ON ℓ-TH ORDER GAP BALANCING NUMBERS

S. S. Rout
Institute of Mathematics and Applications, Bhubaneswar, Odisha, India
lbs.sudhansu@gmail.com; sudhansu@iomaorissa.ac.in
R. Thangadurai
Harish-Chandra Research Institute, HBNI, Allahabad, Uttar Pradesh, India
thanga@hri.res.in

Received: 3/9/17, Revised: 2/19/18, Accepted: 6/4/18, Published: 6/5/18

Abstract

In this article, we prove the finiteness of the positive integral solutions of $$
1^{\ell}+2^{\ell}+\cdots+\left(x-\frac{k+1}{2}\right)^{\ell}=\left(x+\frac{k+1}{2}\right)^{\ell}+\cdots+(y-1)^{\ell}
$$ for any given integer $\ell>1$ and an odd integer $k \geq 1$. Moreover, when $k=3$ and $\ell=2,3$ and 5 , we explicitly compute the positive integral solutions using the elliptic logarithmic method.

1. Introduction

Let $k \geq 1$ be an odd positive integer and $\ell \geq 1$ be given integer. We say a positive integer x is a k-gap balancing number of order ℓ, if there exists an integer $y \geq x+(k+3) / 2$ such that

$$
\begin{equation*}
1^{\ell}+2^{\ell}+\cdots+\left(x-\frac{k+1}{2}\right)^{\ell}=\left(x+\frac{k+1}{2}\right)^{\ell}+\cdots+(y-1)^{\ell} \tag{1}
\end{equation*}
$$

This was introduced in the paper of Rout and Panda [10]. In the literature, the classical case $k=1$ and $\ell=1$ was introduced in [1], and in this case x is called a balancing number. Further, in [4], the case $k=1$ and $\ell>1$ was considered and the following conjecture was stated.

Conjecture 1. For any given integer $y \geq 2$, the integer $x=1$ is the only positive integral solution of the equation

$$
\begin{equation*}
1^{\ell}+2^{\ell}+\cdots+(x-1)^{\ell}+x^{\ell}=x^{\ell}+(x+1)^{\ell}+\cdots+(y-1)^{\ell} \tag{2}
\end{equation*}
$$

If $\ell=2$, solving (2) is equivalent to solving the Thue equations $m^{3}+2 n^{3}=11$ or 33 . But the only integral solution of $m^{3}+2 n^{3}=11$ is $(m, n)=(3,-2)$ and therefore the only positive integral solution of (2) is $(y, x)=(2,1)$ which is trivial. Also, $m^{3}+2 n^{3}=33$ has no integral solution. Thus, altogether for $\ell=2$, Conjecture 1 is true. Conjecture 1 is also true for $\ell=3$ [11] and $\ell=5$ [5]. Using a result of Bilu and Tichy [2] on the Diophantine equation $f(x)=g(y)$, for a fixed integer $\ell>1$, Ingram [5] proved that the equation (2) has at most finitely many solutions by keeping x and y as unknowns with $x \leq y-1$.

The balancing numbers are further generalized as follows. For fixed positive integers p and q, we call a positive integer $x(\leq y-2) a(p, q)$-balancing number if

$$
\begin{equation*}
1^{p}+2^{p}+\cdots+(x-1)^{p}=(x+1)^{q}+\cdots+(y-1)^{q} \tag{3}
\end{equation*}
$$

holds for some natural number y. Liptai et al. [7] proved the finiteness of the number of solutions of (3).

For an arbitrary odd integer $k \geq 1$ and $\ell=1$, (1) has some classes of solutions which were given in [10]. In this article, we study the explicit positive integral solutions of (1) with $k=3$ and $\ell=2,3$ and 5 . First, we shall prove the general case as follows.

Theorem 1. For fixed $\ell>1$ and an odd positive integer $k \geq 1$, (1) has finitely many positive integral solutions.

We prove Theorem 1 along the same line of proof given in [7]. Moreover, using the explicit lower bound for linear forms in elliptic logarithms given in [3], we construct rational points of certain elliptic curves and prove the following results.

Theorem 2. 1. If $k=3$ and $\ell=2$ then (1) has precisely one solution, namely, $(x, y)=(44,56)$.
2. The equation (1) has no positive integral solution, when $k=3$ and $\ell=3$.
3. The equation (1) has no positive integral solution, when $k=3$ and $\ell=5$.

