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Abstract
In this article, we prove the finiteness of the positive integral solutions of

1` + 2` + · · · +
⇣
x� k + 1

2

⌘`
=
⇣
x +

k + 1
2

⌘`
+ · · · + (y � 1)`

for any given integer ` > 1 and an odd integer k � 1. Moreover, when k = 3 and
` = 2, 3 and 5, we explicitly compute the positive integral solutions using the elliptic
logarithmic method.

1. Introduction

Let k � 1 be an odd positive integer and ` � 1 be given integer. We say a
positive integer x is a k-gap balancing number of order `, if there exists an integer
y � x + (k + 3)/2 such that

1` + 2` + · · · +
⇣
x� k + 1

2

⌘`
=
⇣
x +

k + 1
2

⌘`
+ · · · + (y � 1)`. (1)

This was introduced in the paper of Rout and Panda [10]. In the literature, the
classical case k = 1 and ` = 1 was introduced in [1], and in this case x is called a
balancing number. Further, in [4], the case k = 1 and ` > 1 was considered and the
following conjecture was stated.

Conjecture 1. For any given integer y � 2, the integer x = 1 is the only positive
integral solution of the equation

1` + 2` + · · · + (x� 1)` + x` = x` + (x + 1)` + · · · + (y � 1)`. (2)
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If ` = 2, solving (2) is equivalent to solving the Thue equations m3 + 2n3 = 11
or 33. But the only integral solution of m3 + 2n3 = 11 is (m,n) = (3,�2) and
therefore the only positive integral solution of (2) is (y, x) = (2, 1) which is trivial.
Also, m3+2n3 = 33 has no integral solution. Thus, altogether for ` = 2, Conjecture
1 is true. Conjecture 1 is also true for ` = 3 [11] and ` = 5 [5]. Using a result of
Bilu and Tichy [2] on the Diophantine equation f(x) = g(y), for a fixed integer
` > 1, Ingram [5] proved that the equation (2) has at most finitely many solutions
by keeping x and y as unknowns with x  y � 1.

The balancing numbers are further generalized as follows. For fixed positive
integers p and q, we call a positive integer x ( y � 2) a (p, q)-balancing number if

1p + 2p + · · · + (x� 1)p = (x + 1)q + · · · + (y � 1)q (3)

holds for some natural number y. Liptai et al. [7] proved the finiteness of the
number of solutions of (3).

For an arbitrary odd integer k � 1 and ` = 1, (1) has some classes of solutions
which were given in [10]. In this article, we study the explicit positive integral
solutions of (1) with k = 3 and ` = 2, 3 and 5. First, we shall prove the general
case as follows.

Theorem 1. For fixed ` > 1 and an odd positive integer k � 1, (1) has finitely
many positive integral solutions.

We prove Theorem 1 along the same line of proof given in [7]. Moreover, using the
explicit lower bound for linear forms in elliptic logarithms given in [3], we construct
rational points of certain elliptic curves and prove the following results.

Theorem 2. 1. If k = 3 and ` = 2 then (1) has precisely one solution, namely,
(x, y) = (44, 56).

2. The equation (1) has no positive integral solution, when k = 3 and ` = 3.

3. The equation (1) has no positive integral solution, when k = 3 and ` = 5.

Theorem 2, part 1 asserts that the analogue of Conjecture 1 is not true for (1)
with k = 3 and ` = 2.

In the proof of Theorem 2, we use the notations as in [13].

2. Proof of Theorem 1

For any integer ` � 1, let us denote

S`(x) = 1` + 2` + · · · + (x� 1)`. (4)
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Then note that the polynomial S`(x) 2 Q[x] and is of degree ` + 1 whose leading
coe�cient is 1/(`+ 1). It is known that for an odd integer ` > 1, we can express

S`(x) =  `

 ✓
x� 1

2

◆2
!

for some polynomial  `(x) 2 Q[x] of degree (`+ 1)/2.

To prove Theorem 1, we need the following result of Rakaczki [8].

Theorem 3. Let m be a positive integer. For any polynomial g(x) 2 Q[x] of degree
� 2, the Diophantine equation

Sm(x) = g(y)

has finitely many integer solutions in x and y, unless (m, g(x)) is a special pair
where all the 7 types of special pairs are defined in [8].

Proof of Theorem 1. Let ` > 1 be a fixed integer and k � 1 be an odd positive
integer. Then we want to prove that

1` + 2` + · · · +
✓

x� k + 1
2

◆`

=
✓

x +
k + 1

2

◆`

+ . . . + (y � 1)` (5)

has finitely many integer solutions. First we rewrite (5) as
✓

x +
k + 1

2

◆`

+ · · · + (y � 1)` = 1` + 2` + · · · + (y � 1)` �
 

1` + · · · +

✓
x +

k � 1
2

◆`
!

