INTEGERS WHICH CANNOT BE PARTITIONED INTO AN EVEN NUMBER OF CONSECUTIVE PARTS

José Manuel Rodríguez Caballero
Département de Mathématiques, Université du Québec á Montréal, Montréal, Québec, Canada
rodriguez_caballero.jose_manuel@uqam.ca

Received: 8/4/18, Accepted: 1/19/19, Published: 3/15/19

Abstract

Consider the algebraic torus (as a variety) $X:=\mathbb{C}^{\times} \times \mathbb{C}^{\times}$and its Hilbert scheme of n points, denoted $X^{[n]}$. Let $E\left(\widetilde{X}^{[n]} ; q\right)$ be the E-polynomial of the GIT^{1} quotient $\tilde{X}^{[n]}:=X^{[n]} / / G$, where $G:=\mathbb{C}^{\times} \times \mathbb{C}^{\times}$is the algebraic torus (as a Lie group) and the action of G on $X^{[n]}$ is induced by the obvious action of G on X. We show a relationship between the coefficients of $E\left(\widetilde{X}^{[n]} ; q\right)$ and the existence of a partition $$
n=m+(m+1)+(m+2)+\cdots+(m+k-1)
$$

with $m, k \in \mathbb{Z}_{\geq 1}$, such that k even.

1. Introduction

Let $X:=\mathbb{C}^{\times} \times \mathbb{C}^{\times}$be the algebraic torus as a variety. Denote $X^{[n]}$ the Hilbert scheme of n points on X. The Lie group $G:=\mathbb{C}^{\times} \times \mathbb{C}^{\times}$acts on X in the obvious way. This action can be extended to $X^{[n]}$. So, we can define the GIT quotient $\widetilde{X}^{[n]}:=X^{[n]} / / G$.

The E-polynomial of $\widetilde{X}^{[n]}$, denoted $E\left(\widetilde{X}^{[n]} ; q\right)$, was studied by T. Hausel, E. Letellier and F. Rodriguez-Villegas [4] and independently ${ }^{2}$ by C. Kassel and C. Reutenauer $[6,7,8]$. For more arithmetical results about these polynomials, see $[2,3]$.

[^0]The degree of $E\left(\widetilde{X}^{[n]} ; q\right)$ is $2 n-2$, it is self-reciprocal and all its coefficients are non-negative integers [7], i.e.

$$
\begin{equation*}
E\left(\widetilde{X}^{[n]} ; q\right)=a_{n, 0} q^{n-1}+\sum_{i=1}^{n-1} a_{n, i}\left(q^{n-1+i}+q^{n-1-i}\right) \tag{1}
\end{equation*}
$$

for some nonnegative integers $a_{n, 0}, a_{n, 1}, a_{n, 2}, \ldots, a_{n, n-1}$. The aim of this paper is to prove the following result.

Theorem 1. For each integer $n \geq 1$, the following statements are equivalent:
(i) all odd divisors of n are smaller than $\sqrt{2 n}$;
(ii) $a_{n, 0} \geq a_{n, 1} \geq a_{n, 2} \geq \cdots \geq a_{n, n-1}$;
(iii) for all integers $m \geq 1$ and $k \geq 1$, the equality ${ }^{3}$

$$
n=m+(m+1)+(m+2)+\cdots+(m+k-1)
$$

implies that k is odd.
It is worth mentioning that a finite sequence $s_{1}, s_{2}, \ldots, s_{n}$ is unimodal if and only if there is some $1 \leq t \leq n$ such that

$$
s_{1} \leq s_{2} \leq s_{3} \leq \cdots \leq s_{t} \geq s_{t+1} \geq s_{t+2} \geq s_{t+3} \geq \cdots \geq s_{n}
$$

A polynomial having non-negative coefficients is said to be unimodal if its sequence of coefficients is unimodal. So, if $E\left(\widetilde{X}^{[n]} ; q\right)$ satisfies condition (ii) in Theorem 1 , then it is unimodal.

