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Abstract

The generalized factorial product sequences we study in this article are defined symbolically by
pn(a, R) = R(R+ ) -+ (R+ (n— 1)a) for any indeterminate R. This definition of the generalized
factorial functions p,,(a, R) includes variants of the classical single and double factorial functions,
multiple a-factorial functions, n!(,), rising and falling factorial polynomials such as the Pochhammer
symbol, and other well-known sequences as special cases. We use the rationality of the generalized
hth convergent functions, Convy(a, R; ), to the infinite J-fraction expansions enumerating these
generalized factorial product sequences first proved by the author in 2017 to construct new con-
gruences and h-order finite difference equations for generalized factorial functions. Applications of
the new results we prove in this article include new finite sums and congruences for the a-factorial
functions, restatements of classical necessary and sufficient conditions of the primality of special
integer subsequences and tuples, and new finite sums for the single and double factorial functions
modulo integers h > 2.

1. Notation and Other Conventions in the Article

1.1. Notation and Special Sequences

Most of the special conventions in the article are consistent with the notation employed within the
Concrete Mathematics reference, and the conventions defined in the introduction to the first articles
[11, 12]. These conventions include particular notational variants for usage of Tverson’s convention,

[i = j]5 = &i,;, bracket notation for the Stirling numbers, [7] = (=1)""*s(n, k) and {}} = S(n, k),
and notation for the generalized r-order harmonic numbers, H,(f) = > 4_1 k7" where H,, = Hr(Ll)

denotes the sequence of first-order harmonic numbers. We will use the convention of denoting the
falling factorial function by ™ = z!/(x — n)!, the rising factorial function as ™ = I'(z + n)/T(x),
or equivalently by the Pochhammer symbol, (z), = z(z + 1)(z +2)---(z +n — 1), when z is a
non-negative natural number. Within the article the notation g1 (n) = g2(n) (mod Ny, Na,..., Ni)
is understood to mean that the congruence, gi(n) = g2(n) (mod Nj;), holds modulo any of the
bases, N;, for 1 < j < k. Finally, we adopt the convention that the natural numbers are indexed
starting from zero: N :={0,1,2,3,...}.
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1.2. Mathematica Summary Notebook Document and Computational Reference
Information

The article is prepared with a more extensive set of computational data and software routines
released as open source software to accompany the examples and numerous other applications
suggested as topics for future research and investigation within the article. It is highly encouraged,
and expected, that the interested reader obtain a copy of the summary notebook reference and
computational documentation prepared in this format to assist with computations in a multitude
of special case examples cited as particular applications of the new results.

The prepared summary notebook file https://goo.gl/KK5rNnmultifact-cfracs-summary.nb,
attached to this manuscript contains the working Mathematica code to verify the formulas, proposi-
tions, and other identities cited within the article [13]. Given the length of this and the first article,
the Mathematica summary notebook included with this submission is intended to help the reader
with verifying and modifying the examples presented as applications of the new results cited below.
The summary notebook also contains numerical data corresponding to computations of multiple
examples and congruences specifically referenced in several places by the applications given in the
next sections of the article.

2. Introduction

2.1. Motivation

In this article, we extend the results from [11] providing infinite J-fraction expansions for the
typically divergent ordinary generating functions (OGFs) of generalized factorial product sequences
of the form

Pn (0, R) := R(R+ a)(R+2a) x -+ x (R4 (n—1)a) [n > 1]5 + [n = 0], (1)

when R depends linearly on n. Notable special cases of (1) that we are particularly interested
in enumerating through the convergents to these J-fraction expansions include the multiple, or
a-factorial functions, n!(,y, defined for a € 7+ as

n-(n—a)y, ifn>0;
nla)y =191, if —a<n<0; (2)

0, otherwise,

and the generalized factorial functions of the form p,(«, fn + ) for o, 8,7 € Z, a # 0, and 3,7
not both zero. The second class of special case products are related to the Gould polynomials,
Gp(z;a,b) = 2. (m_b‘m)ﬂ, through the following identity ([12, §3.4.2],[10, §4.1.4]):

r—an

(o)t

a3 XG5 -a). (3)

Pn (o, B+ ) =

The a-factorial functions, (an — d)!(,) for @ € Z* and some 0 < d < «, form special cases of (3)
where, equivalently, («, 5,7) = (—a,a, —d) and (o, 8,7) = (o, 0, — d) [11, §6]. The a-factorial
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functions are expanded by the triangles of Stirling numbers of the first kind, [Z] , and the a-factorial
coefficients, ma, respectively, in the following forms [5, 12]:

{n/aq Q) &1-mpm i > 1.0 € Z* (4)

()= )™ Yn > La e ZF

[e3

Z{]

m+1

(an — d)l(a) = (@ —d) x Z[ ] " an 1= dm
m=1 @
n 1
- {n+1] (—)" ™Man+1—-d)™, ¥n>1,a € ZY,0<d < a.
= m+1],

A careful treatment of the polynomial expansions of these generalized a-factorial functions through
the coefficient triangles in (4) is given in [12].

2.2. Summary of the J-fraction Results

For all h > 2, we can generate the generalized factorial product sequences, p,(«, R), through
the strictly rational generating functions provided by the h*" convergent functions, denoted by
Convy, (e, R; z), to the infinite continued fraction series established by [11]. In particular, we have
series expansions of these convergent functions proved in [11] given by

1
Convy, (o, R; 2) = 7
aR -z
1-R-z—
20(R+ ) - 22
1-(R+2a) -z— 5
3a(R+2a) - z
1-(R+4a) -z —
1-(R+2(h—1)a)- 2
FPu(o, R; 2)
- it 5
Q0.2 ®)
—anaRz +Z[pnaR (mod h)] 2"

n>h

where the convergent function numerator and denominator polynomial subsequences which provide
the characteristic expansions of (5) are given in closed-form by (6) and (7) below. For example,
when h := 2 we have a convergent function approximation given by

1—(2a+ R)z
1-2(a+ R)z+ R(a+ R)2?
=1+ Rz + R(a+ R)z>+ R(a + R)(a + 2R)2*
+ R(a+ R)*(4a+ R)z* + R(a + R)*(R? + 8aR + 8a?)2°

Convy(a, R; 2) =
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More generally, we have that

FQh (Ot, Rv Z)

M- M-

()t (1_1(3 Fh-1- j)oo) . (6)
(

) Z) (g +h— k)k (—az)”

—az)" - h! x LER/OHI) ((2)™1),

I
—~ ol

when L%ﬂ ) () denotes an associated Laguerre polynomial, and where

h—1
FPp(a, R;2) =Y Chn(a, R)2" (7a)
n=0

h—1 n h -
= Z (Z (z) (=1)'p; (—a, R+ (h — 1)a) pn_i (v, R)) 2" (7b)
n=0

=0

h—1 n
=2 (Z (h) (1=h = R/a), <R/a>n_i> (a2)". (7c)

n=0 \:=0

The coefficients of the polynomial powers of z in the previous several expansions of (7), denoted
by Chn(a, R) := [2"]FPp(«, R; z) for 0 < n < h, also have the following multiple, alternating sum
expansions involving the Stirling number triangles [11, §5.2]:

o= % (O @ EY ) w
(31 R B
- OO @G -
T OROCEere

2|, = GO e-v] e Q).

polynomial function of h only
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Given that the non-zero h" convergent functions, Convy, (o, R; 2), are rational in each of z,a, R
for all h > 1, and that the convergent denominator sequences, FQ, (o, R; z), have characteristic
expansions by the Laguerre polynomials and the confluent hypergeometric functions, we may ex-
pand both exact finite sums and congruences modulo ha! for the generalized factorial functions,
pr (e, Bn 4 7y), by the distinct special zeros of these functions according to the following identities:

Pn(a, R) = cnj(a, R) X £y (e, R)" (9)
j=1
h
pn(a, R) = Zch’j(a, R) x Ly, j(a, R)" (mod h)
j=1
nla) = Zcmj(—mn) X En,j(—a,n)L%J
j=1
h —1
nla) = Zchvj(—a,n) X Khd(—a,n)LnT (mod h, ha, - - - ,hah).
j=1

These exact formulas and congruence properties for the generalized factorial functions p, («, R)
and n!(,) follow from expansions of the rational ht" convergent functions in partial fractions with
respect to z as Convy (o, R;2) = 37 oo cn,ja, R) /(1 = by j(a, R) - 2) [11, §6.2].

2.3. Key New Results Proved in the Article

In [11] we prove new exact formulas and congruence properties using the algebraic properties of
the rational convergents, Convy, (o, R; z). In contrast with this previous work, in this article we
choose an alternate route to derive our new results. Namely, we use the rationality of the h'"
convergent functions to establish new h-order finite difference equations for the coefficients of
Convy, (o, Bn + 7v; z), both in the exact forms of p,(a, Sn + ) with respect to n, as well as for
these special factorial functions expansions modulo ha! for any integers h > 2 and 0 < ¢t < h. We
state our next key proposition which we will prove in Section 3.1.

