

ON ℓ -TH ORDER GAP BALANCING NUMBERS

S. S. Rout

Institute of Mathematics and Applications, Bhubaneswar, Odisha, India lbs.sudhansu@gmail.com; sudhansu@iomaorissa.ac.in

R. Thangadurai

Harish-Chandra Research Institute, HBNI, Allahabad, Uttar Pradesh, India thanga@hri.res.in

Received: 3/9/17, Revised: 2/19/18, Accepted: 6/4/18, Published: 6/5/18

Abstract

In this article, we prove the finiteness of the positive integral solutions of

$$1^{\ell} + 2^{\ell} + \dots + \left(x - \frac{k+1}{2}\right)^{\ell} = \left(x + \frac{k+1}{2}\right)^{\ell} + \dots + (y-1)^{\ell}$$

for any given integer $\ell > 1$ and an odd integer $k \ge 1$. Moreover, when k = 3 and $\ell = 2, 3$ and 5, we explicitly compute the positive integral solutions using the elliptic logarithmic method.

1. Introduction

Let $k \ge 1$ be an odd positive integer and $\ell \ge 1$ be given integer. We say a positive integer x is a k-gap balancing number of order ℓ , if there exists an integer $y \ge x + (k+3)/2$ such that

$$1^{\ell} + 2^{\ell} + \dots + \left(x - \frac{k+1}{2}\right)^{\ell} = \left(x + \frac{k+1}{2}\right)^{\ell} + \dots + (y-1)^{\ell}.$$
 (1)

This was introduced in the paper of Rout and Panda [10]. In the literature, the classical case k = 1 and $\ell = 1$ was introduced in [1], and in this case x is called a *balancing number*. Further, in [4], the case k = 1 and $\ell > 1$ was considered and the following conjecture was stated.

Conjecture 1. For any given integer $y \ge 2$, the integer x = 1 is the only positive integral solution of the equation

$$1^{\ell} + 2^{\ell} + \dots + (x-1)^{\ell} + x^{\ell} = x^{\ell} + (x+1)^{\ell} + \dots + (y-1)^{\ell}.$$
 (2)

If $\ell = 2$, solving (2) is equivalent to solving the Thue equations $m^3 + 2n^3 = 11$ or 33. But the only integral solution of $m^3 + 2n^3 = 11$ is (m, n) = (3, -2) and therefore the only positive integral solution of (2) is (y, x) = (2, 1) which is trivial. Also, $m^3 + 2n^3 = 33$ has no integral solution. Thus, altogether for $\ell = 2$, Conjecture 1 is true. Conjecture 1 is also true for $\ell = 3$ [11] and $\ell = 5$ [5]. Using a result of Bilu and Tichy [2] on the Diophantine equation f(x) = g(y), for a fixed integer $\ell > 1$, Ingram [5] proved that the equation (2) has at most finitely many solutions by keeping x and y as unknowns with $x \leq y - 1$.

The balancing numbers are further generalized as follows. For fixed positive integers p and q, we call a positive integer $x (\leq y - 2)$ a (p,q)-balancing number if

$$1^{p} + 2^{p} + \dots + (x-1)^{p} = (x+1)^{q} + \dots + (y-1)^{q}$$
(3)

holds for some natural number y. Liptai et al. [7] proved the finiteness of the number of solutions of (3).

For an arbitrary odd integer $k \ge 1$ and $\ell = 1$, (1) has some classes of solutions which were given in [10]. In this article, we study the explicit positive integral solutions of (1) with k = 3 and $\ell = 2, 3$ and 5. First, we shall prove the general case as follows.

Theorem 1. For fixed $\ell > 1$ and an odd positive integer $k \ge 1$, (1) has finitely many positive integral solutions.

We prove Theorem 1 along the same line of proof given in [7]. Moreover, using the explicit lower bound for linear forms in elliptic logarithms given in [3], we construct rational points of certain elliptic curves and prove the following results.

- **Theorem 2.** 1. If k = 3 and $\ell = 2$ then (1) has precisely one solution, namely, (x, y) = (44, 56).
 - 2. The equation (1) has no positive integral solution, when k = 3 and $\ell = 3$.
 - 3. The equation (1) has no positive integral solution, when k = 3 and $\ell = 5$.

Theorem 2, part 1 asserts that the analogue of Conjecture 1 is not true for (1) with k = 3 and $\ell = 2$.