2. Proof of the Main Result

We will use the generating function

$$
\begin{equation*}
\prod_{m=1}^{\infty} \frac{\left(1-t^{m}\right)^{2}}{\left(1-q t^{m}\right)\left(1-q^{-1} t^{m}\right)}=1+\left(q+q^{-1}-2\right) \sum_{n=1}^{\infty} \frac{E\left(\widetilde{X}^{[n]} ; q\right)}{q^{n-1}} t^{n} \tag{2}
\end{equation*}
$$

due to T. Hausel, E. Letellier and F. Rodriguez-Villegas [4] and independently to C. Kassel and C. Reutenauer [6].

[^1]Lemma 1. The number of solutions $(m, k) \in\left(\mathbb{Z}_{\geq 1}\right)^{2}$ of the equation

$$
n=m+(m+1)+(m+2)+\cdots+(m+k-1)
$$

with k even, coincides with the number of odd divisors d of n satisfying the inequality $d>\sqrt{2 n}$.

Proof. This result is due to M. D. Hirschhorn and P. M. Hirschhorn [5].
Lemma 2. Let $n \geq 1$ be an integer. For any divisor d of $2 n$, if $d>\sqrt{2 n}$ then

$$
n+\frac{1}{2}\left(d-\frac{2 n}{d}-1\right) \geq n>n-1 \geq n+\frac{1}{2}\left(\frac{2 n}{d}-d-1\right) \geq 0
$$

Proof. Consider an integer $n \geq 1$. Let d be a divisor of $2 n$. Suppose that $d>\sqrt{2 n}$. The inequality $d>\sqrt{2 n}$ implies that $d-\frac{2 n}{d}>0$. Using the fact that $d-\frac{2 n}{d}$ is an integer, it follows that $d-\frac{2 n}{d} \geq 1$. So, $n+\frac{1}{2}\left(d-\frac{2 n}{d}-1\right) \geq n$.

The inequality $d-\frac{2 n}{d}>0$ implies that $\frac{2 n}{d}-d<0$. Using the fact that $\frac{2 n}{d}-d$ is an integer, it follows that $\frac{2 n}{d}-d \leq-1$. So, $n+\frac{1}{2}\left(\frac{2 n}{d}-d-1\right) \leq n-1$.

For $x \geq 1$ and $y \geq 1$, we have the trivial inequality

$$
(x-1)(y-1) \geq 2(1-y) .
$$

From the above inequality, it follows that $x y \geq x-y+1$. Substituting $x=d$ and $y=\frac{2 n}{d}$, we obtain

$$
2 n \geq d-\frac{2 n}{d}+1
$$

which is equivalent to

$$
n+\frac{1}{2}\left(\frac{2 n}{d}-d-1\right) \geq 0
$$

Lemma 3. Let $n \geq 1$ be an integer. For any divisor d of $2 n$, if $d<\sqrt{2 n}$, then

$$
n+\frac{1}{2}\left(\frac{2 n}{d}-d-1\right) \geq n>n-1 \geq n+\frac{1}{2}\left(d-\frac{2 n}{d}-1\right) \geq 0
$$

Proof. It is enough to apply Lemma 2 with $d=\frac{2 n}{d}$.
We proceed to prove our main result.
Proof. (Theorem 1) The equality

$$
E\left(\widetilde{X}^{[n]} ; q\right)=\sum_{\substack{d \mid n \\ d \equiv 1 \\(\bmod 2)}} \frac{q^{n+(2 n / d-d-1) / 2}-q^{n+(d-2 n / d-1) / 2}}{q-1}
$$

follows from the combination of (2) with the classical identity [4, p. 113]

$$
\frac{1}{\theta(w)}-\frac{1}{1-w}=\sum_{\substack{n, m \geq 1 \\ n \not \equiv m}}(-1)^{n} q^{n m / 2} w^{(m-n-1) / 2}
$$

attributed to L. Kronecker and C. Jordan, where $\theta(w)$ is the formal product

$$
\theta(w):=(1-w) \prod_{n \geq 1} \frac{\left(1-q^{n} w\right)\left(1-q^{n} w^{-1}\right)}{\left(1-q^{n}\right)^{2}}
$$