Proposition 1 (Finite Difference Equations for Generalized Factorial Functions). For
fized B,y € Z with o = £1,4+2 and B,7v not both zero, h odd or prime, an integer 0 < t < h, and
any integers n,r > 0, we have the following eract expansions and congruences for the generalized
product sequences, pp(a, R) and p,(a, fn +7):

pn(a, R) = i (Zi’{)(—l)kpkﬂ(—a, R+ (n—1+r)a)pp—1-k(a, R) + Cpirn(a, R)  (10a)

T T
= O

() (1) i (e B+ (n = Da)pusi(er. B) + [n = 0],

Eod
I
=)

pnla, Bn+7) =

NE

() (i (= 5+ (= D)oo (o fint ) mod b) (100

ES
Il
=]
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S (1) (1-nm ) (22)

k=0

n (o, fn+7) = ,; <Z> oDk (1 —h-— %)k (mﬁ%)nik (mod hat). (10c)

S

The numerator coefficients, denoted by Cp, (e, R) in the previous equations, are defined as
Chip(o, R) == [2*]FP, (o, R; 2) .

Remark 1 (Stronger Statements of the Key Congruence Properties). Based on numerical
evidence computed in the summary notebook [13], we conjecture, but we do not offer a conclusive
proof here, that the results stated in (10b) and (10c) of the key proposition in fact hold for all
integers h > 2, a # 0, and 0 < ¢t < h — not just in the odd and even prime special cases of the
moduli specified in the previous proposition. This observation substantially widens the utility of
the application of these results in the examples cited in Section 3 below.

More precisely, we offer the following conjecture, significantly extending the range of cases of the
parameters for which we may apply Proposition 1:

Conjecture 1. Under the same assumptions on the other key parameters, the conclusions of
Proposition 1 are true when we let the parameter o assume any integer value.

2.4. Examples

2.4.1. Applications in Wilson’s Theorem and Clement’s Theorem Concerning the Twin
Primes

The first examples given in this section provide restatements of the necessary and sufficient integer-
congruence-based conditions imposed in both statements of Wilson’s theorem and Clement’s theo-
rem through the exact expansions of the factorial functions defined above. For odd integers p > 3,
the congruences implicit to each of Wilson’s theorem and Clement’s theorem are enumerated as
follows [9, §4.3] [6, §6.6] [2]:

p prime if and only if (p — 1)! +1 =0 (mod p)

if and only if [z# ] Conv,, (=1,p — 1;2) + 1 =0 (mod p)

if and only if [z#!] Conv,, (1,1;2) + 1 =0 (mod p),
p,p~+ 2 prime if and only if 4((p—1)!+1)+p =0 (mod p(p+2))
if and only if 4[z" "] Convppto) (-1, p— 1;2) +p+4 =0 (mod p(p +2))
if and only if 4[z" "] Convy 40 (1,1;2) + p+ 4 =0 (mod p(p+2))

The rationality in z of the convergent functions, Convy, (o, R; z), at each h leads to further alter-
nate formulations of other well-known congruence statements concerning the divisibility of factorial
functions. For example, we may characterize the primality of the odd integers, p > 3, of the form
p =4k +1 (i.e., the so-termed subset of “Pythagorean primes”) according to the next condition [6,
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§7] (http://oeis.org/A002144):
(p—;l) 2= -1 (mod p) if and only if p is a prime of the form 4k + 1. (11)

For an odd integer p > 3 to be both prime and satisfy p = 1 (mod 4), the congruence statement
in (11) requires that the diagonals of the following rational two-variable convergent generating
functions satisfy the following equivalent conditions where p; is chosen so that p | 2Pp; for each
1=1,2:

()= ] (Com, (1,255 Com (<1255 5)) =1 (oo
(252) 12 = [2(P=D/2][30] (Conv (—2,p— 1;2) Conv (—2 p—1; i)) =-1 (mod p)
2 P1 ’ ’ P2 ) ’4.13

—1
(p—;l) 12 = [z(pfl)/z] [2°] (Convp1 (—1, pT,x> Conv,, (—Z,p —1; %)) =—-1 (mod p).

The supplementary computational reference provides additional remarks on the harmonic-number-
related fractional power series expansions of the convergent-based generating functions,

Conv,, (1,1; z/z) x Conv,, (1,1;z),

and
Conv,, (2,1;z/x) x Conv,, (1,1;z),

related to the single factorial function squares enumerated by the identities in the previous equations
[13].

These particular congruences involving the expansions of the single factorial function are consid-
ered in [12, §6.1.6] as an example of the first product-based symbolic factorial function expansions
implicit to both Wilson’s theorem and Clement’s theorem. Related formulations of conditions con-
cerning the primality of prime pairs, (p,p + d), and then of other prime k-tuples, are similarly
straightforward to obtain by elementary methods starting from the statement of Wilson’s theorem
[8]. For example, the new results proved in Section 3 are combined with the known congruences
established in [8, §3, §5] to obtain the cases of the next particular forms of alternate necessary and
sufficient conditions for the twin primality of the odd positive integers p; := 2n+1 and ps := 2n+3
when n > 1 (http://oeis.org/A001359, http://oeis.org/A001097):

2n+1,2n + 3 odd primes (12)

2
if and only if 2 (Z ((2”+1)(2"+3))2(—1)ii!(n - i)!) +(=1)"(10n+7) =0

=0 ‘
(mod (2n+ 1)(2n + 3))

2n
if and only if 4 (2 ((2”+1)(2"+3))2(71)"2'!(211 - i)!) +2n+5=0

. 7
=0

(mod (2n + 1)(2n + 3)).
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Section 3.4.2 of this article considers the particular cases of these two classically-phrased congruence
statements as applications of the new polynomial expansions for the generalized product sequences,
D (o, fn + ), derived from the expansions of the convergent function sequences by finite difference
equations.

2.4.2. Congruences for the Wilson Primes and the Single Factorial Function
Modulo n?

The sequence of Wilson primes, or the subsequence of odd integers p > 5 satisfying n? | (n—1)!+1,
is characterized through each of the following additional divisibility requirements placed on the
expansions of the single factorial function implicit to Wilson’s theorem considered in Section 3.4
(http://oceis.org/A007540):

Z( ) 'il(n — 1 —d)! = —1 (mod n?)

n—1 ’I’L2 ) . )
‘ ( ) >(n2 —n)tx (1)1 (p - 1)n=t=t = —1 (mod n?)

=(n—-1)! (mod n?)

553 (55 (MO0 - 1=k n)mit) = -1 (mod 1),

s=0i=0v=0 \k=0 m=0

The results providing the new congruence properties for the a-factorial functions modulo the in-
tegers p, and pa’ for some 0 < i < p, expanded in Section 3.2 also lead to alternate phrasings of
the necessary and sufficient conditions on the primality of several notable subsequences of the odd
positive integers n > 3 [11, cf. §6.4].

2.5. Expansions of Congruences for the a-factorial Functions and Related Sequences

2.5.1. Expansions of Other New Congruences for the Double and Triple Factorial
Functions

A few representative examples of the new congruences for the double and triple factorial functions
obtained from the statements of Corollary 1 given in Section 3 also include the following particular
expansions for integers p1,ps > 2, and where 0 < s < p; and 0 < ¢t < py assume some prescribed
values over the non-negative integers (see the computations contained in [13]):

(2n — 1) = Z (pil>2“( 2)H(L_p) (L) . (mod p;2°)

=0

i (pzl>(_ )n2(s+1)‘( +n— p1) (_ —n+z) » (mod p;2°)

> (7)) ), B, o )

=0

(3n—1)!
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= Z (pi) (_3)n3(t+1)i (% 4n— p2)i (% —n+ i)n_i (mod p23t)
i=0
(Bn-—2)Mm=3" (p;) 37 (=3)U (2 —py). (3),, . (mod p»3")
i=0
= Z (p;) (—3)”3““” (% +n— pg)i (% —n+ i)nii (mod p»3").

I
o

K2

2.5.2. Semi-polynomial Congruences for Double Factorial Functions and the Central
Binomial Coefficients

The integer congruences satisfied by the double factorial function, (2n — 1)!!, and the Pochhammer

symbol cases, 2" X (%)n, expanded in Section 3.5 provide the next variants of the polynomial

congruences for the central binomial coefficients, (2:) = 2" x (2n — H)!!/n!, reduced modulo the
respective integer multiples of 2n + 1 and the polynomial powers, n?, for fixed integers p > 2 in the
following equations (http://oeis.org/A000984) (see the computations in [13])!:

<2n) = 2": (%iﬂ)(*mi (3 + Zz)i(%)n_i X %ﬂ (mod 2n + 1)

n .
i=0 mod2z+1 9 z:i—n

<2n) = { Zio (Izp) (QZ;%) (3 —aP), x %'_1)' (mod nP).

n
mod 2P %  x:i—n

3. Finite Difference Equations for Generalized Factorial Functions and Applications

The rationality of the convergent functions, Convy (o, R; 2), in z for all h suggests new forms of
h-order finite difference equations with respect to h, a, and R satisfied by the product sequences,
pn(a, R), when o and R correspond to fixed parameters independent of the sequence indices n. In
particular, the rationality of the h*" convergent functions immediately implies the first two results
stated in Proposition 1 above, which also provides both forms of the congruence properties stated
in (10b) modulo odd and even prime integers h > 2 [7, §2.3] [5, §7.2].

When the initially indeterminate parameter, R, assumes an implicit dependence on the sequence
index, n, the results phrased by the previous equations, somewhat counter-intuitively, do not imme-
diately imply difference equations satisfied between only the generalized product sequences, either
exactly, or modulo the prescribed choices of h > 2 (¢f. (13) and Example 2 on page 11). The
new formulas connecting the generalized product sequences, p, (a, Bn + ), resulting from (10b)
and (10c) in these cases are, however, reminiscent of the relations satisfied between the generalized
Stirling polynomial and convolution polynomial sequences expanded in [12] and [5, ¢f. §6.2].