In the proof of Theorem 2, we use the notations as in [13].

2. Proof of Theorem 1

For any integer $\ell \geq 1$, let us denote

$$S_{\ell}(x) = 1^{\ell} + 2^{\ell} + \dots + (x-1)^{\ell}.$$
(4)

Then note that the polynomial $S_{\ell}(x) \in \mathbb{Q}[x]$ and is of degree $\ell + 1$ whose leading coefficient is $1/(\ell + 1)$. It is known that for an odd integer $\ell > 1$, we can express

$$S_{\ell}(x) = \psi_{\ell}\left(\left(x - \frac{1}{2}\right)^2\right)$$

for some polynomial $\psi_{\ell}(x) \in \mathbb{Q}[x]$ of degree $(\ell + 1)/2$.

To prove Theorem 1, we need the following result of Rakaczki [8].

Theorem 3. Let m be a positive integer. For any polynomial $g(x) \in \mathbb{Q}[x]$ of degree ≥ 2 , the Diophantine equation

$$S_m(x) = g(y)$$

has finitely many integer solutions in x and y, unless (m, g(x)) is a special pair where all the 7 types of special pairs are defined in [8].

Proof of Theorem 1. Let $\ell > 1$ be a fixed integer and $k \ge 1$ be an odd positive integer. Then we want to prove that

$$1^{\ell} + 2^{\ell} + \dots + \left(x - \frac{k+1}{2}\right)^{\ell} = \left(x + \frac{k+1}{2}\right)^{\ell} + \dots + (y-1)^{\ell}$$
(5)

has finitely many integer solutions. First we rewrite (5) as

$$\left(x + \frac{k+1}{2}\right)^{\ell} + \dots + (y-1)^{\ell} = 1^{\ell} + 2^{\ell} + \dots + (y-1)^{\ell} - \left(1^{\ell} + \dots + \left(x + \frac{k-1}{2}\right)^{\ell}\right)$$
$$= S_{\ell}(y) - S_{\ell}\left(x + \frac{k+1}{2}\right).$$

Therefore, (1) becomes

$$S_{\ell}\left(x - \frac{k-1}{2}\right) + S_{\ell}\left(x + \frac{k+1}{2}\right) = S_{\ell}(y).$$
(6)

Let

$$g(x) := 2S_{\ell}\left(x - \frac{k-1}{2}\right) + \left(x - \frac{k-1}{2}\right)^{\ell} + \dots + \left(x + \frac{k-1}{2}\right)^{\ell} \\ = S_{\ell}\left(x - \frac{k-1}{2}\right) + S_{\ell}\left(x + \frac{k+1}{2}\right).$$
(7)

Clearly, g(x) is a polynomial in $\mathbb{Q}[x]$ of degree $\ell + 1$. Also, by the definition of g(x), it is clear that the degrees of all terms in g(x) except the first term is ℓ .

With these notations, it is now enough to prove that there are only finitely many integer solutions to the equation $S_{\ell}(y) = g(x)$.

On the contrary, we assume that the equation $S_{\ell}(y) = g(x)$ has infinitely many integer solutions. Then, by Theorem 3, we must have the pair $(\ell, g(x))$ as one of the 7 special pairs described in [8].

Type I. $g(x) = S_{\ell}(q(x))$ for some non-constant polynomial $q(x) \in \mathbb{Q}[x]$.

In this case, by comparing the degrees from both sides, we get q(x) = ux+v where $u, v \in \mathbb{Q}$ with $u \neq 0$. Then the leading coefficient of $S_{\ell}(q(x))$ is $\frac{u^{\ell+1}}{\ell+1}$. However, the leading coefficient of g(x) is $\frac{2}{\ell+1}$. Hence, $u^{\ell+1} = 2$, which implies that u = 2 and $\ell = 0$. This is a contradiction to $\ell > 1$.

Type II. ℓ is an odd integer, $g(x) = \psi_{\ell}(\delta(x)q(x)^2)$ for some non-zero polynomial $q(x) \in \mathbb{Q}[x]$, and $\delta(x) \in \mathbb{Q}[x]$ is a linear polynomial.

By comparing the degrees, in this case, we conclude that degree of $\delta(x)q(x)^2$ is equal to 2. But this is not possible as $\delta(x)$ is a linear polynomial.