= S`(y)� S`

✓
x +

k + 1
2

◆
.

Therefore, (1) becomes

S`

⇣
x� k � 1

2

⌘
+ S`

⇣
x +

k + 1
2

⌘
= S`(y). (6)

Let

g(x) := 2S`

⇣
x� k � 1

2

⌘
+
⇣
x� k � 1

2

⌘`
+ · · · +

⇣
x +

k � 1
2

⌘`

= S`

⇣
x� k � 1

2

⌘
+ S`

⇣
x +

k + 1
2

⌘
. (7)

Clearly, g(x) is a polynomial in Q[x] of degree `+1. Also, by the definition of g(x),
it is clear that the degrees of all terms in g(x) except the first term is `.

With these notations, it is now enough to prove that there are only finitely many
integer solutions to the equation S`(y) = g(x).
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On the contrary, we assume that the equation S`(y) = g(x) has infinitely many
integer solutions. Then, by Theorem 3, we must have the pair (`, g(x)) as one of
the 7 special pairs described in [8].

Type I. g(x) = S`(q(x)) for some non-constant polynomial q(x) 2 Q[x].

In this case, by comparing the degrees from both sides, we get q(x) = ux+v where
u, v 2 Q with u 6= 0. Then the leading coe�cient of S`(q(x)) is u`+1

`+1 . However, the
leading coe�cient of g(x) is 2

`+1 . Hence, u`+1 = 2, which implies that u = 2 and
` = 0. This is a contradiction to ` > 1.

Type II. ` is an odd integer, g(x) =  `(�(x)q(x)2) for some non-zero polynomial
q(x) 2 Q[x], and �(x) 2 Q[x] is a linear polynomial.

By comparing the degrees, in this case, we conclude that degree of �(x)q(x)2 is
equal to 2. But this is not possible as �(x) is a linear polynomial.

Type III. ` is an odd integer and g(x) =  `(c�(x)t) for some c 2 Q\{0}, and t � 3
is an odd integer.

In this case, the degree of  `(c�(x)t) is greater than (t(` + 1))/2. Since (t(` +
1))/2 > ` + 1, it follows that the degree of g(x) is greater than ` + 1, which is a
contradiction.

Type IV. ` is an odd integer and g(x) =  `((a�(x)2 + b)q(x)2) with a, b 2 Q\{0}.

Here we see, by comparing degrees, that � is linear (say � = ux + v) and
q(x) = q, a constant (non-zero). The leading coe�cient of  `((a�(x)2 + b)q(x)2) is
(au2q2)(`+1)/2. Hence by comparing the leading coe�cients, we get

(au2q2)(`+1)/2 = 2 implies `  1,

a contradiction to ` > 1.

Type V. ` is an odd integer and g(x) =  `(q(x)2).

By comparing the degrees, we conclude that q(x) = ux+v is a linear polynomial
with u 6= 0. Note that the leading coe�cient of  `(q(x)2) is u`+1/(l + 1). As the
leading coe�cient of g(x) is 2/(`+ 1), we have

u`+1 = 2 implies u = 2 and ` = 0,

a contradiction to ` > 1.

Type VI. ` = 3 and g(x) = �(x)q(x)2.
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Since the degree of S3(x) is 4 and �(x) is a linear polynomial, we get a contra-
diction, by comparing the degrees of both sides.

Type VII. ` = 3 and g(x) = q(x)2.

In this case, q(x) must be a quadratic polynomial, say, q(x) = ux2 + vx + w 2
Q[x]. Therefore, by comparing the leading coe�cients, we get u2 = 2, which is a
contradiction to u 2 Q.

This proves that (6) has only finitely many integer solutions.

