
L(P) > exp(—cy4(log M’ + c5))(loglog M’ + c6)°) (22)

where M’ := 3M + 1,¢4 := 9 x 10'%8, ¢5 := 1.69315 and cg := 21.81715. Now, by
comparing (21) and (22), we arrive at an upper bound My = 6.9 x 1082 for M. To
find all solutions below this large bound, we use the reduction procedure based on
the LLL-algorithm [12] and we get the reduced new bound for M which is M = 11.
A direct computer search finds that the only points P = my P; +mo Py +m3P3 with
|m;| <11 and (u(P),v(P)) on (10) are listed in the following table:

mq mao ms X(P) Y(P) U(P) U(P)
-1 0 0 64 -30 88 111
0 0 -1 88 —654 4 7

0 0 1 38 654 —4 -7
1 0 64 30 —88 || —111

Note that when v = 88 and v = 111, we get z = 44 and y = 55. In this case, we
have a solution for (8). When u =4 and v = 7, the corresponding x = 2 and y = 3
violate the condition y > x + 2. In rest of the cases z or y may not be positive
integers. Hence, (x,y) = (44, 55) is the only positive integral solution for (8).

Case 2. (k=3 and ¢ =3).
In this case, we study the Diophantine equation

P+ 4t @—2°=@+2°+ 44 (23)
for y > x + 2 and we show that this equation has no solution. Let x be a 3-gap
balancing number of order 3. Since the sum of the cubes of the first n positive
integers is given by

n
1)12
St =[50

m=1

from (23), we have

{@-2)2(1;—1)}1[(:c+1)2(a:+2)r: {y(yﬂ)r (24)
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Simplifying (24) and putting v = 2z and v = 2y(y + 1), we get
0% = u? + 52u” 4 64. (25)
Multiplying by 2 and setting Y = 2v and X = u, we get the quartic elliptic curve

as follows:
E: Y?=2X"4+104X% +128. (26)

Using Magma, we find the following set of integral points on E:
(X,Y) = (£2,424), (+4, +48), (£14, +312), (£68, £6576).

Now, note that the point (X,Y) = (2,24) (respectively (4,48)) gives the integral
solution (z,y) = (1,2) (respectively (2,3)). However, this is contradicting to the
condition that y > z+2. If (X,Y) = (14, 312) (respectively (68,6576)), then y & Z.
Thus, we conclude that there is no positive integral solution of (23).

Case 3. (k=3 and £ =5).
In this case, we study the Diophantine equation

P42 44 @=2°=@+2)°+ -+ (27)

In particular, we show that equation (27) has no solution in positive integers. Let
x be a 3-gap balancing number of order 5. By the well-known formula

En:ﬁ _ n?(n+1)%(2n +2n — 1)
12 ’
i=1
and setting v := 422 and v := (2y + 1)2, we get
2u? + 140u” + 944u = v — 502 + Tv — 387. (28)

We shift the v-coordinate using (9) to get a better model. As this transformation
preserves the integrality of the points, it will not affect our result. Hence writing
v:i=v+9, we get

2u® + 140u? + 944u = v® + 220% + 1600. (29)

Using Magma, we find that the birational transformations

14363u + 11354v + 250328

X= 59u — 10v ’
vV — 4 (52187488u + 6179535u2 + 24345398v + 16506691}2) (30)
(59u — 10v)?
and
, _ —38LX? 4 3481X2 + 3481Y2 4 101423033X — 167971860617
31291X2 — 6855974X + 813516Y + 55912827099 ’ (31)

v 26093744.X + 1846169Y + 6757133452
B 31291X?2 — 6855974X + 813516Y + 55912827099
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relate (29) and the minimal model
E: Y?=X3-X?-1161X + 32535321. (32)
)

Using Magma, we see that the torsion subgroup of the Mordell-Weil group of E(Q
is trivial and its rank is 3 with generators, namely, P, = (—%, %:;07)71%
(—67,5684) and P = (7523,652484).

We apply the same method as discussed in Case 1. The asymptote of (29) is
v = au + 3 where « is a real cube root of 2 and 3 = 11“82—0’70. Let Qo = (Xo,Yy)
be the point at infinity of E. Then, we can compute X, = 400 + 236a + 257 and
Yy = —2596a2 — 2800a — 8700. Also, by (29), we view u as a strictly increasing
function of v when u > 4 and v > —6.6, or u < —8 and v < —44. For each such point
(u,v), there is a unique point (X,Y) € R? with Y > 0. We assume that v > 10? for
the rest of the calculation. In this case, we see that 6u? + 280u + 944 > 3v2. Thus,

o dv 1 [*dv 1
<z — =—. (33)
» 6u?+280u+944 3/, v 3w

Let P = m1 Py + maPs + m3P3; be an arbitrary point on F with integral co-
ordinates u,v on (29). Thus, the linear form

Lp) = [ = wlo(Qo) - o(P)

Xo
= Up — Mow — MUl — MaUz — M3us,

where ug = 0.235708...,u; = 0.176128...,us = 0.168950...,u3 = 0.023059...
and w = 0.4714160. . . is the real part of the fundamental period of E(C). In order
to get the upper bound for | L(P)|, we proceed with height calculations. For v > 102
it is easy to verify that

h(X(P)) < 10.1399 + log |v|. (34)

Moreover, we have A
h(P) > ¢y M? (35)

where ¢; = 1.538118... is the least eigenvalue of the Néron-Tate height pairing
matrix and M = maxj<i<s|m;|. Also, the Silverman’s bound for the heights on
elliptic curve gives that

2h(P) — h(p) < 12.0302566. (36)

Now, using Lemma 2 of [13] and (29), we get

dv 1dX
6u2 +280u +944 4 Y (37)

By (37), for v > 102, we have

| o [ (38)
L GuZ+280u+944  4)y ¥
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Thus, using (33),(34),(35) and (36), we get the upper bound as
L(P) < 22.457837 — 3.076238M2. (39)
As |mgy| < 3M + 1, we obtain the lower bound ([3])
L(P) > exp(—c4(log M’ + ¢5))(loglog M’ + ¢6)°), (40)

where M’ := 3M + 1,¢4 := 6 x 109, ¢c5 := 1.69315 and cg := 33.3467. Together
with the upper bound (39), this lower bound yields an absolute upper bound M, =
3.575x10% for M. To find all solutions below this large bound, we use the reduction
procedure based on the LLL-algorithm [12]. Using this procedure, we have further
reduced our bound to My = 7.

The direct computation reveals that for all integral points P = m1 P, + moPs +
mgPs for |m;| <7 with (X(P),Y(P)) on (32) gives

_ (335962176073 260722045187502036
B 979126681 ° 30637852975171

for my = mg = mg3 = 1. The corresponding integral point on (29) is (u,v) = (0,0)
which is a trivial point and hence we conclude that there is no integer solution to
(27). This completes the proof of the theorem. O

4. Concluding Remarks

Considering the equation 12 +22+ -+ (x —2)2 = (z +2) + (x +3) +--- +y, and
using the elliptic logarithmic method (the method used in the proof of Theorem 2),
one can prove that

(z,y) = (7,13), (8, 16), (54, 315), (182, 1988), (253, 3266), (1338, 39916)

are the only positive integral solutions.
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