Type III. ℓ is an odd integer and $g(x) = \psi_{\ell}(c\delta(x)^t)$ for some $c \in \mathbb{Q} \setminus \{0\}$, and $t \geq 3$ is an odd integer.

In this case, the degree of $\psi_{\ell}(c\delta(x)^t)$ is greater than $(t(\ell+1))/2$. Since $(t(\ell+1))/2 > \ell + 1$, it follows that the degree of g(x) is greater than $\ell + 1$, which is a contradiction.

Type IV. ℓ is an odd integer and $g(x) = \psi_{\ell}((a\delta(x)^2 + b)q(x)^2)$ with $a, b \in \mathbb{Q} \setminus \{0\}$.

Here we see, by comparing degrees, that δ is linear (say $\delta = ux + v$) and q(x) = q, a constant (non-zero). The leading coefficient of $\psi_{\ell}((a\delta(x)^2 + b)q(x)^2)$ is $(au^2q^2)^{(\ell+1)/2}$. Hence by comparing the leading coefficients, we get

$$(au^2q^2)^{(\ell+1)/2} = 2$$
 implies $\ell \le 1$,

a contradiction to $\ell > 1$.

Type V. ℓ is an odd integer and $g(x) = \psi_{\ell}(q(x)^2)$.

By comparing the degrees, we conclude that q(x) = ux + v is a linear polynomial with $u \neq 0$. Note that the leading coefficient of $\psi_{\ell}(q(x)^2)$ is $u^{\ell+1}/(\ell+1)$. As the leading coefficient of g(x) is $2/(\ell+1)$, we have

$$u^{\ell+1} = 2$$
 implies $u = 2$ and $\ell = 0$,

a contradiction to $\ell > 1$.

Type VI. $\ell = 3$ and $g(x) = \delta(x)q(x)^2$.

Since the degree of $S_3(x)$ is 4 and $\delta(x)$ is a linear polynomial, we get a contradiction, by comparing the degrees of both sides.

Type VII. $\ell = 3$ and $g(x) = q(x)^2$.

In this case, q(x) must be a quadratic polynomial, say, $q(x) = ux^2 + vx + w \in \mathbb{Q}[x]$. Therefore, by comparing the leading coefficients, we get $u^2 = 2$, which is a contradiction to $u \in \mathbb{Q}$.

This proves that (6) has only finitely many integer solutions.

3. Proof of Theorem 2

Case 1. $(k = 3 \text{ and } \ell = 2).$

In this case, we completely solve the following equation

$$1^{2} + 2^{2} + \dots + (x - 2)^{2} = (x + 2)^{2} + \dots + y^{2},$$
(8)

over integers. Indeed, we shall prove the following statement: The equation (8) has only one integral solution (x, y) = (44, 55). Equivalently, we have only one relation of the form

$$1^2 + 2^2 + \dots + 42^2 = 46^2 + \dots + 55^2.$$
(9)

The idea is to use the well-known formula

$$\sum_{r=1}^{a} r^2 = \frac{a(a+1)(2a+1)}{6}$$

in (8) to convert it into an elliptic curve and look for an integral point of that elliptic curve. By applying this formula in (8), after writing (8) as

$$1^{2} + \dots + (x-2)^{2} = (1^{2} + 2^{2} + \dots + (x+1)^{2}) + (x+2)^{2} + \dots + y^{2} - (1^{2} + 2^{2} + \dots + (x+1)^{2}),$$

and by using the change of variable u := 2x and v := 2y + 1, we arrive at the cubic equation

$$2u^3 + 52u = v^3 - v. (10)$$

Note that the asymptote of (10) is $v = \alpha u$, where α is a real cube root of 2. Now, using *Magma*, we see that the transformation

$$X = \frac{-2u + 2704v}{52u + v}, \quad Y = -\frac{140610}{52u + v} \tag{11}$$

yields a minimal model for (10), i.e.,

$$E: Y^2 = X^3 + 312X - 281212.$$
(12)

One can compute the Mordell-Weil group for the elliptic curve given in (12) and the group is $E(\mathbb{Q}) \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$. By Mordell's theorem, this group is generated by the points $P_1 = (64, 30), P_2 = (76, 426)$ and $P_3 = (88, 654)$.

