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Abstract
Consider the algebraic torus (as a variety) X := C* x C* and its Hilbert scheme of

n points, denoted X[, Let E ()? [n], q) be the E-polynomial of the GIT! quotient
XInl .= X" //G, where G := C* x C* is the algebraic torus (as a Lie group) and
the action of G on X! is induced by the obvious action of G on X. We show a
relationship between the coefficients of F ()N( [n]. q) and the existence of a partition

n=m+m+1)+(m+2)+--+(m+k-1),

with m, k € Z>1, such that k even.

1. Introduction

Let X := C* x C* be the algebraic torus as a variety. Denote X[™ the Hilbert
scheme of n points on X. The Lie group G := C* x C* acts on X in the obvious
way. This action can be extended to X ", So, we can define the GIT quotient
Xkl .= x//q.

The E-polynomial of X ("] denoted F ()~( M;q), was studied by T. Hausel, E.
Letellier and F. Rodriguez-Villegas [4] and independently? by C. Kassel and C.
Reutenauer [6, 7, 8]. For more arithmetical results about these polynomials, see
2, 3].

LGIT is the abbreviation for Geometric Invariant Theory.

2(C. Kassel and C. Reutenauer defined E ()?[”] ; q) , in a rather combinatorial way, as the unique

polynomial P,(¢) = F ()?[”];q) satisfying (¢ — 1)2 Pn(q) = Cn(q), where Cr(q) is the number of

n-codimensional ideals of the algebra Fg[z,y, 271,y 1].
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The degree of £ ()N([”] ; q) is 2n — 2, it is self-reciprocal and all its coeflicients are

non-negative integers [7], i.e.

n—1
E (X[n]’q) — an,anil + Z i (qnflJri + qnflfi) , (1)
i=1
for some nonnegative integers an 0,an,1,an,2,...,ann—1. The aim of this paper is

to prove the following result.

Theorem 1. For each integer n > 1, the following statements are equivalent:

(i) all odd divisors of n are smaller than v/2n;
(1) Gno > Gp1 > Gn2 > - > Anp-t1;

(iii) for all integers m > 1 and k > 1, the equality’
n=m+m+1)+m+2)+---+(m+k-1)
implies that k is odd.

It is worth mentioning that a finite sequence s1, 82, ..., Sy, is unimodal if and only
if there is some 1 < ¢t < n such that

81 <82 <83 < - <8 2 Spp1 = S22 2 Sg43 = 0 2 Sp-

A polynomial having non-negative coefficients is said to be unimodal if its se-
quence of coefficients is unimodal. So, if E (X ["];q) satisfies condition (ii) in The-

orem 1, then it is unimodal.

2. Proof of the Main Result
We will use the generating function

o0

_am)2 ~© F )}["]’
11 (1= e7) ):1+(q+q‘1—2)2—( q)t”, (2)

(1—qtm)(1—q1tm gt

m=1
due to T. Hausel, E. Letellier and F. Rodriguez-Villegas [4] and independently to
C. Kassel and C. Reutenauer [6].

3The expression of a number as a sum of consecutive numbers is named polite representation.
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Lemma 1. The number of solutions (m, k) € (221)2 of the equation
n=m+(m+1)+(m+2)+--+(m+k—1),

with k even, coincides with the number of odd divisors d of n satisfying the inequality

d>+2n.
Proof. This result is due to M. D. Hirschhorn and P. M. Hirschhorn [5]. O

Lemma 2. Let n > 1 be an integer. For any divisor d of 2n, if d > v/2n then

1 2n 1 /2n
g ) > 1> (= —d-1)>o0.
n—|—2<d 7 >_n>n _n+2<d d )_0

Proof. Consider an integer n > 1. Let d be a divisor of 2n. Suppose that d > v/2n.
The inequality d > v/2n implies that d — 27” > 0. Using the fact that d — 27” is an
integer, it follows that d — % >1. So, n+ % (d — %T" — 1) > n.

The inequality d — 27" > 0 implies that 27” —d < 0. Using the fact that 27" —dis
an integer, it follows that 27" —d< —1. So, n+ % (27" —d— 1) <n-—1.