Theorem 2, part 1 asserts that the analogue of Conjecture 1 is not true for (1) with $k=3$ and $\ell=2$.

In the proof of Theorem 2, we use the notations as in [13].

2. Proof of Theorem 1

For any integer $\ell \geq 1$, let us denote

$$
\begin{equation*}
S_{\ell}(x)=1^{\ell}+2^{\ell}+\cdots+(x-1)^{\ell} \tag{4}
\end{equation*}
$$

Then note that the polynomial $S_{\ell}(x) \in \mathbb{Q}[x]$ and is of degree $\ell+1$ whose leading coefficient is $1 /(\ell+1)$. It is known that for an odd integer $\ell>1$, we can express

$$
S_{\ell}(x)=\psi_{\ell}\left(\left(x-\frac{1}{2}\right)^{2}\right)
$$

for some polynomial $\psi_{\ell}(x) \in \mathbb{Q}[x]$ of degree $(\ell+1) / 2$.
To prove Theorem 1, we need the following result of Rakaczki [8].
Theorem 3. Let m be a positive integer. For any polynomial $g(x) \in \mathbb{Q}[x]$ of degree ≥ 2, the Diophantine equation

$$
S_{m}(x)=g(y)
$$

has finitely many integer solutions in x and y, unless $(m, g(x))$ is a special pair where all the 7 types of special pairs are defined in [8].

Proof of Theorem 1. Let $\ell>1$ be a fixed integer and $k \geq 1$ be an odd positive integer. Then we want to prove that

$$
\begin{equation*}
1^{\ell}+2^{\ell}+\cdots+\left(x-\frac{k+1}{2}\right)^{\ell}=\left(x+\frac{k+1}{2}\right)^{\ell}+\ldots+(y-1)^{\ell} \tag{5}
\end{equation*}
$$

has finitely many integer solutions. First we rewrite (5) as

$$
\begin{aligned}
\left(x+\frac{k+1}{2}\right)^{\ell}+\cdots+(y-1)^{\ell} & =1^{\ell}+2^{\ell}+\cdots+(y-1)^{\ell}-\left(1^{\ell}+\cdots+\left(x+\frac{k-1}{2}\right)^{\ell}\right) \\
& =S_{\ell}(y)-S_{\ell}\left(x+\frac{k+1}{2}\right)
\end{aligned}
$$

Therefore, (1) becomes

$$
\begin{equation*}
S_{\ell}\left(x-\frac{k-1}{2}\right)+S_{\ell}\left(x+\frac{k+1}{2}\right)=S_{\ell}(y) \tag{6}
\end{equation*}
$$

Let

$$
\begin{align*}
g(x) & :=2 S_{\ell}\left(x-\frac{k-1}{2}\right)+\left(x-\frac{k-1}{2}\right)^{\ell}+\cdots+\left(x+\frac{k-1}{2}\right)^{\ell} \\
& =S_{\ell}\left(x-\frac{k-1}{2}\right)+S_{\ell}\left(x+\frac{k+1}{2}\right) . \tag{7}
\end{align*}
$$

Clearly, $g(x)$ is a polynomial in $\mathbb{Q}[x]$ of degree $\ell+1$. Also, by the definition of $g(x)$, it is clear that the degrees of all terms in $g(x)$ except the first term is ℓ.

With these notations, it is now enough to prove that there are only finitely many integer solutions to the equation $S_{\ell}(y)=g(x)$.

On the contrary, we assume that the equation $S_{\ell}(y)=g(x)$ has infinitely many integer solutions. Then, by Theorem 3, we must have the pair $(\ell, g(x))$ as one of the 7 special pairs described in [8].

Type I. $g(x)=S_{\ell}(q(x))$ for some non-constant polynomial $q(x) \in \mathbb{Q}[x]$.
In this case, by comparing the degrees from both sides, we get $q(x)=u x+v$ where $u, v \in \mathbb{Q}$ with $u \neq 0$. Then the leading coefficient of $S_{\ell}(q(x))$ is $\frac{u^{\ell+1}}{\ell+1}$. However, the leading coefficient of $g(x)$ is $\frac{2}{\ell+1}$. Hence, $u^{\ell+1}=2$, which implies that $u=2$ and $\ell=0$. This is a contradiction to $\ell>1$.