Since the point at infinity of this group is the limit point of points on (12) arising from the asymptote of (10), we let $Q_0 = (X_0(\alpha), Y_0(\alpha))$ as the point at infinity. Therefore,

$$X_0(\alpha) = \lim_{(u,v)\to\infty} \frac{-2u + 2704v}{52u + v}$$
$$= \frac{-2 + 2704\alpha}{52 + \alpha}$$
$$= a + b\alpha + c\alpha^2 \text{ (say).}$$

Then, we get a = 0, b = 52 and c = -1, and hence $X_0(\alpha) = -\alpha^2 + 52\alpha$. By similar calculation, we get $Y_0(\alpha) = 0$.

Let $P \in E$ be an arbitrary point on E with integer co-ordinates u and v on (10). Since $E(\mathbb{Q})$ is generated by the points P_1 , P_2 and P_3 , we write

$$P = m_1 P_1 + m_2 P_2 + m_3 P_3$$
 where $m_1, m_2, m_3 \in \mathbb{Z}$.

Our aim is to get an upper bound for these m_i 's. By letting $M = \max\{|m_1|, |m_2|, |m_3|\}$, we need to find the upper bound for M. One way to get an upper bound for M is to apply the elliptic logarithmic method.

From (10), we get

$$\frac{d(u(v))}{dv} = \frac{3v^2 - 1}{6u^2 + 52}.$$

For $v \ge 10, u(v)$ given by (10) can be viewed as a strictly increasing function of v. Now, using Lemma 2 of [13], it follows from (11) that

$$\frac{dv}{6u^2 + 52} = \frac{1}{2} \frac{dX}{Y}.$$
(13)

Therefore, we get

$$\int_{v}^{\infty} \frac{dv}{6u^2 + 52} = \frac{1}{2} \int_{X}^{X_0(\alpha)} \frac{dX}{Y}.$$
 (14)

One can observe from (10) that $6u^2 + 52 > 3v^2$ for $v \ge 10$. Therefore, we have

$$\int_{v}^{\infty} \frac{dv}{6u^2 + 52} < \frac{1}{3} \int_{v}^{\infty} \frac{dv}{v^2} = \frac{1}{3v}.$$
(15)

We let

$$L(P) = -\int_X^{X_0(\alpha)} \frac{dX}{Y}.$$

The main idea is to get the upper and lower bound for |L(P)| involving M. Indeed,

$$-\int_{X}^{X_{0}(\alpha)} \frac{dX}{Y} = \int_{X_{0}(\alpha)}^{X} \frac{dX}{Y} = \int_{X_{0}(\alpha)}^{\infty} \frac{dX}{Y} - \int_{X}^{\infty} \frac{dX}{Y} = \omega(\phi(Q_{0}) - \phi(P))$$

where $\omega = 0.302283...$ is the real part of the fundamental period of $E(\mathbb{C})$ and ϕ is the elliptic logarithm. Thus, we get

$$L(P) = \omega(\phi(Q_0) - \phi(P)).$$

Also,

$$\phi(P) = \phi(m_1P_1 + m_2P_2 + m_3P_3) = m_1\phi(P_1) + m_2\phi(P_2) + m_3\phi(P_3) + m_0$$

with $m_0 \in \mathbb{Z}$. Since $\phi(P_i) \in [0, 1)$, we see that

$$|m_0| \le |\phi(P) - (m_1\phi(P_1) + m_2\phi(P_2) + m_3(P_3))| \le 1 + 3M.$$

Let $u_0 = \omega \phi(Q_0), u_1 = \omega \phi(P_1), u_2 = \omega \phi(P_2)$ and $u_3 = \omega \phi(P_3)$. Then, by using Zagier's algorithm [14], we arrive at $u_1 = 0.297514..., u_2 = 0.242130..., u_3 = 0.219679...$ and $u_0 = \omega \phi(Q_0) = 0.151141...$ Since

$$L(P) = \int_{X_0}^X \frac{dX}{Y} = \omega(\phi(Q_0) - \phi(P))$$

= $u_0 - m_1 u_1 - m_2 u_2 - m_3 u_3 - m_0 \omega$,

by (14) and (15), we have

$$|L(P)| = 2\int_{v}^{\infty} \frac{dv}{6u^2 + 52} < \frac{2}{3v}.$$
(16)