IThe unconventional notation for computing the underlined polynomial mod operations in the next equations
is defined by the footnote on page 28.
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3.1. Proof of the Key Proposition

Proof of (10a). Since the h'" convergent functions, Convy, («, R; z), are rational for all h > 2, we ob-
tain the next h-order finite difference equation exactly generating the coefficients, [2"] Convy, (o, R; z),
from (6) and (7) above when n > 0 given by [7, §2.3]

k=1
+ Chm(o, R) [ >n > 15+ [n = 0],

where Convy, (o, R; z) exactly enumerates the sequence of p,(a, R) for 0 < n < h and where
Cpn(a, R) = 0 for all n. Thus we see that the previous equation implies both formulas in (10a). O

Proof of (10b) and (10c). We will prove the first statement in the two special cases of « := +1,+2
which we explicitly employ in our applications given in the subsections below. The method we use
easily generalizes to further cases of |a| > 3, but we only conjecture that the formulas hold for these
subsequent special values of a. We begin by noticing that since h is odd or h = 2, we have that
h| (Z) for all 1 < k < h where (8) = (Z) = 1. So it suffices to evaluate the sum only for the indices
k corresponding to these two corner cases. If n < h, then the sum is trivially exactly equal to the
product function, p,(«, R). Next, we let R := 8n + v and suppose that n > h in order to evaluate
the terms in the sum at both indices k := 0, h where the binomial coefficient (Z) #0 (mod h) and
as follows:

RHS(n) = pu(a, R) + (—a)"pp(~a, R+ (h — 1)) X pu_n(a, R)

h—1 —h—

=pu(e, R) =" x [[(R+ (h = o= (h -1 - j)a) H (R+(n—h—1-j)a)
j=0 3=0
h—1 n—h—1

Epn(a,R)—ath(R—I—]a X H (R+(n—1—ja) (mod h)
=0 =0

=pu(a,R) —a" x (R+(n—1)a) - (R+ha) x (R+ (h—1)a)---R

= (1 70[h)pn(a,R).

In both cases of o = %1, 2, we easily see that when n > h the respective a-factorial function has
a factor of h as h|n!, (2n)!!, (2n — 1)!!, which implies that both of p,(a, R), (1 — a®)p,(a, R) = 0
(mod h). The second formula in (10b) is a rearrangement of the inner terms of the first formula.
The third formula in (10c) also follows easily from the first formula modulo hat. |

3.2. Combinatorial Identities for the Double Factorial Function and Finite Sums
Involving the a-factorial Functions

The double factorial function, (2n — 1)!!, satisfies a number of known expansions through the finite
sum identities summarized in [4, 1]. For example, when n > 1, the double factorial function is
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generated by the expansion of finite sums of the form [1, §4.1],

(2n_1)”:kZo (kzl)@kj—1)!!(2n—2k—3)!!. (13)

The particular combinatorial identity for the double factorial function expanded in the form of
equation (13) above is remarkably similar to the statement of the second sum in (10a) satisfied by the
more general product function cases, p, (o, Ro), generating the a-factorial functions, (an —1)!(,),
when (n, ag, Rp) :— (n, o, — 1), (n, —a, an — 1).

Example 2 (Exact Finite Sums Involving the a-Factorial Functions). More generally, if we
assume that a > 2 is integer-valued, and proceed to expand these cases of the a-factorial functions
according to the expansions from (10a) above, we readily see that [5, ¢f. §5.5]

=5 5 (e
x (a(k +1) = Dlgy(aln —k — 1) — 1)l
1 1 -1
i G)

X(Oz(k+1)*1) (a)( (nfkfl) 1) H(a)-

=

M

)—(k+1) (5 - “)k+1

X

n—1
n—1
(an = 1)\ Z<k+1> A
=0

_ (—a)*tt
—(k+1) T (a(k+1)=Dl)
functions, (an —1)!(4), by the Pochhammer symbol correspond to the results given in [16]. The
Pochhammer symbol identities cited in [16] provide other related simplifications of the terms in

these sums.

We note the simplification (l) where the expansions of the a-factorial

The first sum above combined with the expansions of the Pochhammer symbols, (£z),,, given
n [11, Lemma 12], and the form of Vandermonde-convolution-like identities restated in (7) also
lead to the following pair of double sum identities for the a-factorial functions when a,n > 2 are
integer-valued:

(an - 1) (o) = ) (Z;i) (kj.l)(—l)kak-i_l_i (Oéi - l)l(a) (a(n -1- k;) - 1) (a)X

The construction of further analogues for generalized variants of the finite summations and more
well-known combinatorial identities satisfied by the double factorial function cases when «a := 2
from the references is suggested as a topic for future investigation in Section 4.2.2.
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Corollary 1 (Congruences for the a-Factorial Functions). If we let o = £1,+2, 0 < d < a,
and suppose that h is odd or prime with 0 <t < h, we can generalize the congruence results for the
double and triple factorial functions from the introduction according to the next equations:

(an =ty = 3 (3 oy (@ ), (259, (mod ha')

>

(§)ara (@ vt =), (=), (mod ha)

1 3

(om - d)'(a)

=0

Proof. By Lemma 10 stated in [11, §6.1], we know that for « € Z™ and any integers 0 < t < «,
we have that (an — d)!(q) = pn(o, @ — d) and that (an —d)! ) = pn(—a,an —d). Then if we let
Bn + v = R in (10c), we can use the two results from the lemma in combination with the result
that

Ny
pulen B) =37 @ o TR (L= ) (2),,, (mod hat),
k=0
to easily prove our two formulas. O

3.3. Multiple Summation Identities and Finite-degree Polynomial Expansions of the
Generalized Product Sequences in n

We are primarily concerned with cases of generalized factorial-related sequences formed by the
products, p,(a, R,), when the parameter R,, := On + 7 depends linearly on n for some 3,7 € Q
(not both zero). Strictly speaking, once we evaluate the indeterminate, R, as a function of n in
these cases of the generalized product sequences, p,(«, R), the corresponding generating functions
over the coeflicients enumerated by the approximate convergent function series no longer correspond
to predictably rational functions of z. We may, however, still prefer to work with these sequences
formulated as finite-degree polynomials in n through a few useful forms of the next multiple sums
expanded below, which are similar to the forms of the identities given in (8) of the introduction for
the coefficients of the numerator convergent functions.

3.3.1. Generalized Polynomial Expansions and Multiple Sum Identities With Applica-
tions to Prime Congruences

Proposition 2. For integersn,s,n—s > 1 and fized o, 3,y € Q, the following exact finite, multiple
sum identities provide particular polynomial expansions in n satisfied by the gemeralized factorial
function cases:

T Y 1 |0 A o

0<m<k<n—s
0<r<p<n-—s

X (_1)p—r—lan—s—m,—tﬁr,ym—r(a + ﬁ)p—rx
X (s 4+ 1) =)= P77 5 pp
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P~ ] N L s e

0<m,i<k<n—s
(_1)U7T+I€+1

% k' anfsfmftﬁr,ymfr(a + 6)P*T X
X (s + 1) — )= P x gpmutipu
+0<n<sl;.

Proof Sketch. The forms of these expansions for the generalized factorial function sequence variants
stated in (14) are provided by this proposition without citing the complete details to a somewhat
tedious, and unnecessary, proof derived from the well-known polynomial expansions of the products,
pn(o, R) = " (R/a), by the Stirling number triangles. More concretely, for n,k > 0 and fixed
a, B,7, p,ng € Q, the following particular expansions suffice to show enough of the detail needed
to more carefully prove each of the multiple sum identities cited in (14) starting from the first
statements provided in (10a):

e

prlor, B+ +p) = o - (M)
k

Zk: r,ﬂ " (Bt + )"

m=0

B ko (5_: m (m> oG (ot ﬁno>’”"’> x(n-nol. O

b

One immediate consequence of Proposition 2 phrases the form of the next multiple sums that
exactly generate the single factorial functions, (n — s)!, modulo any prescribed integers h > 2. The
simplified triple sum expansions of interest in Example 4 below correspond to a straightforward
simplification of the more general multiple finite quintuple 5-sums and 6-sum identities that exactly
enumerate the functions, p,_s(a, Bn + 7), when (s,a,8,7v) := (1,—1,1,0). In particular, these
results lead to the following finite, triple sum expansions of the single factorial function cases
implicit to the statements of both Wilson’s theorem and Clement’s theorem from the introduction
and which are considered as examples in the next subsection [6, cf. §7]:

(n—1)! = zn: 3 (n? k) {n_ 1= k} {kkt} ()" P | x (n—1)P  (15)

p=0 \0<t<k<n p

S| GELLE e e

0<k<n
0<t<n—1—Fk

:pio Z (n?k) [n;l;k} {kkt}(_l)pﬂ X (n—1)""P.

0<t<k<n
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The third exact triple sum identity given in (15) is further expanded through the formula of Riordan
cited in [3, p. 173] and [5, ¢f. Ex. 5.65, p. 534] in the following form:

n—1

n— n—1 n—1—-k __ n—1 k .
" Z ( k )(k+1)!><n _Z( k )(”—k)!Xn. (A Formula of Riordan)

0<k<n k=0

A couple of the characteristic examples of these polynomial expansions in n by the Stirling numbers
of the first kind in (15) are considered by Example 4 in the next section to illustrate the notable
special cases of Wilson theorem and Clement’s theorem modulo some as yet unspecified odd prime,
n > 3.