Type II. ℓ is an odd integer, $g(x)=\psi_{\ell}\left(\delta(x) q(x)^{2}\right)$ for some non-zero polynomial $q(x) \in \mathbb{Q}[x]$, and $\delta(x) \in \mathbb{Q}[x]$ is a linear polynomial.

By comparing the degrees, in this case, we conclude that degree of $\delta(x) q(x)^{2}$ is equal to 2 . But this is not possible as $\delta(x)$ is a linear polynomial.

Type III. ℓ is an odd integer and $g(x)=\psi_{\ell}\left(c \delta(x)^{t}\right)$ for some $c \in \mathbb{Q} \backslash\{0\}$, and $t \geq 3$ is an odd integer.

In this case, the degree of $\psi_{\ell}\left(c \delta(x)^{t}\right)$ is greater than $(t(\ell+1)) / 2$. Since $(t(\ell+$ 1)) $/ 2>\ell+1$, it follows that the degree of $g(x)$ is greater than $\ell+1$, which is a contradiction.

Type IV. ℓ is an odd integer and $g(x)=\psi_{\ell}\left(\left(a \delta(x)^{2}+b\right) q(x)^{2}\right)$ with $a, b \in \mathbb{Q} \backslash\{0\}$.
Here we see, by comparing degrees, that δ is linear (say $\delta=u x+v$) and $q(x)=q$, a constant (non-zero). The leading coefficient of $\psi_{\ell}\left(\left(a \delta(x)^{2}+b\right) q(x)^{2}\right)$ is $\left(a u^{2} q^{2}\right)^{(\ell+1) / 2}$. Hence by comparing the leading coefficients, we get

$$
\left(a u^{2} q^{2}\right)^{(\ell+1) / 2}=2 \text { implies } \ell \leq 1
$$

a contradiction to $\ell>1$.
Type V. ℓ is an odd integer and $g(x)=\psi_{\ell}\left(q(x)^{2}\right)$.
By comparing the degrees, we conclude that $q(x)=u x+v$ is a linear polynomial with $u \neq 0$. Note that the leading coefficient of $\psi_{\ell}\left(q(x)^{2}\right)$ is $u^{\ell+1} /(l+1)$. As the leading coefficient of $g(x)$ is $2 /(\ell+1)$, we have

$$
u^{\ell+1}=2 \text { implies } u=2 \text { and } \ell=0,
$$

a contradiction to $\ell>1$.
Type VI. $\ell=3$ and $g(x)=\delta(x) q(x)^{2}$.

Since the degree of $S_{3}(x)$ is 4 and $\delta(x)$ is a linear polynomial, we get a contradiction, by comparing the degrees of both sides.

Type VII. $\ell=3$ and $g(x)=q(x)^{2}$.
In this case, $q(x)$ must be a quadratic polynomial, say, $q(x)=u x^{2}+v x+w \in$ $\mathbb{Q}[x]$. Therefore, by comparing the leading coefficients, we get $u^{2}=2$, which is a contradiction to $u \in \mathbb{Q}$.

This proves that (6) has only finitely many integer solutions.

3. Proof of Theorem 2

Case 1. $(k=3$ and $\ell=2)$.
In this case, we completely solve the following equation

$$
\begin{equation*}
1^{2}+2^{2}+\cdots+(x-2)^{2}=(x+2)^{2}+\cdots+y^{2} \tag{8}
\end{equation*}
$$

over integers. Indeed, we shall prove the following statement: The equation (8) has only one integral solution $(x, y)=(44,55)$. Equivalently, we have only one relation of the form

$$
\begin{equation*}
1^{2}+2^{2}+\cdots+42^{2}=46^{2}+\cdots+55^{2} . \tag{9}
\end{equation*}
$$