Since our aim to get the upper bound as a function of M, we need to replace v by a function of M. Since the Néron-Tate height has the lower bound involving M as

$$\hat{h}(P) \ge c_1 M^2 \tag{17}$$

where $c_1 = 0.3776939...$ is the least eigenvalue of the Néron-Tate height pairing matrix, we use this height calculation as follows. First note that since $v = \alpha u$ is the asymptote, we see that $\alpha u - v < 0.002$ for all $v \ge 10$ and hence $u < (0.002 + v)/\alpha$. Now we get an upper bound for the Weil height h(P) := h(X(P)) as follows:

$$h(X(P)) = \log \max\{|-2u + 2704v|, |52u + v|\} \le \log(|2u + 2704v|)$$

$$\le \log\left(2\left(\frac{0.002 + |v|}{|\alpha|}\right) + 2704|v|\right)$$

$$\le \log\left(\left(\frac{2}{\alpha} + 2704\right)|v| + \frac{0.004}{\alpha}\right)$$

$$\le 7.906249 + \log|v|.$$
(18)

Silverman [9] proved that

$$2\hat{h}(P) - h(P) < 8.7926994$$

Using (17) and this difference, we get

$$h(P) > 2c_1 M^2 - 8.7926994.$$
⁽¹⁹⁾

From (17), (18) and (19), we conclude that

$$-\log|v| < 16.698948 - 0.7553879M^2.$$
⁽²⁰⁾

Therefore, by (16), we get

$$|L(P)| < \exp(16.293483 - 0.7553879M^2).$$
⁽²¹⁾

David [3] proved the general lower bound of |L(P)| as follows:

$$L(P) > \exp(-c_4(\log M' + c_5))(\log \log M' + c_6)^6)$$
(22)

where M' := 3M + 1, $c_4 := 9 \times 10^{158}$, $c_5 := 1.69315$ and $c_6 := 21.81715$. Now, by comparing (21) and (22), we arrive at an upper bound $M_0 = 6.9 \times 10^{82}$ for M. To find all solutions below this large bound, we use the reduction procedure based on the LLL-algorithm [12] and we get the reduced new bound for M which is M = 11. A direct computer search finds that the only points $P = m_1P_1 + m_2P_2 + m_3P_3$ with $|m_i| \leq 11$ and (u(P), v(P)) on (10) are listed in the following table:

m_1	m_2	m_3	X(P)	Y(P)	u(P)	v(P)
-1	0	0	64	-30	88	111
0	0	-1	88	-654	4	7
0	0	1	88	654	-4	-7
1	0	0	64	30	-88	-111

Note that when u = 88 and v = 111, we get x = 44 and y = 55. In this case, we have a solution for (8). When u = 4 and v = 7, the corresponding x = 2 and y = 3 violate the condition $y \ge x + 2$. In rest of the cases x or y may not be positive integers. Hence, (x, y) = (44, 55) is the only positive integral solution for (8).

Case 2. $(k = 3 \text{ and } \ell = 3).$

In this case, we study the Diophantine equation

$$1^{3} + 2^{3} + \dots + (x - 2)^{3} = (x + 2)^{3} + \dots + y^{3}$$
(23)

for $y \ge x + 2$ and we show that this equation has no solution. Let x be a 3-gap balancing number of order 3. Since the sum of the cubes of the first n positive integers is given by

$$\sum_{m=1}^{n} m^3 = \left[\frac{n(n+1)}{2}\right]^2$$

from (23), we have

$$\left[\frac{(x-2)(x-1)}{2}\right]^2 + \left[\frac{(x+1)(x+2)}{2}\right]^2 = \left[\frac{y(y+1)}{2}\right]^2.$$
 (24)

INTEGERS: 18 (2018)

Simplifying (24) and putting u = 2x and v = 2y(y+1), we get

$$2v^2 = u^4 + 52u^2 + 64. (25)$$

Multiplying by 2 and setting Y = 2v and X = u, we get the quartic elliptic curve as follows:

$$E: Y^2 = 2X^4 + 104X^2 + 128. (26)$$

Using Magma, we find the following set of integral points on E:

$$(X, Y) = (\pm 2, \pm 24), (\pm 4, \pm 48), (\pm 14, \pm 312), (\pm 68, \pm 6576).$$

Now, note that the point (X, Y) = (2, 24) (respectively (4, 48)) gives the integral solution (x, y) = (1, 2) (respectively (2, 3)). However, this is contradicting to the condition that $y \ge x+2$. If (X, Y) = (14, 312) (respectively (68, 6576)), then $y \notin \mathbb{Z}$. Thus, we conclude that there is no positive integral solution of (23).