For comparison, the next several equations provide related forms of finite, double and triple sum
identities for the double factorial function, (2n — 1)!!:

k—1 ,
2n -1l = Z [j B 1] "I (=1)"F (1 —n), , (Double Factorial Triple Sums)
1<j<k<n

s [P e

1<j<k<n
0<m<n—k

@n-1= Y (mift4>ﬁymhak—nu

1<j<k<n

s o

1<j<k<n
0<m<n—k

- 2 Gl e

1<j<k<n
0<m<n—k

The expansions of the double factorial function in the previous equations are obtained from the
lemma in (14) applied to the known double sum identities involving the Stirling numbers of the
first kind given in [1, §6].

3.3.2. Expansions of Parameterized Congruences Involving the Single Factorial
Function

Definition 3. We define the next parameterized congruence variants, denoted by F,, »(zs, Tr, Tx),
corresponding to the first triple sum identity expanded in (15) for some application-dependent,
prescribed functions, N, »(n) and M,,(n), and where the formal variables {«p, 21, zx}, index the
terms in each individual sum over the respective variables, p, ¢, and k.

3 3 ) K2

0<t<k<n
0<p<n

x (=1)"717P x N, ,(n) x {aBalak} (mod M,,(n))
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Notice that when N,, ,(n) := (n—1)P, the function F, ,, (1,1, 1) exactly generates the single factorial
function, (n — 1)!, modulo any specific choice of the function, M, (n), depending on n.

Example 4 (Wilson’s Theorem and Clement’s Theorem on Twin Primes). The next
specialized forms of the parameters implicit to the congruence in (16) of the previous definition are
chosen as follows to form another restatement of Wilson’s theorem, given immediately below:

(w, Ny p(n), My,(n)) +— (WT, (=1)",n). (Wilson Parameter Definitions)
Then we see that
n > 2 prime if and only if Fiyr,(1,1,1) = -1 (mod My, (n)). (Wilson’s Theorem)

The special case of these parameterized expansions of the congruence variants defined by (16)
corresponding to the classical congruence-based characterization of the twin primes
(http://oeis.org/A001359, http://oeis.org/A001097) formulated in the statement of Clement’s
theorem is of particular interest in continuing the discussion from Section 2.4. When k := 2 in the
first congruence result given by (17) of Lemma 1 below, the parameters in (16) are formed as the
particular expansions

(w, Ny p(n), My,(n)) — (CT, (721)17 24+ (1—=37)-n),n(n+ 2)) . (Clement Parameters)

The corresponding expansion of this alternate formulation of Clement’s theorem initially stated as
in Section 2.4.1 of the introduction, then results in the restatement of this result given in following
form [9, §4.3]:

n,n+ 2 prime if and only if 4 Fop ,(1,1,1) +44+n =0 (mod Mcr(n)).
(Clement’s Theorem)

3.3.3. Conjectures From the Formal Polynomial Computations in the Summary
Notebook

Numerical computations with Mathematica’s PolynomialMod function suggest several noteworthy
properties satisfied by the trivariate polynomial sequences, Fyr n(Zp, Tr, Tk ), defined by (16) when
n is prime, particularly as formed in the cases taken over the following polynomial configurations
of the three formal variables, zp, x+, and zy:

(xP»xTaxK> € {(x, 1, 1)7 (]-a z, 1)7 (1a 17x)} :

In particular, these computations suggest the following properties satisfied by these sums for in-
tegers n > 2 where the coefficients of the functions, Fyr n(Zp, Zr, k) and For p(Te, 21, 2x), are
computed termwise with respect to the formal variables, {zp, 21, zx }, modulo each Myr(n) :— n
and Mo (n) :— n(n + 2):

(1) Fwrn(ze,1,1) =n —1 (mod n) when n is prime where deg,  { Fyyrn(2p,1,1) (mod n)} >0
when n is composite;
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(2) Fuwrn(l,1,z¢) = (n—1) 227! [n prime]; (mod n); and

(3) Fyrn(lzr,1) = ZZ:OQ x!. (mod n) when n is prime, and where

deg, {Fwr,n(1,1,2:) (mod n)} <n —2 when n is composite.

(4) For fixed 0 < p < n, the outer sums in the definition of (16), each implicitly indexed by
powers of the formal variable z, in the parameterized congruence expansions defined above,
yield the Stirling number terms given by the coefficients

[22) o n (e, 1,1) = Nop(n) x (=1)""H(p+ 1) [p + J '

Moreover, for any fixed lower index, p+1 > 1, the Stirling number terms resulting from these
sums are related to factorial multiples of the r-order harmonic number sequences expanded
by the properties stated in Section 3.3.4 below when r € ZT [12, ¢f. §4.3].

(5) One other noteworthy property computationally verified for the sums, For »(2p, 1, Tk ), mod-
ulo each prescribed Mcr(n) := n(n+2) for the first several cases of the integers n > 3, suggests
that whenever n is prime and n + 2 is composite we have that

Forn(Ll, o) =n+4+ (n* —4)z2 " (mod n(n +2)),
where deg,  {Fcrn(1,1,2x) (mod n(n +2))} > 0 when n is prime.

The computations in the attached computational summary notebook provide several specific exam-
ples of the properties suggested by these configurations of the special congruence polynomials for
these cases [13]. See the summary notebook file in [13] for more detailed calculations of these, and
other, formal polynomial congruence properties.

There are numerous additional examples of prime-related congruences that are also easily adapted
by extending the procedure for the classical cases given above. A couple of related approaches to
congruence-based primality conditions for prime pairs formulated through the triple sum expansions
phrased in Example 4 above are provided by the applications given in the next examples of the
prime-related tuples highlighted in Section 3.4.

Lemma 1 (Congruences for Powers Modulo Double and Triple Integer Products). For
integers p > 0, n > 1, and any fixed 7 > k > 1, the following congruence properties hold:

—1)?
(n—1)P = %(kﬂr(l — (k+1)?)-n) (mod n(n + k)) (17a)
(n—1)P = (—1)P (<"+’3?,§””> + Bl D)? o a(nt G ) (mod n(n + k)(n+ 7). (17b)

Proof. First, notice that a naive expansion by repeated appeals to the binomial theorem yields the
next exact expansions of the fixed powers of (n — 1)P:

p

(=177 = (<17 + 3 () (G- (~1P - (k)

s=1
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(7)o o x i
=0 (mod n(n+ k)
o o T i T R R O e O e (e e

0 (mod n(n+k))
e (p) (‘9 - 1) ( ) (n+K) - (n+5) X (=1~ (—k)* "1 (k — §)" "t + )1,

=0 (mod n(n+k),n(n+k)(n+j))

Each of the stated congruences are then easily obtained by summing the non-trivial remainder terms
modulo the cases of the integer double products, n(n + k), and the triple products, n(n+k)(n+7),
respectively. O

Example 5 (Prime Triples and Sexy Prime Triplets). A special case of the generalized
congruences results for prime k-tuples, obtained by induction from Wilson’s theorem in the supple-
mentary results computed in [13], implies the next statement characterizing odd integer triplets, or
3-tuples, of the form (n,n + d2,n + ds3), for some n > 3 and some prescribed, application-specific
choices of the even integer-valued parameters, d3 > dy > 2:

(n,n + do,n + d3) € P? if and only if (Wilson’s Theorem for Prime Triples)
I+m=-1N04+n+de—1))(1+(n+ds—1)!)=0 (mod n(n+ds)(n+ds)).

A partial characterization of the sexy prime triplets, or prime-valued odd integer triples of the
form, (n,n + 6,n + 12), defined by convention so that n + 18 is composite, then occurs whenever
(http://oeis.org/A046118, http://oeis.org/A046124)

Pspr1(n)(n — 1)1+ Pspra(n)(n — 1)? + Psprs(n)(n —1)1¥ = -1 (mod n(n + 6)(n + 12)),

where the three polynomials, Pspr ;(n) for 4 := 1,2, 3, in the previous equation are expanded by the
definitions given in the following equations:
PSPT,l(n) =1 + (n)ﬁ + (n)12
PSPT,Z('"») =
PspT,3(n) =

Let the congruence parameters in (16) corresponding to the sexy prime triplet congruence expan-
sions of the single factorial function powers from the previous equations be defined as follows:

(w, Ny p(n), My, (n)) (Sexy Prime Triplet Congruence Parameters)
s (SPT CU% (0 4 6)(n + 12) — 2n(n + 12) - 77 + n(n + 6) - 137) ,n(n + 6)(n + 12)).
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We similarly see that the elements of an odd integer triple of the form (n,n + 6,n + 12), are all
prime whenever n > 3 satisfies the next divisibility requirement modulo the integer triple products,
n(n +6)(n + 12).

Z Pyeri(n) X Foprn(1,1, 1)'=-1 (mod Mspr(n)) (Sexy Prime Triplets)
1<i<3

The other notable special case triples of interest in the print references, and in the additional poly-
nomial congruence cases computed in the supplementary reference data [13], include applications
to the prime 3-tuples of the forms (p + d1,p + da, p + d3) for (dy,ds,d3) € {(0,2,6),(0,4,6)} [6, cf.
§1.4], [9, §4.4] (http://oeis.org/A022004, http://oeis.org/A022005).