The idea is to use the well-known formula

$$
\sum_{r=1}^{a} r^{2}=\frac{a(a+1)(2 a+1)}{6}
$$

in (8) to convert it into an elliptic curve and look for an integral point of that elliptic curve. By applying this formula in (8), after writing (8) as
$1^{2}+\cdots+(x-2)^{2}=\left(1^{2}+2^{2}+\cdots+(x+1)^{2}\right)+(x+2)^{2}+\cdots+y^{2}-\left(1^{2}+2^{2}+\cdots+(x+1)^{2}\right)$,
and by using the change of variable $u:=2 x$ and $v:=2 y+1$, we arrive at the cubic equation

$$
\begin{equation*}
2 u^{3}+52 u=v^{3}-v \tag{10}
\end{equation*}
$$

Note that the asymptote of (10) is $v=\alpha u$, where α is a real cube root of 2 . Now, using Magma, we see that the transformation

$$
\begin{equation*}
X=\frac{-2 u+2704 v}{52 u+v}, \quad Y=-\frac{140610}{52 u+v} \tag{11}
\end{equation*}
$$

yields a minimal model for (10), i.e.,

$$
\begin{equation*}
E: \quad Y^{2}=X^{3}+312 X-281212 \tag{12}
\end{equation*}
$$

One can compute the Mordell-Weil group for the elliptic curve given in (12) and the group is $E(\mathbb{Q}) \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$. By Mordell's theorem, this group is generated by the points $P_{1}=(64,30), P_{2}=(76,426)$ and $P_{3}=(88,654)$.

Since the point at infinity of this group is the limit point of points on (12) arising from the asymptote of (10), we let $Q_{0}=\left(X_{0}(\alpha), Y_{0}(\alpha)\right)$ as the point at infinity. Therefore,

$$
\begin{aligned}
X_{0}(\alpha) & =\lim _{(u, v) \rightarrow \infty} \frac{-2 u+2704 v}{52 u+v} \\
& =\frac{-2+2704 \alpha}{52+\alpha} \\
& =a+b \alpha+c \alpha^{2} \text { (say) }
\end{aligned}
$$

Then, we get $a=0, b=52$ and $c=-1$, and hence $X_{0}(\alpha)=-\alpha^{2}+52 \alpha$. By similar calculation, we get $Y_{0}(\alpha)=0$.

Let $P \in E$ be an arbitrary point on E with integer co-ordinates u and v on (10). Since $E(\mathbb{Q})$ is generated by the points P_{1}, P_{2} and P_{3}, we write

$$
P=m_{1} P_{1}+m_{2} P_{2}+m_{3} P_{3} \text { where } m_{1}, m_{2}, m_{3} \in \mathbb{Z}
$$

Our aim is to get an upper bound for these m_{i} 's. By letting $M=\max \left\{\left|m_{1}\right|,\left|m_{2}\right|,\left|m_{3}\right|\right\}$, we need to find the upper bound for M. One way to get an upper bound for M is to apply the elliptic logarithmic method.

From (10), we get

$$
\frac{d(u(v))}{d v}=\frac{3 v^{2}-1}{6 u^{2}+52}
$$

For $v \geq 10, u(v)$ given by (10) can be viewed as a strictly increasing function of v. Now, using Lemma 2 of [13], it follows from (11) that

$$
\begin{equation*}
\frac{d v}{6 u^{2}+52}=\frac{1}{2} \frac{d X}{Y} \tag{13}
\end{equation*}
$$

Therefore, we get

$$
\begin{equation*}
\int_{v}^{\infty} \frac{d v}{6 u^{2}+52}=\frac{1}{2} \int_{X}^{X_{0}(\alpha)} \frac{d X}{Y} \tag{14}
\end{equation*}
$$

One can observe from (10) that $6 u^{2}+52>3 v^{2}$ for $v \geq 10$. Therefore, we have

$$
\begin{equation*}
\int_{v}^{\infty} \frac{d v}{6 u^{2}+52}<\frac{1}{3} \int_{v}^{\infty} \frac{d v}{v^{2}}=\frac{1}{3 v} \tag{15}
\end{equation*}
$$

We let

$$
L(P)=-\int_{X}^{X_{0}(\alpha)} \frac{d X}{Y}
$$

The main idea is to get the upper and lower bound for $|L(P)|$ involving M. Indeed,

$$
-\int_{X}^{X_{0}(\alpha)} \frac{d X}{Y}=\int_{X_{0}(\alpha)}^{X} \frac{d X}{Y}=\int_{X_{0}(\alpha)}^{\infty} \frac{d X}{Y}-\int_{X}^{\infty} \frac{d X}{Y}=\omega\left(\phi\left(Q_{0}\right)-\phi(P)\right)
$$

where $\omega=0.302283 \ldots$ is the real part of the fundamental period of $E(\mathbb{C})$ and ϕ is the elliptic logarithm. Thus, we get