3. Proof of Theorem 2

Case 1. (k = 3 and ` = 2).
In this case, we completely solve the following equation

12 + 22 + · · · + (x� 2)2 = (x + 2)2 + · · · + y2, (8)

over integers. Indeed, we shall prove the following statement: The equation (8) has
only one integral solution (x, y) = (44, 55). Equivalently, we have only one relation
of the form

12 + 22 + · · · + 422 = 462 + · · · + 552. (9)

The idea is to use the well-known formula
aX

r=1

r2 =
a(a + 1)(2a + 1)

6

in (8) to convert it into an elliptic curve and look for an integral point of that elliptic
curve. By applying this formula in (8), after writing (8) as

12+· · ·+(x�2)2 = (12+22+· · ·+(x+1)2)+(x+2)2+. . .+y2�(12+22+· · ·+(x+1)2),

and by using the change of variable u := 2x and v := 2y + 1, we arrive at the cubic
equation

2u3 + 52u = v3 � v. (10)

Note that the asymptote of (10) is v = ↵u, where ↵ is a real cube root of 2. Now,
using Magma, we see that the transformation

X =
�2u + 2704v

52u + v
, Y = � 140610

52u + v
(11)

yields a minimal model for (10), i.e.,

E : Y 2 = X3 + 312X � 281212. (12)
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One can compute the Mordell-Weil group for the elliptic curve given in (12) and
the group is E(Q) ⇠= Z� Z� Z. By Mordell’s theorem, this group is generated by
the points P1 = (64, 30), P2 = (76, 426) and P3 = (88, 654).

Since the point at infinity of this group is the limit point of points on (12) arising
from the asymptote of (10), we let Q0 = (X0(↵), Y0(↵)) as the point at infinity.
Therefore,

X0(↵) = lim
(u,v)!1

�2u + 2704v
52u + v

=
�2 + 2704↵

52 + ↵

= a + b↵+ c↵2 (say).

Then, we get a = 0, b = 52 and c = �1, and hence X0(↵) = �↵2 + 52↵. By similar
calculation, we get Y0(↵) = 0.

Let P 2 E be an arbitrary point on E with integer co-ordinates u and v on (10).
Since E(Q) is generated by the points P1, P2 and P3, we write

P = m1P1 + m2P2 + m3P3 where m1,m2,m3 2 Z.

Our aim is to get an upper bound for these mi’s. By letting M = max{|m1|, |m2|, |m3|},
we need to find the upper bound for M . One way to get an upper bound for M is
to apply the elliptic logarithmic method.

From (10), we get
d(u(v))

dv
=

3v2 � 1
6u2 + 52

.

For v � 10, u(v) given by (10) can be viewed as a strictly increasing function of v.
Now, using Lemma 2 of [13], it follows from (11) that

dv

6u2 + 52
=

1
2

dX

Y
. (13)

Therefore, we get Z 1

v

dv

6u2 + 52
=

1
2

Z X0(↵)

X

dX

Y
. (14)

One can observe from (10) that 6u2 + 52 > 3v2 for v � 10. Therefore, we haveZ 1

v

dv

6u2 + 52
<

1
3

Z 1

v

dv

v2
=

1
3v

. (15)

We let

L(P ) = �
Z X0(↵)

X

dX

Y
.

The main idea is to get the upper and lower bound for |L(P )| involving M . Indeed,

�
Z X0(↵)

X

dX

Y
=
Z X

X0(↵)

dX

Y
=
Z 1

X0(↵)

dX

Y
�
Z 1

X

dX

Y
= !(�(Q0)� �(P ))



INTEGERS: 18 (2018) 7

where ! = 0.302283 . . . is the real part of the fundamental period of E(C) and � is
the elliptic logarithm. Thus, we get

L(P ) = !(�(Q0)� �(P )).

Also,

�(P ) = �(m1P1 + m2P2 + m3P3) = m1�(P1) + m2�(P2) + m3�(P3) + m0

with m0 2 Z. Since �(Pi) 2 [0, 1), we see that

|m0|  |�(P )� (m1�(P1) + m2�(P2) + m3(P3))|  1 + 3M.

Let u0 = !�(Q0), u1 = !�(P1), u2 = !�(P2) and u3 = !�(P3). Then, by using
Zagier’s algorithm [14], we arrive at u1 = 0.297514 . . . , u2 = 0.242130 . . . , u3 =
0.219679 . . . and u0 = !�(Q0) = 0.151141 . . .. Since

L(P ) =
Z X

X0

dX

Y
= !(�(Q0)� �(P ))

= u0 �m1u1 �m2u2 �m3u3 �m0!,

by (14) and (15), we have

|L(P )| = 2
Z 1

v

dv

6u2 + 52
<

2
3v

. (16)

Since our aim to get the upper bound as a function of M , we need to replace v by
a function of M . Since the Néron-Tate height has the lower bound involving M as