3.3.4. Remarks on Expansions of the Stirling Number Triangles by the r-order
Harmonic Numbers

The divisibility of the Stirling numbers of the first kind in (14) and in (15) is tied to well-
known expansions of the triangle involving the generalized r-order harmonic numbers, H,(f) =
vy k™", for integer-order r > 1 [5, §6] [3, cf. §5.7] [6, cf. §7-8]. The applications cited in [12,
§4.3] and [5, §6.3] provide statements of the following established special case identities for these
coefficients (http://oeis.org/A001008, http://oeis.org/A002805, http://oeis.org/A00T406,
http://oeis.org/A007407, http://oeis.org/A007408, http://oeis.org/A007409):

1]
" ;_ =n!-H, (Harmonic Number Expansions of the Stirling Numbers)
n+1]  nl
)2 e
" Z . %! (Hf; —3H,H® + 2H,§3>)
e O e e pec) ) 3 _ gH®

o | =gy (Hi-6HZHD +3 (Hn ) +8H, H® —6HW ) . (18)

In [5, p. 554, Ex. 6.51] a related precise statement of the necessary condition on the primality of
odd integers p > 3 implied by Wolstenholme’s theorem is given in the following form [6, ¢f. §7.8]:

p > 3 prime = (Stirling Number Variant of Wolstenholme’s Theorem)
2 2 _
P I pfE] =[] 4+ 22

The expansions given in the next remarks of Section 3.3.5 suggest similar expansions of congruences
involving the a-factorial functions through more general cases r-order harmonic number sequences,
such as the sequence variants, H,(LT()X, defined in the next subsection of the article.

3.3.5. More General Expansions of the New Congruence Results by Multiple Factorial
Functions and Generalized Harmonic Number Sequences

The noted relations of the divisibility of the Stirling numbers of the first kind to the r-order harmonic
number sequences expanded by the special cases from (18) are generalized to the a-factorial function
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coefficient cases through the following forms of the exponential generating functions given in [11]
[12, cf. §3.3]:

17 2" (1—az) Ve r\"
Z {njL ] - 7( 0z) x Log ( ) ) (19)
= m+1],n! m! - a™ 1—oaz

The special cases of these coefficients generated by the previous equation when m := 1,2 are then
expanded by the sums involving the r-order harmonic number sequences in the following equations:

SERR VRS

n+1] 1 o2 &/1-41
" (e )
a’™ k=0

Identities providing expansions of the generalized a-factorial triangles from [12] at other specific
cases of the lower indices m > 3 that involve the slightly generalized cases of the ordinary -
order harmonic number sequences, H&r%, defined by the next equation are expanded by related
constructions:

H((le = Z m, n>1a,r>0. (Generalized Harmonic Number Definitions)

For comparison with the Stirling number identities noted in (18) above, the first few cases of the
coefficient identities in (20) are expanded explicitly by these more general integer-order harmonic
number sequence cases in the following equations:

r 7 l—a
n+1 i:an<n+TQ)XH£12!

| 2 n! n
(n + 1]

4«
n+1—76¥ 2
=S () < () - m)

o
I | 2
r B n 11—«
e ) () s o).

L BN

When o := 2, we have a relation between the sequences, H,% and the r-order harmonic numbers
of the form HQ(TT)L = H2(T) —27"H), which yields particular coefficient expansions for the double
factorial functions involved in stating several of the congruence results from the examples given
below. The expansions of the prime-related congruences involving the double factorial function cited
in Section 3.5 above also suggest additional applications to finding integer congruence properties
and necessary conditions involving these harmonic number sequences related to other more general
forms of these expansions for prime pairs and prime-related subsequences (see also Section 3.6).
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3.4. Expansions of Several New Forms of Prime-related Congruences and Other Prime
Subsequence Identities

3.4.1. Statements of Several New Results Providing Finite Sum Expansions of the
Single Factorial Function Modulo Fixed Integers

The second cases of the generalized factorial function congruences in (10b) are of particular assis-
tance in expanding several of the non-trivial results given in Section 3.3.2 below when h—(n—s) > 1.
The results related to the double factorial functions and the central binomial coefficients expanded
through the congruences in Section 3.5 employ the second cases of (10b) and (10c) stated in Propo-
sition 1. The next few results stated in (21a) and (21b) are provided as lemmas needed to state
many of the congruence results for the prime-related sequence cases given as examples in this section
and in Section 3.6.

Lemma 2 (Congruences for the Single Factorial Function). For natural numbers, n,n—s >
0, the single factorial function, (n — s)!, satisfies the following congruences whenever h > 2 is fized
(or when h corresponds to some fized function with an implicit dependence on the sequence index

n),
(n—9s)!=Chns(1,1) (mod h) (21a)

I
7N /\D‘ 7N
. o~ .
N— N— N——
T

=
Py
3

|
V)

|
=

=0
= h Z_ﬁ_l)i!(nsi)!
=\ i
(n—s)!=Chpn-s(—1,n—25) (mod h) (21Db)

I
< 3
1)
(=] w
TN
S~y
N—
—~
3
+
—_
|
V2l
|
>
:_/
X
—
SN~—"
3
.
L
—
3
|
V2l
=
3
|
»
!

_nZOC‘) (";S> (h_“js_l)(nmx (n—s— i

The right-hand-side terms, Ch, n—s(a, R), in the previous two equations correspond to the auziliary
convergent function sequences implicitly defined by (7), and the corresponding multiple sum expan-
sions stated in (8), whose expansions are highlighted by the listings given in the tables from [11,

§9/.

Proof. Since n! = p, (—1,n) and n! = p,, (1,1) for all n > 1, the identities in (10b) of Proposition
1 imply the pair of congruences stated in each of (21a) and (21b) modulo any fixed, prescribed
setting of the integer-valued h > 2. The expansions of the remaining sums follow first from (7),
and then from the results stated in Lemma 12 from [11] applied to each of the expansions of these
first two sums. O
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Corollary 2 (Special Cases). Ifn,n—s,d,an+r € Z* are selected so that n+d,an+r > n—s,
the coefficient identities for the sequences, pn—s (1,1) = [2"*] FPp14 (1,1;2) (mod n+d,an+ 1),
stated in (7c) and (8) provide that

(n—s)! 2—: <”Td> (—1)%il x (n — s — 9)! (mod 1 + d) (22)

. 1
=0

(n— s)! ni (‘m ,”) (—(an+7)), (n—s —)! (mod an +r).

]
=0

Proof. The expansions of the congruences for the single factorial function provided by the lemmas
stated in (21a) follow as immediate consequences of the results in Proposition 1. The previous
equations then correspond to the particular cases of these results when h :— n+d and h :— an+7r
respectively in the equations stated above. O

The results expanded through the symbolic computations with these sums obtained from Carsten
Schneider’s  http://www.risc. jku.at/research/combinat/software/Sigma/index.phpSigma
package for Mathematica outlined in Section 3.4.3 provide additional non-trivial forms of the prime-
related congruences involving the single factorial function cases defined by the previous two results.

3.4.2. Examples: Consequences of Wilson’s Theorem

Example 6 (Expansions of Variants of Wilson’s theorem). The previous identities lead
to additional examples phrasing congruences equivalent to the primality condition in Wilson’s
theorem involving products of the single factorial functions, n! and (n 4 1)!, modulo some odd
integer p := 2n + 1 of unspecified primality to be determined by an application of these results.
For example, we can prove that for n > 1, an odd integer p := 2n + 1 is prime if and only if [6, cf.

§8.91%,

R;Z)

(—1)( (mod 2n + 1) (23)
(1)t (mod 2n + 1).

217l (n 4 1)!
(n))?

The first congruence in (23) yields the following additional forms of necessary and sufficient condi-
tions on the primality of the odd integers, p := 2n + 1, resulting from Wilson’s theorem:

n+s 2
1 2n + 1 . , ,
e | T X (1) Cavitnss—in) = (2000022 mod2n 1) (20)
s€{0,1} =0

2

(—1)n+t (mod 2n + 1).

(é (an 1)2(—1)%’!(n - i)!)

Example 7 (Congruences for Primes of the Form n? + 1). If we further seek to determine
new properties of the odd primes of the form p := n? + 1 > 5, obtained from adaptations of

2The first equation restates a result proved by Szénté in 2005 given on  the
http://mathworld.wolfram.com/WilsonsTheorem.html MathWorld website.
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the new forms given by these sums, the second consequence of Wilson’s theorem provided in (23)
D)]

above leads to an analogous requirement expanded in the form of the next equations [9, §3.4(
(http://oeis.org/A002496):

2
n? +1 prime if and only if (Z °/2 (”2:'1) (—(n*+ 1))i (%(n%zi))!) = (—1)”2/2+1 (mod n? +1)

if and only if (Z /2 (nz;rl) (F":*Q)i! (%(nz—Qi))Q

2 2
(=" /2+1 (mod n? + 1).

For comparison with the previous two congruences, the first classical statement of Wilson’s theorem
stated as in the introduction is paired with the next expansions of the fourth and fifth multiple
sums stated in (8) to show that an odd integer p > 5 of the form p := n? + 1 is prime for some even
n > 2 whenever

S IO DI D (<), (12 1) = ~Lmod n® +1)

0<m<k<n? Ch,k(a,R) where hi—n2+41, k.an, a:——1, R:—n?2 in (8d)
0<v<i<s<n?

S (NI T il = <1 (mod w? +1);

0<i<n? Ch,n(a,R) where hi—sn2+1, ni—n2, a1, Ri—1 in (8e)
0<m<k<n?
0<t<s<n?