$$
L(P)=\omega\left(\phi\left(Q_{0}\right)-\phi(P)\right)
$$

Also,

$$
\phi(P)=\phi\left(m_{1} P_{1}+m_{2} P_{2}+m_{3} P_{3}\right)=m_{1} \phi\left(P_{1}\right)+m_{2} \phi\left(P_{2}\right)+m_{3} \phi\left(P_{3}\right)+m_{0}
$$

with $m_{0} \in \mathbb{Z}$. Since $\phi\left(P_{i}\right) \in[0,1)$, we see that

$$
\left|m_{0}\right| \leq\left|\phi(P)-\left(m_{1} \phi\left(P_{1}\right)+m_{2} \phi\left(P_{2}\right)+m_{3}\left(P_{3}\right)\right)\right| \leq 1+3 M
$$

Let $u_{0}=\omega \phi\left(Q_{0}\right), u_{1}=\omega \phi\left(P_{1}\right), u_{2}=\omega \phi\left(P_{2}\right)$ and $u_{3}=\omega \phi\left(P_{3}\right)$. Then, by using Zagier's algorithm [14], we arrive at $u_{1}=0.297514 \ldots, u_{2}=0.242130 \ldots, u_{3}=$ $0.219679 \ldots$ and $u_{0}=\omega \phi\left(Q_{0}\right)=0.151141 \ldots$. Since

$$
\begin{aligned}
L(P)=\int_{X_{0}}^{X} \frac{d X}{Y} & =\omega\left(\phi\left(Q_{0}\right)-\phi(P)\right) \\
& =u_{0}-m_{1} u_{1}-m_{2} u_{2}-m_{3} u_{3}-m_{0} \omega
\end{aligned}
$$

by (14) and (15), we have

$$
\begin{equation*}
|L(P)|=2 \int_{v}^{\infty} \frac{d v}{6 u^{2}+52}<\frac{2}{3 v} \tag{16}
\end{equation*}
$$

Since our aim to get the upper bound as a function of M, we need to replace v by a function of M. Since the Néron-Tate height has the lower bound involving M as

$$
\begin{equation*}
\hat{h}(P) \geq c_{1} M^{2} \tag{17}
\end{equation*}
$$

where $c_{1}=0.3776939 \ldots$ is the least eigenvalue of the Néron-Tate height pairing matrix, we use this height calculation as follows. First note that since $v=\alpha u$ is the asymptote, we see that $\alpha u-v<0.002$ for all $v \geq 10$ and hence $u<(0.002+v) / \alpha$. Now we get an upper bound for the Weil height $h(P):=h(X(P))$ as follows:

$$
\begin{align*}
h(X(P)) & =\log \max \{|-2 u+2704 v|,|52 u+v|\} \leq \log (|2 u+2704 v|) \\
& \leq \log \left(2\left(\frac{0.002+|v|}{|\alpha|}\right)+2704|v|\right) \\
& \leq \log \left(\left(\frac{2}{\alpha}+2704\right)|v|+\frac{0.004}{\alpha}\right) \\
& \leq 7.906249+\log |v| \tag{18}
\end{align*}
$$

Silverman [9] proved that

$$
2 \hat{h}(P)-h(P)<8.7926994
$$

Using (17) and this difference, we get

$$
\begin{equation*}
h(P)>2 c_{1} M^{2}-8.7926994 \tag{19}
\end{equation*}
$$

From (17), (18) and (19), we conclude that

$$
\begin{equation*}
-\log |v|<16.698948-0.7553879 M^{2} \tag{20}
\end{equation*}
$$

Therefore, by (16), we get

$$
\begin{equation*}
|L(P)|<\exp \left(16.293483-0.7553879 M^{2}\right) \tag{21}
\end{equation*}
$$