Case 3. $(k = 3 \text{ and } \ell = 5).$

In this case, we study the Diophantine equation

$$1^{5} + 2^{5} + \dots + (x - 2)^{5} = (x + 2)^{5} + \dots + y^{5}.$$
 (27)

In particular, we show that equation (27) has no solution in positive integers. Let x be a 3-gap balancing number of order 5. By the well-known formula

$$\sum_{i=1}^{n} i^5 = \frac{n^2(n+1)^2(2n^2+2n-1)}{12},$$

and setting $u := 4x^2$ and $v := (2y+1)^2$, we get

$$2u^3 + 140u^2 + 944u = v^3 - 5v^2 + 7v - 387.$$
⁽²⁸⁾

We shift the v-coordinate using (9) to get a better model. As this transformation preserves the integrality of the points, it will not affect our result. Hence writing v := v + 9, we get

$$2u^3 + 140u^2 + 944u = v^3 + 22v^2 + 160v.$$
⁽²⁹⁾

Using Magma, we find that the birational transformations

$$X = \frac{14363u + 11354v + 250328}{59u - 10v},$$

$$Y = -4\left(\frac{52187488u + 6179535u^2 + 24345398v + 1650669v^2}{(59u - 10v)^2}\right)$$
(30)

and

$$u = \frac{-3481X^3 + 3481X^2 + 3481Y^2 + 101423033X - 167971860617}{31291X^2 - 6855974X + 813516Y + 55912827099},$$

$$v = -8\left(\frac{26093744X + 1846169Y + 6757133452}{31291X^2 - 6855974X + 813516Y + 55912827099}\right)$$
(31)

INTEGERS: 18 (2018)

relate (29) and the minimal model

$$E: Y^2 = X^3 - X^2 - 1161X + 32535321.$$
(32)

Using *Magma*, we see that the torsion subgroup of the Mordell-Weil group of $E(\mathbb{Q})$ is trivial and its rank is 3 with generators, namely, $P_1 = \left(-\frac{968}{9}, \frac{151307}{27}\right), P_2 = (-67, 5684)$ and $P_3 = (7523, 652484)$.

We apply the same method as discussed in Case 1. The asymptote of (29) is $v = \alpha u + \beta$ where α is a real cube root of 2 and $\beta = \frac{11\alpha^2 - 70}{80}$. Let $Q_0 = (X_0, Y_0)$ be the point at infinity of E. Then, we can compute $X_0 = 40\alpha^2 + 236\alpha + 257$ and $Y_0 = -2596\alpha^2 - 2800\alpha - 8700$. Also, by (29), we view u as a strictly increasing function of v when u > 4 and v > -6.6, or u < -8 and v < -44. For each such point (u, v), there is a unique point $(X, Y) \in \mathbb{R}^2$ with $Y \ge 0$. We assume that $v \ge 10^2$ for the rest of the calculation. In this case, we see that $6u^2 + 280u + 944 > 3v^2$. Thus,

$$\int_{v}^{\infty} \frac{dv}{6u^{2} + 280u + 944} < \frac{1}{3} \int_{v}^{\infty} \frac{dv}{v^{2}} = \frac{1}{3v}.$$
(33)

Let $P = m_1P_1 + m_2P_2 + m_3P_3$ be an arbitrary point on E with integral coordinates u, v on (29). Thus, the linear form

$$L(P) = \int_{X_0}^X \frac{dX}{Y} = \omega(\phi(Q_0) - \phi(P))$$

= $u_0 - m_0\omega - m_1u_1 - m_2u_2 - m_3u_3$,

where $u_0 = 0.235708..., u_1 = 0.176128..., u_2 = 0.168950..., u_3 = 0.023059...$ and $\omega = 0.4714160...$ is the real part of the fundamental period of $E(\mathbb{C})$. In order to get the upper bound for |L(P)|, we proceed with height calculations. For $v \ge 10^2$, it is easy to verify that

$$h(X(P)) \le 10.1399 + \log|v|. \tag{34}$$

Moreover, we have

$$\hat{h}(P) \ge c_1 M^2 \tag{35}$$

where $c_1 = 1.538118...$ is the least eigenvalue of the Néron-Tate height pairing matrix and $M = \max_{1 \le i \le 3} |m_i|$. Also, the Silverman's bound for the heights on elliptic curve gives that

$$2\hat{h}(P) - h(p) < 12.0302566.$$
(36)