These congruences are straightforward to adapt to form related results characterizing subsequences
of primes of the form p := an? 4 bn + ¢ for some fixed constants a, b, c € Z satisfying the constraints
given in [6, §2.8] at natural numbers n > 1.

Example 8 (Congruences for the Wilson Primes). The sequence of Wilson primes denotes
the subsequence odd primes n such that the Wilson quotient, W, (n) = (("_i&, is divis-
ible by n, or equivalently the sequence of odd integers n > 3 with the divisibility property of
the single factorial function, (n — 1)!, modulo n? defined in the next equation [9, §5.4] [6, §6.6]
(http://oeis.org/A007619, http://oeis.org/A007540).

Py, == {n > 3:0%|(n = I +1} 222

(5,13,567,...). (Wilson Primes)
A few additional expansions of congruences characterizing the Wilson primes correspond to the
imposing the following additional equivalent requirements on the divisibility of the single factorial
function (modulo n) in Wilson’s theorem:

n—1 o2\ 2
Z <n ) (=1)%l(n—1—1i)=-1 (mod n?) (Wilson Prime Congruences)
i
i=0
an n— 1(171) = (n—1)! (mod n?2)
n—1 _ n 1
Z( )( )2'(n1i)!1 (mod n?)

=0

(n—1)! (mod n?)
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n-l n2 . . .
Z ( _ )(n2 —n)ix (=) - )=t = (mod n?).

7
=0

Cn2,n—1(_17n_1) = (n—1)! (mod n?2)

The congruences in the previous equation are verified numerically in [13] to hold for the first few
hundred primes, p,, only when p, € {5,13,563}. The third and fourth multiple sum expansions
of the coefficients, C,,2 ,,_1(—1,n — 1), given in (8) similarly provide that an odd integer n > 3 is
a Wilson prime if and only if either of the following congruences holds modulo the integer squares

n?,

T2 (2 D H =0 i) = 1 (mod )

$=01i=0 \k=0m=0

Cn2pn—1(—1,n—1) in (8c¢)
55 (55 OO D0 st )= -1 (o )

Cp2pn_1(=1,n—1) in (8d)

Example 9 (Congruences for Special Prime Pair Sequences). The constructions of the
new results expanded above are combined with the known congruences established in [8, §3, §5]
to obtain the alternate necessary and sufficient conditions for the twin prime pairs stated in (12)
of the introduction (http://oeis.org/A001359, http://oeis.org/A001097). The results in the
previous reference also provide analogous expansions of the congruence statements corresponding
to characterizations of the cousin prime and sexy prime pairs expanded in the following equations
(http://oeis.org/A023200, http://oeis.org/A023201):

2n +1,2n + 5 odd primes (Cousin Prime Pairs)

n

2
if and only if 36 (Z ((27l+1)1.(2”+5))Q(fl)ii!(n - z)‘)

+ (-1 _3 (29 — 14n) =0 (mod (2n+1)(2n+5)),
if and only if 96 (Zo ((2"+1)(2”+5)) (—1)%!(2n — z)')
+4é;+119 =0 (mod (2n+1)(2n+5)),
2n +1,2n + 7 odd primes
if and only if 1350 (f}o (eI 2“+7>) (—1)%!(n — i)!>2 (Sexy Prime Pairs)
+ (—1;"(57871 +1639) =0 (mod (2n+1)(2n+7)),

2n
if and only if 4320 (Z ((2”“);2“”))2(—1)%!(271 - i)!)
=0
+ 1438n + 5039 =0 (mod (2n 4 1)(2n+ 7).
(25)
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The multiple sum expansions of the single factorial functions in the congruences given in the previous
two examples also yield similar restatements of the pair of congruences in (12) from Section 2.4.1
providing that for some n > 1, the odd integers, (p1,p2) := (2n+1,2n+3), are both prime whenever
either of the following divisibility conditions hold:

2 | S (e (@) () [F] o1 ek g 1

K2

C(2n+1)(2n+3),n(717n) in (86)
+(=1)"(10n+7)=0 (mod (2n+1)(2n + 3))

4 Z ((2n+1)}€(2n+3)) ((2n+1)(2n+3)+v) (z)( )[ ]{ } s itvtkj) (QH)M(QTL + 1)m—s

0<v<i<s<2n

0<m<k<2n

Can+1)(2n+3),2n(—1,2n) in (8d)
+(2n+5)=0 (mod (2n + 1)(2n + 3)).

The treatment of the integer congruence identities involved in these few notable example cases from
Example 4, in Example 5, and in the last several examples from the remarks above, is by no means
exhaustive, but serves to demonstrate the utility of this approach in formulating several new forms
of non-trivial prime number results with many notable applications.

3.4.3. Computations of symbolic sums with Schneider’s Sigma package for Mathemat-
ica

Example 10 (Expansions of the First Sum from Lemma 2). The working summary notebook
attached to the article [13] includes computations with the http://www.ris.jku.at/research/
combinat/software/Sigma/index.phpSigma package in Mathematica that yield additional forms
of the identities expanded in (22), (23), and (24), for the single factorial function, (n — s)!, when
s := 0. For example, alternate variants of the identity for the first sum in (22) are expanded as,

i(nw) (n+d)); (n —1)! (mod n + d),
(n+d>< o 1)i!(n—i)! (mod n + d),

(””) (—1)iit(n — i) (mod n + d),

s
Il

M=M= 1

Il
o

7

o ea (e B (1) GG

i=1
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" ik d\? il Do
= (—1)"d? x Z ( J;d> x 4(5?:02" (26)

= SLd(?’l)

The first special cases of the sums, Sy 4(n), defined in the last equation are expanded in terms of
the first-order harmonic numbers for integer-valued cases of d > 1 as follows:

Sii(n) = (=1)"(2),, x Hny1
= (=D"(n+ 1! x Hppa
S12(n) = (=1)"(n+2)! x ((n + 3)Hny2 — 2(n + 2))
3 N (2n3 +8n% +Tn — 1)
=g X (DT, (H” CESCT 2)(n—|—3)>
Sus(n) = 5 X (1) (0 4)0 % (4 5)Hs — 3(n + 3)
10 n (3n* + 24n3 + 60n% + 46n — 1)
T3 X (=1)"(6),, (Hn B (n+1)(n+2)(n+3)(n+5) )
S1a(n) = 1 (=1)™(n+4)! x (3(n+5)(n+6)(n+ 7)Hyya — (n+4)(11n* + 118n + 327))

35 (11n +260n542498n°+12404n"+33329n> +45548n2 4244261 — 108)
= X (_1)n (S)n x <3Hn (n+1)(n+2)(n+3)(n+4)(n+5)(n+6) (n+7) )

More generally, we can provide a somewhat intricate proof (omitted here) of another expansion of the
last sum in (26) in terms of the first-order harmonic numbers given by (http://oeis.org/A001008,
http://oeis.org/A002805)

nl=(—1)"(2d), |1+ g(if)

When the parameter d :— d,, in the previous expansions of the sums, S; 4(n), depends linearly, or
quadratically on n, the harmonic-number-based identities expanding these congruence forms yield
the forms of the next examples considered in this subsection.

_1\d—i i — 2l
Z ( (zl)— 1)(!(5(—5 — i)?)' [Hn—14d+i — Hayi—1] | (mod n +d).
1<i<d

Example 11 (Expansions of Sums with a Linear Dependence of h on n). Further computa-
tion with the http://www.risc. jku.at/research/combinat/software/Sigma/index.phpSigma
package for Mathematica similarly yields the following alternate form of the second sums in (22)
implicit to the congruence identities stated in (23) and (24) above:

n .
n! = Z (2"“) (—=1)"!(n —1)! (mod 2n + 1), (27a)
(=)™ (3n+1)! 52412 (D3 20 8 1
- 8(n!)? X (8 o Z;( i ) 2-(3i+1)! (11 + T (25D + (2i+1)2>)7 (27b)

_ (=1)*(3n+1)! —1 LAY +1 2!-(3i42) 5, _5;
= )(n(!)2 h-t 16) Z ) (+1): S > (11 +3 - _(2¢8+1) + —(2ii1)2)7

=1
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_ (=1)"(3n+1)! o~ (204126 (10 32
= smnz X (8 - Z;( L) G (17 + Gy~ @ (3i+1))>’ (27¢)

(DGt BrdD(=D" N~ (204128 Gt Dgn g (10 5 1 32 ).

nh)? - 8 x Z;( ) Wﬁis Tt e T Err T G )
The documentation for the http://www.ris.jku.at/research/combinat/software/Sigma/
index.phpSigma package in [14, Ex. 3.3] contains several identities related to the partial harmonic-
number-related expansions of the single factorial function sums given in the next examples, and for
the computations contained in [13].

Example 12 (Expansions of Sums Involving a Quadratic Dependence of i on n). The
second non-square variants of the sums implicit to the congruences providing characterizations of
the twin prime pairs given in (12) of the introduction, and of the cousin and sexy primes expanded
in (25) of the previous subsection, are easily generalized to form related results for other prime
pairs (http://oeis.org/A023202, http://oeis.org/A023203, http://oeis.org/A046133). In
particular, for positive integers d > 1, the special cases of these expansions for the prime pair
sequences considered above lead to more general congruence-based characterizations of the odd
prime pairs, (2n + 1,2n + 1 + 2d), in the form of the following equation for some aq, by, cq € Z and
where the parameter hy := (2n+1)(2n+ 14 2d) > 2n implicit to these sums depends quadratically
on n [8, ¢f. §3, §5].