ĥ(P ) � c1M
2 (17)

where c1 = 0.3776939 . . . is the least eigenvalue of the Néron-Tate height pairing
matrix, we use this height calculation as follows. First note that since v = ↵u is the
asymptote, we see that ↵u� v < 0.002 for all v � 10 and hence u < (0.002 + v)/↵.
Now we get an upper bound for the Weil height h(P ) := h(X(P )) as follows:

h(X(P )) = log max{|� 2u + 2704v|, |52u + v|}  log(|2u + 2704v|)

 log
✓

2
✓

0.002 + |v|
|↵|

◆
+ 2704|v|

◆

 log
⇣⇣ 2

↵
+ 2704

⌘
|v| + 0.004

↵

⌘
 7.906249 + log |v|. (18)

Silverman [9] proved that

2ĥ(P )� h(P ) < 8.7926994.
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Using (17) and this di↵erence, we get

h(P ) > 2c1M
2 � 8.7926994. (19)

From (17), (18) and (19), we conclude that

� log |v| < 16.698948� 0.7553879M2. (20)

Therefore, by (16), we get

|L(P )| < exp(16.293483� 0.7553879M2). (21)

David [3] proved the general lower bound of |L(P )| as follows:

L(P ) > exp(�c4(log M 0 + c5))(log log M 0 + c6)6) (22)

where M 0 := 3M + 1, c4 := 9 ⇥ 10158, c5 := 1.69315 and c6 := 21.81715. Now, by
comparing (21) and (22), we arrive at an upper bound M0 = 6.9⇥ 1082 for M . To
find all solutions below this large bound, we use the reduction procedure based on
the LLL-algorithm [12] and we get the reduced new bound for M which is M = 11.
A direct computer search finds that the only points P = m1P1 +m2P2 +m3P3 with
|mi|  11 and (u(P ), v(P )) on (10) are listed in the following table:

m1 m2 m3 X(P ) Y (P ) u(P ) v(P )
�1 0 0 64 �30 88 111
0 0 �1 88 �654 4 7
0 0 1 88 654 �4 �7
1 0 0 64 30 �88 �111

Note that when u = 88 and v = 111, we get x = 44 and y = 55. In this case, we
have a solution for (8). When u = 4 and v = 7, the corresponding x = 2 and y = 3
violate the condition y � x + 2. In rest of the cases x or y may not be positive
integers. Hence, (x, y) = (44, 55) is the only positive integral solution for (8).

Case 2. (k = 3 and ` = 3).
In this case, we study the Diophantine equation

13 + 23 + · · · + (x� 2)3 = (x + 2)3 + · · · + y3 (23)

for y � x + 2 and we show that this equation has no solution. Let x be a 3-gap
balancing number of order 3. Since the sum of the cubes of the first n positive
integers is given by

nX
m=1

m3 =
hn(n + 1)

2

i2
,

from (23), we have

(x� 2)(x� 1)

2

�2
+

(x + 1)(x + 2)

2

�2
=

y(y + 1)

2

�2
. (24)
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Simplifying (24) and putting u = 2x and v = 2y(y + 1), we get

2v2 = u4 + 52u2 + 64. (25)

Multiplying by 2 and setting Y = 2v and X = u, we get the quartic elliptic curve
as follows:

E : Y 2 = 2X4 + 104X2 + 128. (26)

Using Magma, we find the following set of integral points on E:

(X,Y ) = (±2,±24), (±4,±48), (±14,±312), (±68,±6576).

Now, note that the point (X,Y ) = (2, 24) (respectively (4, 48)) gives the integral
solution (x, y) = (1, 2) (respectively (2, 3)). However, this is contradicting to the
condition that y � x+2. If (X,Y ) = (14, 312) (respectively (68, 6576)), then y 62 Z.
Thus, we conclude that there is no positive integral solution of (23).

Case 3. (k = 3 and ` = 5).
In this case, we study the Diophantine equation

15 + 25 + · · · + (x� 2)5 = (x + 2)5 + · · · + y5. (27)

In particular, we show that equation (27) has no solution in positive integers. Let
x be a 3-gap balancing number of order 5. By the well-known formula

nX
i=1

i5 =
n2(n + 1)2(2n2 + 2n� 1)

12
,

and setting u := 4x2 and v := (2y + 1)2, we get

2u3 + 140u2 + 944u = v3 � 5v2 + 7v � 387. (28)

We shift the v-coordinate using (9) to get a better model. As this transformation
preserves the integrality of the points, it will not a↵ect our result. Hence writing
v := v + 9, we get

2u3 + 140u2 + 944u = v3 + 22v2 + 160v. (29)