Now, using Lemma 2 of [13] and (29), we get

$$\frac{dv}{6u^2 + 280u + 944} = \frac{1}{4}\frac{dX}{Y}.$$
(37)

By (37), for $v \ge 10^2$, we have

$$\int_{v}^{\infty} \frac{dv}{6u^2 + 280u + 944} = \frac{1}{4} \int_{X}^{X_0} \frac{dX}{Y}.$$
(38)

Thus, using (33),(34),(35) and (36), we get the upper bound as

$$L(P) < 22.457837 - 3.076238M^2.$$
⁽³⁹⁾

As $|m_0| \leq 3M + 1$, we obtain the lower bound ([3])

$$L(P) > \exp(-c_4(\log M' + c_5))(\log \log M' + c_6)^6), \tag{40}$$

where M' := 3M + 1, $c_4 := 6 \times 10^{159}$, $c_5 := 1.69315$ and $c_6 := 33.3467$. Together with the upper bound (39), this lower bound yields an absolute upper bound $M_0 = 3.575 \times 10^{85}$ for M. To find all solutions below this large bound, we use the reduction procedure based on the LLL-algorithm [12]. Using this procedure, we have further reduced our bound to $M_0 = 7$.

The direct computation reveals that for all integral points $P = m_1P_1 + m_2P_2 + m_3P_3$ for $|m_i| \leq 7$ with (X(P), Y(P)) on (32) gives

$$P = \left(\frac{335962176073}{979126681}, -\frac{260722045187502036}{30637852975171}\right)$$

for $m_1 = m_2 = m_3 = 1$. The corresponding integral point on (29) is (u, v) = (0, 0) which is a trivial point and hence we conclude that there is no integer solution to (27). This completes the proof of the theorem.

4. Concluding Remarks

Considering the equation $1^2 + 2^2 + \cdots + (x-2)^2 = (x+2) + (x+3) + \cdots + y$, and using the elliptic logarithmic method (the method used in the proof of Theorem 2), one can prove that

$$(x,y) = (7,13), (8,16), (54,315), (182,1988), (253,3266), (1338,39916)$$

are the only positive integral solutions.

Acknowledgments. The authors are grateful to the anonymous referee for his/her valuable suggestions which improved the quality of this manuscript.

References

- A. Behera and G. K. Panda, On the square roots of triangular numbers, The Fib Quart. 37(2) (1999), 98-105.
- [2] Yu. F. Bilu and R. F. Tichy, The Diophantine equation f(x) = g(y), Acta. Arith. 95 (2000), 261-288.

- [3] S. David, Minorations de formes linéaires de logarithmes elliptiques, Mém. Soc. Math. France (N. S.) 62 (1995), iv+143 pp.
- [4] R. P. Finkelstein, The house problem, Amer. Math. Monthly 72 (1965), 1082-1088.
- [5] P. Ingram, On the k-th power numerical centers, C. R. Math. Acad. Sci. R. Can. 27 (4) (2005), 105-110.
- [6] T. Komatsu and L. Szalay, Balancing with binomial coefficients, Int. J. Number Theory 10 (7) (2014), 1729-1742.
- [7] K. Liptai, F. Luca, Á. Pintér and L. Szalay, Generalized balancing numbers, Indag. Math. (N.S.) 20 (2009), 87-100.
- [8] Cs. Rakaczki, On the Diophantine equation $S_m(x) = g(y)$, Publ. Math. Debrecen 65 (2004), 439-460.
- [9] J. H. Silverman, The difference between the Weil height and the canonical height on elliptic curves, *Math. Comp.* 55 (1990), 723-743.
- [10] S. S. Rout and G. K. Panda, k-gap balancing numbers, Period. Math. Hungar. 70 (1) (2015), 109-121.
- [11] R. Steiner, On kth power numerical centers, The Fib Quart. 16 (1978), 470-471.
- [12] R. Stroeker and B. M. M. de Weger, Solving elliptic Diophantine equations: the general cubic case, Acta Arith. 87 (4) (1999), 339-365.
- [13] N. Tzanakis, Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations, Acta Arith. 75 (2) (1996), 165-190.
- [14] D. Zagier, Large integral points on elliptic curves, Math. Comp. 48 (177) (1987), 425-436.