David [3] proved the general lower bound of $|L(P)|$ as follows:

$$
\begin{equation*}
\left.L(P)>\exp \left(-c_{4}\left(\log M^{\prime}+c_{5}\right)\right)\left(\log \log M^{\prime}+c_{6}\right)^{6}\right) \tag{22}
\end{equation*}
$$

where $M^{\prime}:=3 M+1, c_{4}:=9 \times 10^{158}, c_{5}:=1.69315$ and $c_{6}:=21.81715$. Now, by comparing (21) and (22), we arrive at an upper bound $M_{0}=6.9 \times 10^{82}$ for M. To find all solutions below this large bound, we use the reduction procedure based on the LLL-algorithm [12] and we get the reduced new bound for M which is $M=11$. A direct computer search finds that the only points $P=m_{1} P_{1}+m_{2} P_{2}+m_{3} P_{3}$ with $\left|m_{i}\right| \leq 11$ and $(u(P), v(P))$ on (10) are listed in the following table:

m_{1}	m_{2}	m_{3}	$X(P)$	$Y(P)$	$u(P)$	$v(P)$
-1	0	0	64	-30	88	111
0	0	-1	88	-654	4	7
0	0	1	88	654	-4	-7
1	0	0	64	30	-88	-111

Note that when $u=88$ and $v=111$, we get $x=44$ and $y=55$. In this case, we have a solution for (8). When $u=4$ and $v=7$, the corresponding $x=2$ and $y=3$ violate the condition $y \geq x+2$. In rest of the cases x or y may not be positive integers. Hence, $(x, y)=(44,55)$ is the only positive integral solution for (8).

Case 2. $(k=3$ and $\ell=3)$.
In this case, we study the Diophantine equation

$$
\begin{equation*}
1^{3}+2^{3}+\cdots+(x-2)^{3}=(x+2)^{3}+\cdots+y^{3} \tag{23}
\end{equation*}
$$

for $y \geq x+2$ and we show that this equation has no solution. Let x be a 3 -gap balancing number of order 3 . Since the sum of the cubes of the first n positive integers is given by

$$
\sum_{m=1}^{n} m^{3}=\left[\frac{n(n+1)}{2}\right]^{2},
$$

from (23), we have

$$
\begin{equation*}
\left[\frac{(x-2)(x-1)}{2}\right]^{2}+\left[\frac{(x+1)(x+2)}{2}\right]^{2}=\left[\frac{y(y+1)}{2}\right]^{2} \tag{24}
\end{equation*}
$$

Simplifying (24) and putting $u=2 x$ and $v=2 y(y+1)$, we get

$$
\begin{equation*}
2 v^{2}=u^{4}+52 u^{2}+64 \tag{25}
\end{equation*}
$$

Multiplying by 2 and setting $Y=2 v$ and $X=u$, we get the quartic elliptic curve as follows:

$$
\begin{equation*}
E: \quad Y^{2}=2 X^{4}+104 X^{2}+128 \tag{26}
\end{equation*}
$$

Using Magma, we find the following set of integral points on E :

$$
(X, Y)=(\pm 2, \pm 24),(\pm 4, \pm 48),(\pm 14, \pm 312),(\pm 68, \pm 6576)
$$

Now, note that the point $(X, Y)=(2,24)$ (respectively $(4,48))$ gives the integral solution $(x, y)=(1,2)$ (respectively $(2,3))$. However, this is contradicting to the condition that $y \geq x+2$. If $(X, Y)=(14,312)$ (respectively $(68,6576)$), then $y \notin \mathbb{Z}$. Thus, we conclude that there is no positive integral solution of (23).

Case 3. $(k=3$ and $\ell=5)$.
In this case, we study the Diophantine equation

$$
\begin{equation*}
1^{5}+2^{5}+\cdots+(x-2)^{5}=(x+2)^{5}+\cdots+y^{5} . \tag{27}
\end{equation*}
$$

In particular, we show that equation (27) has no solution in positive integers. Let x be a 3 -gap balancing number of order 5 . By the well-known formula

$$
\sum_{i=1}^{n} i^{5}=\frac{n^{2}(n+1)^{2}\left(2 n^{2}+2 n-1\right)}{12}
$$

and setting $u:=4 x^{2}$ and $v:=(2 y+1)^{2}$, we get

$$
\begin{equation*}
2 u^{3}+140 u^{2}+944 u=v^{3}-5 v^{2}+7 v-387 \tag{28}
\end{equation*}
$$

We shift the v-coordinate using (9) to get a better model. As this transformation preserves the integrality of the points, it will not affect our result. Hence writing $v:=v+9$, we get

$$
\begin{equation*}
2 u^{3}+140 u^{2}+944 u=v^{3}+22 v^{2}+160 v . \tag{29}
\end{equation*}
$$