For x > 1 and y > 1, we have the trivial inequality

z-1E-1)=2201-y).

From the above inequality, it follows that xy > x — y 4+ 1. Substituting * = d
and y = 27", we obtain

2n
n>d— — +1
n > d—l—,

1 /2
n+—(—n—d—1>20.

which is equivalent to

2\ d
O
Lemma 3. Let n > 1 be an integer. For any divisor d of 2n, if d < v/2n, then
1 /2n 1 2n
Y e . > —1> — - — — > 0.
n+2<d d 1>n>n 1n+2(d 7 1)0
Proof. 1t is enough to apply Lemma 2 with d = 27”. O

We proceed to prove our main result.

Proof. (Theorem 1) The equality

E()?["];q) = Z

qn+(2n/d—d—1)/2 _ qn+(d—2n/d—1)/2

q—1
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follows from the combination of (2) with the classical identity [4, p. 113]

1 1

- - - E —1)" nm/2, (m—n—1)/2
Olw) 1-w * (=1)"q w ’
’I’Lz’ﬂ,L (mod 2)

attributed to L. Kronecker and C. Jordan, where 6(w) is the formal product

(1—q"w) (1 —q"w™")
. .

O(w) := (1 —w) H

n>1 (1 - qn)
We can express E ()N(["] ; q) as the difference £ ()N([”] ; q) = R,(q) — Sn(q) of two

polynomials given by*

gnH(d=2n/d=1)/2 _ gnt(2n/d—d—1)/2

_ —4q
Sn(q) - ; q— 1 ’
d=1 (mod 2)

d > V2n

qn+(2n/d—d—1)/2 _ qn+(d—2n/d—1)/2

R, =
(9) > 7=
d|n
d=1 (mod 2)
d<+V2n

Applying Lemmas 2 and 3, the coefficients of S,,(¢) and R, (q) are non-negative
integers. Using the expansion qq:l =14+qg+¢*+---+¢* !, it follows from the

1
explicit formulae for S,,(¢) and R, (¢q) that the coefficients from (1) can be expressed

as an; = a , —a;, ;, where

n,i’

1/2
at, #{d|n: dodd,d<\/2n,i<—<—n—d—1>},
_ o1 2n
a = #{d|n: dodd,d>\/2n,z§2<d1>}.

Notice that the functions Z>q — Z>g, given by 7 — a:’ are both

weakly decreasing®. Hence, condition (ii) holds provided that d < v/2n for each odd
divisor d of n, because in this case, a,, ; = 0 for all i.

Suppose that dy > v2n for a fixed odd divisor dy of n. On the one hand,
Qg > Oy o410 where 7y := % (do —2n _ ) On the other hand, a;io = a;ioﬂ,

;and @ —a, 4,

n,i do

because the equality % (do — 3—’; — ) = % (%T" —d— 1) is impossible® for any odd

4Notice that, if d = v/2n, for some integer d, then d is even.
5A sequence s1,s2,...,5n is weakly decreasing if s1 > s2 > -+ > sp.
6This equality would imply that the product d dy = 2n is even, while both dg and d are odd.
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divisor d of n. So, aniy < Gniy+1.- Hence, condition (ii) does not hold provided
that there is at least one odd divisor d of n satisfying d > v/2n.

In virtue of Lemma 1, we conclude that conditions (iii) and (ii) are equivalent.
The equivalence between (i) and (iii) follows by Lemma 1. O

3. Final Remarks

Consider the symmetric Dyck word [1] {(n)) := wiws - - - wg € {4+, —}*, whose letters
are given by

+, ifu; € D,\ (2Dy);

—, ifwu; € (2Dy) \Dy;

w; ‘=

where D,, is the set of divisors of n, 2D,, := {2d : d € D,} and uy,us, ..., uk
are the elements of the symmetric difference D, A2D,, written in increasing or-

der. This word encodes the non-zero coefficients of (¢ — 1)F ()Z' [l q). Theorem

1 admits the language-theoretical reformulation: condition (iii) is equivalent to
{(n)=++---+——---—, for some s € Z>1. For details, see [1].
—_— -

s times s ttmes
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