2n+1,2n + 1 4 2d prime (28)

2n 2
if and only if agq x Z <hd) (=1)%!(2n —i)! +bgn+cq=0 (mod hg)

4 )
=0

= Sn(hd) = (277,)' (mod hd)

For natural numbers h,i,n > 0, let the shorthand for the functions, T} ,, and H}, ;, be defined as in
the next equations.

S, (h) = Z <h> (—1)il(2n — i)! (29)

(W =2j)%(h 41— 2j)?
Thpn = H (2.(2h+12j)(hj)>

Lo (.08, -l
S, aon), T U,
oo h(h+1)(2h —1)  2(h+1)*(2h+1) 2(h+1)
P T (= 1) (h — ) h2h+1—-2)  h(h—1)(h+1—2i)

(h+1)(2h + 1 — 4i)(h — 2i)
(2h + 1 —2i)(h +1 — 2i)(h — i)

Computations  with  the http://wuw.ris.jku.at/research/combinat/software/Sigma/
index.phpSigma package yield the next alternate expansion of the first sum defined in (29) given
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by

n 2
Sn(h) = Z (Qh) (2i)! x ?’“" x Hyi,

¢ hi

=0

where the ratios of the product functions in the previous equation are simplified by the identities
cited in [16] as follows:

—n)? —9h),, (1—h+2)3
Th,n _ (1 h)2n % (1 2h)21 _ ( + Z)Qn—Qz nZz (30)

ThJ B (1 - 2]7’)277, (1 - h’)gz (1 —2h + 2i)2n72i7

The forms of the generalized sums, S, (h), obtained from the special case identity above using the
http://www.risc.jku.at/research/combinat/software/Sigma/index.phpSigma software pack-
age routines are then expanded by the harmonic-number-related sums over the originally fixed
indeterminate parameter h in the following forms:

S, (h) = 2": (hl)Q(2i)!><(l—h+27;)§n72i y (h(h+1)(2h71) 4 2ht1)’(2ht1)

2(h41)
(1—2h+20),, o, (h—1)(h—1)

RZhF1=21) T A=) (h+1=27)

=0
& Bo\2 , (1—h+2n-2i)2, (h+1)(2h+1—4(n—3)) (h—2(n—i
= z;() (2n-0s) (20— 20)! x I—2ht2n—2i), X ((2h+172((n7¢))(hﬁf%%ngi))&ﬂ)z)ﬂ))

The first sum on the right-hand-side of (29) denotes the special prime pair congruence expansions
for the twin, cousin, and sexy prime pairs already defined by the examples cited in the last sections
corresponding to the respective forms of (28) where

{(d, aa,ba, ca) Yo, = {(1,4,2,5), (2,96,48,119), (3,4320, 1438,5039)} ,
and where h — (2n 4 1)(2n 4+ 1 4 2d), as computed for reference in [13].

Remark 13. Note that the binomial coefficient identity, <(§)> = 3(kj[1), given in the exercises
section of [5, p. 535, Ex. 5.67], suggests simplifications, or “reductions” in order of the sums, S, (h),
when h denotes some fixed, implicit application-dependent quadratic function of n obtained by first
expanding the inner terms, (}Z‘), as a (finite) linear combination of binomial coefficient terms whose
upper index corresponds to a linear function of n [13]. The http://www.ris.jku.at/research/
combinat/software/Sigma/index.phpSigma package is able to obtain alternate forms of these
pre-processed finite sums defining the functions, S, (8n + ), for scalar-valued [,~ that generalize
the last two expansions provided above in (27). The summary notebook document prepared with
this manuscript contains additional remarks and examples related to the results in the article. For

2n+1)(2in+2d+1))’ at upper index

example, several specific expansions of the binomial coefficients, ((
inputs varying quadratically on n suggested by the first upper index reduction identity above are
computed as a starting point for simplifying the terms in these sums in [13]. Additional notes
providing documentation and more detailed computational examples will be added to updated

versions of the computational summary document.
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3.5. Expansions of Congruences Involving the Double Factorial Function
3.5.1. Statements of Congruences for the Double Factorial Function

Proposition 3 (Congruences for the Double Factorial Function). Let h > 2 be odd or prime
and suppose that s is an integer satisfying 0 < s < h. We have the following congruences for the
double factorial function, (2n — 1)!:

(2n -1 = i <f;> gnt(s+1)i (3 - h)l (%)n_i (mod 2°h)

O <h) <2n - 2i> el x (3 =), (n—i)! (mod 2°h)

7

I

=\t n—1 gn—i
= Z <};)(—2)n+(s+l)i (% +n— h)i (% _ n)nfi (mod 25h).
i=0

Proof. The coefficient expansion given by the last identity in (10c) provides the alternate forms of
congruences for the double factorial functions, (2n—1)!! = p,, (—2,2n — 1) and 2" (1/2),, = p, (2, 1),
modulo 2° - h stated in the first and third of the previous equations for fixed integers h > 2 and any
integer 0 < s < h. For natural numbers n > 0, the central binomial coefficients satisfy an expansion
by the following identity given in [5, §5.3]:

—1 2 !
(3), = ( 2) x (=1)"n! = ( n) X Z—n (Binomial Coefficient Half-Index Identities)
n n n

The first identity in the proposition together with the previous half-index identity for the binomial
coefficients imply the second congruence stated in the proposition. O

3.5.2. Semi-polynomial Congruences Expanding the Central Binomial Coeflicients

The next polynomial congruences satisfied by the central binomial coefficients modulo integer mul-
tiples of the individual polynomial powers, n?, of n for some fixed p > 1 also provide additional
examples of some of the double-factorial-related phrasings of the expansions of (10b) and (10c)
following from the noted identity given in (7¢) (¢f. Lemma 2 and the computations contained in

[13])%.
(2n> _ 2 en—1) (31)

n n!

Sio ()2 (6 = 27), (1), X 7 (mod nP)
modzP & zxz:i—n

3 In this context, the notation mod f(z) % z :— n denotes that the underlined expression should first be
reduced as a polynomial in  modulo f(z), and then after this operation is performed that x should be set to the
explicit value of n. Surprisingly, this procedure inplemented in Mathematica using the function PolynomialMod in [13]
produces correct, integer-valued congruence expressions even when the double-factorial-related numerator of the first
equation in (31) is divided through by the reciprocal of n!, though we would typically expect this not to necessarily
be the case if 2 (2n — 1)!! were first reduced modulo the right-hand-side functions of n.
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=300, () (72) (3 — ), x B (mod n?)

mod 2P %  x:i—n

The special cases of the congruences in (31) corresponding to p := 3 and p := 4, respectively, are
related to the necessary condition for the primality of odd integers n > 3 in Wolstenholme’s theorem
and to the sequence of Wolstenholme primes defined as [9, §2.2] [6, cf. §7] (http://oeis.org/A088164)

Pwolstenholme = {n >5: n prime and (2:) =2 (mod n4)} (Wolstenholme Primes)
— (16843,2124679, . ..).

3.5.3. An Identity for the Single Factorial Function Involving Expansions of Double
Factorial Functions

As another example of the applications of these new integer congruence applications expanded
through the double factorial function, notice that the following identity gives the form of another
exact, finite double sum expansion of the single factorial function over convolved products of the
double factorials:

(n—1)! = (2n — 3)11 + i: i(q)jﬂ (i) (~@n—k—j —2)),, (20 —2j - 3)!
k=1 j=k
Y S 0 (s (@ k== 3), oy (20— 2)— BN

k=1 j=k+1

This identity is simple to prove starting from the first non-round sum given in §5.1 of [1] combined
with second identity for the component summation terms given in §6.3 of the same article. A
modified approach involving the congruence techniques outlined in either the first cases cited in
Example 4, or as suggested in the previous few example cases from the last subsections of the article,
then suggests even further applications adapting the results for new variants of the established, or
otherwise well-known, special case congruence-based identities expanded for the notable prime
number subsequences cited above in terms of the double factorial function (see Example 14 in the
next subsection).

3.6. Applications of Wilson’s theorem in other famous and notable special case prime
subsequences

The integer congruences obtained from Wilson’s theorem for the particular special sequence cases
noted in Section 3.4.2 are easily generalized to give constructions over the forms other prime sub-
sequences including the following special cases:

» The “Pierpont primes” of the form p := 2%3V 41 for some u,v € N (http://oeis.org/A005109);

» The subsequences of primes of the form p := n2"™ £ 1 (http://oeis.org/A002234,
http://oeis.org/A080075);

» The “Wagstaff primes” corresponding to prime pairs of the form (p7 %(2” + 1)) € p?
(http://oeis.org/A000978, http://oeis.org/A123176); and
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» The generalized cases of the multifactorial prime sequences tabulated as in [9, Table 6, §2.2]
consisting of prime elements of the form p := n!,) £ 1 for a fixed integer-valued o > 2 and
some n > 1.

Example 14 (The Factorial Primes and the Fermat Prime Subsequences). The sequences
of factorial primes of the form p := n! £ 1 for some n > 1 satisfy congruences of the following form
modulo n! + 1 given by the expansions of (7c) and (8) (]9, ¢f. §2.2], http://oeis.org/A002981,
http://oeis.org/A002982):

n! 4+ 1 prime if and only if (Factorial Prime Congruences)

z; (”' N 1> (—1)il(n! — §)!