Using Magma, we find that the birational transformations

$$
\begin{align*}
& X=\frac{14363 u+11354 v+250328}{59 u-10 v} \\
& Y=-4\left(\frac{52187488 u+6179535 u^{2}+24345398 v+1650669 v^{2}}{(59 u-10 v)^{2}}\right) \tag{30}
\end{align*}
$$

and

$$
\begin{align*}
& u=\frac{-3481 X^{3}+3481 X^{2}+3481 Y^{2}+101423033 X-167971860617}{31291 X^{2}-6855974 X+813516 Y+55912827099} \\
& v=-8\left(\frac{26093744 X+1846169 Y+6757133452}{31291 X^{2}-6855974 X+813516 Y+55912827099}\right) \tag{31}
\end{align*}
$$

relate (29) and the minimal model

$$
\begin{equation*}
E: \quad Y^{2}=X^{3}-X^{2}-1161 X+32535321 \tag{32}
\end{equation*}
$$

Using Magma, we see that the torsion subgroup of the Mordell-Weil group of $E(\mathbb{Q})$ is trivial and its rank is 3 with generators, namely, $P_{1}=\left(-\frac{968}{9}, \frac{151307}{27}\right), P_{2}=$ $(-67,5684)$ and $P_{3}=(7523,652484)$.

We apply the same method as discussed in Case 1. The asymptote of (29) is $v=\alpha u+\beta$ where α is a real cube root of 2 and $\beta=\frac{11 \alpha^{2}-70}{80}$. Let $Q_{0}=\left(X_{0}, Y_{0}\right)$ be the point at infinity of E. Then, we can compute $X_{0}=40 \alpha^{2}+236 \alpha+257$ and $Y_{0}=-2596 \alpha^{2}-2800 \alpha-8700$. Also, by (29), we view u as a strictly increasing function of v when $u>4$ and $v>-6.6$, or $u<-8$ and $v<-44$. For each such point (u, v), there is a unique point $(X, Y) \in \mathbb{R}^{2}$ with $Y \geq 0$. We assume that $v \geq 10^{2}$ for the rest of the calculation. In this case, we see that $6 u^{2}+280 u+944>3 v^{2}$. Thus,

$$
\begin{equation*}
\int_{v}^{\infty} \frac{d v}{6 u^{2}+280 u+944}<\frac{1}{3} \int_{v}^{\infty} \frac{d v}{v^{2}}=\frac{1}{3 v} \tag{33}
\end{equation*}
$$

Let $P=m_{1} P_{1}+m_{2} P_{2}+m_{3} P_{3}$ be an arbitrary point on E with integral coordinates u, v on (29). Thus, the linear form

$$
\begin{aligned}
L(P)=\int_{X_{0}}^{X} \frac{d X}{Y} & =\omega\left(\phi\left(Q_{0}\right)-\phi(P)\right) \\
& =u_{0}-m_{0} \omega-m_{1} u_{1}-m_{2} u_{2}-m_{3} u_{3}
\end{aligned}
$$

where $u_{0}=0.235708 \ldots, u_{1}=0.176128 \ldots, u_{2}=0.168950 \ldots, u_{3}=0.023059 \ldots$ and $\omega=0.4714160 \ldots$ is the real part of the fundamental period of $E(\mathbb{C})$. In order to get the upper bound for $|L(P)|$, we proceed with height calculations. For $v \geq 10^{2}$, it is easy to verify that

$$
\begin{equation*}
h(X(P)) \leq 10.1399+\log |v| \tag{34}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\hat{h}(P) \geq c_{1} M^{2} \tag{35}
\end{equation*}
$$

where $c_{1}=1.538118 \ldots$ is the least eigenvalue of the Néron-Tate height pairing matrix and $M=\max _{1 \leq i \leq 3}\left|m_{i}\right|$. Also, the Silverman's bound for the heights on elliptic curve gives that

$$
\begin{equation*}
2 \hat{h}(P)-h(p)<12.0302566 \tag{36}
\end{equation*}
$$

Now, using Lemma 2 of [13] and (29), we get

$$
\begin{equation*}
\frac{d v}{6 u^{2}+280 u+944}=\frac{1}{4} \frac{d X}{Y} \tag{37}
\end{equation*}
$$