Using Magma, we find that the birational transformations

X =
14363u + 11354v + 250328

59u� 10v
,

Y = �4
✓

52187488u + 6179535u2 + 24345398v + 1650669v2

(59u� 10v)2

◆ (30)

and

u =
�3481X3 + 3481X2 + 3481Y 2 + 101423033X � 167971860617

31291X2 � 6855974X + 813516Y + 55912827099
,

v = �8
✓

26093744X + 1846169Y + 6757133452
31291X2 � 6855974X + 813516Y + 55912827099

◆ (31)
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relate (29) and the minimal model

E : Y 2 = X3 �X2 � 1161X + 32535321. (32)

Using Magma, we see that the torsion subgroup of the Mordell-Weil group of E(Q)
is trivial and its rank is 3 with generators, namely, P1 = (�968

9 , 151307
27 ), P2 =

(�67, 5684) and P3 = (7523, 652484).
We apply the same method as discussed in Case 1. The asymptote of (29) is

v = ↵u + � where ↵ is a real cube root of 2 and � = 11↵2�70
80 . Let Q0 = (X0, Y0)

be the point at infinity of E. Then, we can compute X0 = 40↵2 + 236↵+ 257 and
Y0 = �2596↵2 � 2800↵ � 8700. Also, by (29), we view u as a strictly increasing
function of v when u > 4 and v > �6.6, or u < �8 and v < �44. For each such point
(u, v), there is a unique point (X,Y ) 2 R2 with Y � 0. We assume that v � 102 for
the rest of the calculation. In this case, we see that 6u2 + 280u + 944 > 3v2. Thus,Z 1

v

dv

6u2 + 280u + 944
<

1
3

Z 1

v

dv

v2
=

1
3v

. (33)

Let P = m1P1 + m2P2 + m3P3 be an arbitrary point on E with integral co-
ordinates u, v on (29). Thus, the linear form

L(P ) =
Z X

X0

dX

Y
= !(�(Q0)� �(P ))

= u0 �m0! �m1u1 �m2u2 �m3u3,

where u0 = 0.235708 . . . , u1 = 0.176128 . . . , u2 = 0.168950 . . . , u3 = 0.023059 . . .
and ! = 0.4714160 . . . is the real part of the fundamental period of E(C). In order
to get the upper bound for |L(P )|, we proceed with height calculations. For v � 102,
it is easy to verify that

h(X(P ))  10.1399 + log |v|. (34)

Moreover, we have
ĥ(P ) � c1M

2 (35)

where c1 = 1.538118 . . . is the least eigenvalue of the Néron-Tate height pairing
matrix and M = max1i3 |mi|. Also, the Silverman’s bound for the heights on
elliptic curve gives that

2ĥ(P )� h(p) < 12.0302566. (36)

Now, using Lemma 2 of [13] and (29), we get

dv

6u2 + 280u + 944
=

1
4

dX

Y
. (37)

By (37), for v � 102, we have
Z 1

v

dv

6u2 + 280u + 944
=

1
4

Z X0

X

dX

Y
. (38)
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Thus, using (33),(34),(35) and (36), we get the upper bound as

L(P ) < 22.457837� 3.076238M2. (39)

As |m0|  3M + 1, we obtain the lower bound ([3])

L(P ) > exp(�c4(log M 0 + c5))(log log M 0 + c6)6), (40)

where M 0 := 3M + 1, c4 := 6 ⇥ 10159, c5 := 1.69315 and c6 := 33.3467. Together
with the upper bound (39), this lower bound yields an absolute upper bound M0 =
3.575⇥1085 for M . To find all solutions below this large bound, we use the reduction
procedure based on the LLL-algorithm [12]. Using this procedure, we have further
reduced our bound to M0 = 7.

The direct computation reveals that for all integral points P = m1P1 + m2P2 +
m3P3 for |mi|  7 with (X(P ), Y (P )) on (32) gives

P =
✓

335962176073
979126681

,�260722045187502036
30637852975171

◆

for m1 = m2 = m3 = 1. The corresponding integral point on (29) is (u, v) = (0, 0)
which is a trivial point and hence we conclude that there is no integer solution to
(27). This completes the proof of the theorem.

4. Concluding Remarks

Considering the equation 12 + 22 + · · ·+ (x� 2)2 = (x + 2) + (x + 3) + · · ·+ y, and
using the elliptic logarithmic method (the method used in the proof of Theorem 2),
one can prove that

(x, y) = (7, 13), (8, 16), (54, 315), (182, 1988), (253, 3266), (1338, 39916)

are the only positive integral solutions.

Acknowledgments. The authors are grateful to the anonymous referee for his/her
valuable suggestions which improved the quality of this manuscript.
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