(! = Chiy1m(1,1)  (mod n! + 1)

-1 (mod n! + 1)

n!—2 1_1 2 ]
n! — 1 prime if and only if Z (n _ ) (=1)%!(n! —2—1q)! -1 (mod n! —1).

" 1
=0

(n! —2)=Cpi1 m—2(1,1)  (mod n! —1)

The Fermat numbers, F,, generating the subsequence of Fermat primes of the form p := 2™ + 1
where m = 2" for some n > 0 similarly satisfy the next congruences expanded through the identities
for the single and double factorial functions given above [9, §2.6] [6, §2.5] (http://oeis.org/A000215,
http://oeis.org/A019434):

F, :=2%" 41 prime (Fermat Prime Congruences)

if and only if 22" +1 | (22")1 11

22" 92" | 1 2
n 2™ 1 . n
if and only if 22" + 1| 22 E < _ ) (—1)%! (22 _i)1+1
1
=0

if and only if 22" + 122" ' (22"*1)! (22" - 1)!! 1
if and only if 22" +1 | 252" (22”—2)! (22"—1 - 1)!! (22” - 1)!! +1
if and only if 22" + 1| 252" (22"-3)! (22"—2 - 1)!! (22"—1 — 1)!! (22" - 1)!! 41

For integers h > 2 and r > 1 such that 2" | h, the expansions of the congruences in the previous
several equations correspond to forming the products of the single and double factorial functions
modulo h + 1 from the previous examples to require that

9(1=27")h o (;)l (2rh1 — 1>!! X - X (g — 1)!! (h—1)1'=—-1 (mod h+1),

though more general expansions by products of the a-factorial functions, a!(,), for a > 2 are
apparent [11, ¢f. §6.4]. The generalized Fermat numbers, F,(«) := a?" 41, and the corresponding
generalized Fermat prime subsequences when « := 2,4, 6 suggest generalizations of the approach
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to the results in the previous equations through the procedure to the multiple, a-factorial function
expansions suggested in Section 3.3.5 that generalizes the procedure to expanding the congruences
above for the Fermat primes when o := 2.

The next concluding examples provide an approach to generalized congruences providing neces-
sary and sufficient conditions on the primality of integers in special prime subsequences involving
mixed expansions of the single and double factorial functions.

Example 15 (Mersenne Primes). The Mersenne primes correspond to prime pairs of the form
(p, M,,) for p prime and where M,, := 2" —1 is a Mersenne number for some (prime) integer n > 2 [9,
§2.7], 6, §2.5; §6.15], [5, cf. §4.3, §4.8] (http://oeis.org/A001348, http://oeis.org/A000668,
http://oeis.org/A000043). The requirements in Wilson’s theorem for the primality of both p
and M, provide elementary proofs of the following equivalent necessary and sufficient conditions
for the primality of the prime pairs of these forms:

(p, 2P — 1) € P? (Mersenne Prime Congruences)
if and only if
p2P—=1) | (p—1!I2P =2+ (p— 1)+ (2P - 2)! +1
if and only if p(2° — 1) | (Cprar—1),p—1(—=1,p — 1)Cp(ar—1) 20—2(—1,2" — 2)
+ Cpar—1)p-1(=1,p = 1) + Cpar_1) 20—2(—1,2" — 2) + 1)
if and only if p(2P — 1) | (Cp(2p71)’p71(1, 1)Cp(ar—1),20—2(1,1)
+ Cpar—1)p—1(1,1) + Cpar—_1) 20—2(1,1) + 1)
if and only if p(2° — 1) | 22" ~1(p— N2~ — 1)I(2P — 3)1 + (p — 1)l + (2P — 2)1 + I;

The congruences on the right-hand-sides of the previous equations are then expanded by the results
in (7c) and (8), and through the second cases of the more general product function congruences
stated in (10b).

Example 16 (Sophie Germain Primes). Wilson’s theorem similarly implies the next related
congruence-based characterizations of the Sophie Germain primes corresponding to the prime pairs
of the form (p,2p+ 1) where p,p— 1,2p < p(2p+1) [9, §5.2] (http://oeis.org/A005384).

(p,2p+1) € P2 (Sophie Germain Prime Congruences)
if and only if (p — 1)!(2p)! + (p — 1)! + (2p)! =-1 (mod p(2p+1))
if and only if 2°pl(p — 1)!(2p — D'+ (p — 1)+ (2p)! =-1 (mod p(2p+1))

The expansions of the generalized forms of the Sophie Germain primes noted in [9, §5.2] also provide
applications of the multiple, a-factorial function identities outlined in Example 14 and suggested in
Section 3.3.5 of the article which result from expansions of the arithmetic progressions of the single
factorial functions given in the examples from [11, §6.4].

Remark 17 (Congruences for Integer Powers and Sequences of Binomials). Notice that
most of the factorial function expansions involved in the results formulated by the previous few
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examples do not immediately imply corresponding congruences obtained from (10) satisfied by the
Wieferich prime sequence defined by [9, §5.3] (http://oeis.org/A001220)

Puictoricn i= {n >2: noprime and 2" 1 =1 (mod n2)} (Wieferich Primes)
001229 (1093, 3511,...),

nor results for the variations of the sequences of binomials enumerated by the rational convergent-
function-based generating function identities over the binomial coefficient sums constructed in [11,
§6.7] modulo prime powers p™ for m > 2. However, indirect expansions of the sequences of binomi-
als, 2! and 2"~! — 1, by the Stirling numbers of the second kind through the lemma provided in
[11, Lemma 12], yield the following divisibility requirements characterizing the sequence of Wieferich
primes where (2),, = (n+ 1)!:

> {", e,

k=0

—Z%{”‘l}( )( 1P 1 ) (mod 1)

k=0 ¢=0
2l 1 =2m2 4 on 4241

> {jevoe,

0<j<i<n—2

> {Z} <:j> (=17 + )™ (2); ., (mod n?).

0<m<j<i<n—2

The constructions of the corresponding congruences for the sequences of binomials, a”~! — 1
(mod n?), are obtained by a similar procedure [9, cf. §5.3; Table 45]. Additional expansions of
related congruences for the terms 3° 4+ 1 (mod 2t + 1) for prime 2t + 1 € P in the particular forms
of

J
— m

3 41= ZZ{;}(ZtH)( 1) (2t 4 3™ (3), 41 (mod 2t + 1)

7=0 =0
¢ SN Qt"’l t—1—j+i i
3d+1=4x ZZZ (D)2t +3)E(3); (mod 2t 4 1),
m=0 j=0 =0
where (3); = 1(i 4+ 2)!, lead to double and triple sums providing the necessary and sufficient

condition for the primality of the Fermat primes, Fy, from [6, §6.14] when ¢ :— 22°~1 for some
integer k > 1.
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4. Conclusions

4.1. Summary

In Section 3.1, we proved the key results stated in Proposition 1 for the special cases where « :=
41, 2, which includes the congruences involving the single and double factorial functions cited in the
other applications from Section 3. We note that our numerical evidence provided in the summary
notebook [13] suggests that these congruences do in fact also hold more generally for all integers
a # 0 and all h > 2 (not just the odd and prime cases of these integer-valued moduli). The
applications of the key proposition given in the article provide a number of propositions which
follow as corollaries of the first set of results. The specific examples of the new results we prove
within the article include new finite sum expansions and congruences for the a-factorial functions,
as well as applications of our results to formulating new statements of necessary and sufficient
conditions on the primality of integer subsequences, pairs, and triples.

In many respects, this article is a follow-up to the first article published in 2017 [11]. For
comparision with the results given in that article, we note that the results in Proposition 1 and
Corollary 1 do not provide a simple or otherwise apparent mechanism for formulating new congru-
ences and recurrence relations satisfied by the triangles of a-factorial coefficients, [Z]a However,
such congruences and recurrence relations for the corresponding coefficients, [R*]p,(a, R), of the
generalized product sequences defined in (1) are in contrast easy to obtain from the results in the
key proposition. We conclude the article by posing several remaining open questions related to the
expansions of the generalized factorial functions considered in this article and in [11, 12].

4.2. Open Questions and Topics for Future Research
4.2.1. Open Questions

We pose the following open questions as topics for future research on the generalized factorial
functions studied in this article and in [11, 12]:

» Can we determine bounds on the zeros of the convergent denominator functions, FQ, (a, @ —
d; z) and FQy,(—a, an—d; z), in order to determine more accurate Stirling-like approximations
for the generalized multiple factorial function cases of (an — d)!(4)?

» What is the best way to evaluate the a-factorial functions, n!(,y, for fractional a or non-
negative rational n? For example, are the finite sum representations in Proposition 1 a good
start at generalizing these functions to non-integer arguments and the strictly rational-valued
parameters that occur in applications intentionally not discussed in these articles?

» What is the best way to translate the new congruence results for the single, double, and
k
a-factorial functions to form integer congruences for the binomial coefficients, (i) =47
4.2.2. Applications to Generalizations of Known Finite Sum Identities Involving the

Double Factorial Function

The construction of further analogues for generalized variants of the finite summations and more
well-known combinatorial identities satisfied by the double factorial function cases when a = 2
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from the references is suggested as a topic for future investigation. The identities for the more
general a-factorial function cases stated in Example 2 of Section 3.2 suggest one possible approach to
generalizing the known identities summarized in [4, 1] for the next few particularly interesting special
cases corresponding to the triple and quadruple factorial function cases, n!!! and n!!!!, respectively.
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