By (37), for $v \geq 10^{2}$, we have

$$
\begin{equation*}
\int_{v}^{\infty} \frac{d v}{6 u^{2}+280 u+944}=\frac{1}{4} \int_{X}^{X_{0}} \frac{d X}{Y} \tag{38}
\end{equation*}
$$

Thus, using (33),(34),(35) and (36), we get the upper bound as

$$
\begin{equation*}
L(P)<22.457837-3.076238 M^{2} \tag{39}
\end{equation*}
$$

As $\left|m_{0}\right| \leq 3 M+1$, we obtain the lower bound ([3])

$$
\begin{equation*}
\left.L(P)>\exp \left(-c_{4}\left(\log M^{\prime}+c_{5}\right)\right)\left(\log \log M^{\prime}+c_{6}\right)^{6}\right) \tag{40}
\end{equation*}
$$

where $M^{\prime}:=3 M+1, c_{4}:=6 \times 10^{159}, c_{5}:=1.69315$ and $c_{6}:=33.3467$. Together with the upper bound (39), this lower bound yields an absolute upper bound $M_{0}=$ 3.575×10^{85} for M. To find all solutions below this large bound, we use the reduction procedure based on the LLL-algorithm [12]. Using this procedure, we have further reduced our bound to $M_{0}=7$.

The direct computation reveals that for all integral points $P=m_{1} P_{1}+m_{2} P_{2}+$ $m_{3} P_{3}$ for $\left|m_{i}\right| \leq 7$ with $(X(P), Y(P))$ on (32) gives

$$
P=\left(\frac{335962176073}{979126681},-\frac{260722045187502036}{30637852975171}\right)
$$

for $m_{1}=m_{2}=m_{3}=1$. The corresponding integral point on (29) is $(u, v)=(0,0)$ which is a trivial point and hence we conclude that there is no integer solution to (27). This completes the proof of the theorem.

4. Concluding Remarks

Considering the equation $1^{2}+2^{2}+\cdots+(x-2)^{2}=(x+2)+(x+3)+\cdots+y$, and using the elliptic logarithmic method (the method used in the proof of Theorem 2), one can prove that

$$
(x, y)=(7,13),(8,16),(54,315),(182,1988),(253,3266),(1338,39916)
$$

are the only positive integral solutions.

Acknowledgments. The authors are grateful to the anonymous referee for his/her valuable suggestions which improved the quality of this manuscript.

References

[1] A. Behera and G. K. Panda, On the square roots of triangular numbers, The Fib Quart. 37(2) (1999), 98-105.
[2] Yu. F. Bilu and R. F. Tichy, The Diophantine equation $f(x)=g(y)$, Acta. Arith. 95 (2000), 261-288.
[3] S. David, Minorations de formes linéaires de logarithmes elliptiques, Mém. Soc. Math. France (N. S.) 62 (1995), iv+143 pp.
[4] R. P. Finkelstein, The house problem, Amer. Math. Monthly 72 (1965), 1082-1088.
[5] P. Ingram, On the k-th power numerical centers, C. R. Math. Acad. Sci. R. Can. 27 (4) (2005), 105-110.
[6] T. Komatsu and L. Szalay, Balancing with binomial coefficients, Int. J. Number Theory 10 (7) (2014), 1729-1742.
[7] K. Liptai, F. Luca, Á. Pintér and L. Szalay, Generalized balancing numbers, Indag. Math. (N.S.) 20 (2009), 87-100.
[8] Cs. Rakaczki, On the Diophantine equation $S_{m}(x)=g(y)$, Publ. Math. Debrecen 65 (2004), 439-460.
[9] J. H. Silverman, The difference between the Weil height and the canonical height on elliptic curves, Math. Comp. 55 (1990), 723-743.
[10] S. S. Rout and G. K. Panda, k-gap balancing numbers, Period. Math. Hungar. 70 (1) (2015), 109-121.
[11] R. Steiner, On k th power numerical centers, The Fib Quart. 16 (1978), 470-471.
[12] R. Stroeker and B. M. M. de Weger, Solving elliptic Diophantine equations: the general cubic case, Acta Arith. 87 (4) (1999), 339-365.
[13] N. Tzanakis, Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations, Acta Arith. 75 (2) (1996), 165-190.
[14] D. Zagier, Large integral points on elliptic curves, Math. Comp. 48 (177) (1987), 425-436.