We can express $E\left(\widetilde{X}^{[n]} ; q\right)$ as the difference $E\left(\widetilde{X}^{[n]} ; q\right)=R_{n}(q)-S_{n}(q)$ of two polynomials given by ${ }^{4}$

$$
\begin{aligned}
& S_{n}(q)=\sum_{\substack{d \left\lvert\, n \\
d \equiv 1 \begin{array}{l}
(\bmod 2) \\
d>\sqrt{2 n} \\
d
\end{array}\right.}} \frac{q^{n+(d-2 n / d-1) / 2}-q^{n+(2 n / d-d-1) / 2}}{q-1}, \\
& R_{n}(q)=\sum_{\substack{d \mid n \\
d \equiv 1(\bmod 2) \\
d<\sqrt{2 n}}} \frac{q^{n+(2 n / d-d-1) / 2}-q^{n+(d-2 n / d-1) / 2}}{q-1} .
\end{aligned}
$$

Applying Lemmas 2 and 3, the coefficients of $S_{n}(q)$ and $R_{n}(q)$ are non-negative integers. Using the expansion $\frac{q^{n}-1}{q-1}=1+q+q^{2}+\cdots+q^{n-1}$, it follows from the explicit formulae for $S_{n}(q)$ and $R_{n}(q)$ that the coefficients from (1) can be expressed as $a_{n, i}=a_{n, i}^{+}-a_{n, i}^{-}$, where

$$
\begin{aligned}
& a_{n, i}^{+}=\#\left\{d \mid n: \quad d \text { odd, } d<\sqrt{2 n}, i \leq \frac{1}{2}\left(\frac{2 n}{d}-d-1\right)\right\} \\
& a_{n, i}^{-}=\#\left\{d \mid n: \quad d \text { odd, } d>\sqrt{2 n}, i \leq \frac{1}{2}\left(d-\frac{2 n}{d}-1\right)\right\}
\end{aligned}
$$

Notice that the functions $\mathbb{Z}_{\geq 0} \longrightarrow \mathbb{Z}_{\geq 0}$, given by $i \mapsto a_{n, i}^{+}$and $i \mapsto a_{n, i}^{-}$, are both weakly decreasing ${ }^{5}$. Hence, condition (ii) holds provided that $d<\sqrt{2 n}$ for each odd divisor d of n, because in this case, $a_{n, i}^{-}=0$ for all i.

Suppose that $d_{0}>\sqrt{2 n}$ for a fixed odd divisor d_{0} of n. On the one hand, $a_{n, i_{0}}^{-}>a_{n, i_{0}+1}^{-}$, where $i_{0}:=\frac{1}{2}\left(d_{0}-\frac{2 n}{d_{0}}-1\right)$. On the other hand, $a_{n, i_{0}}^{+}=a_{n, i_{0}+1}^{+}$, because the equality $\frac{1}{2}\left(d_{0}-\frac{2 n}{d_{0}}-1\right)=\frac{1}{2}\left(\frac{2 n}{d}-d-1\right)$ is impossible ${ }^{6}$ for any odd

[^2]divisor d of n. So, $a_{n, i_{0}}<a_{n, i_{0}+1}$. Hence, condition (ii) does not hold provided that there is at least one odd divisor d of n satisfying $d>\sqrt{2 n}$.

In virtue of Lemma 1, we conclude that conditions (iii) and (ii) are equivalent. The equivalence between (i) and (iii) follows by Lemma 1.

3. Final Remarks

Consider the symmetric Dyck word $[1]\langle\langle n\rangle\rangle:=w_{1} w_{2} \cdots w_{k} \in\{+,-\}^{*}$, whose letters are given by

$$
w_{i}:= \begin{cases}+, & \text { if } u_{i} \in D_{n} \backslash\left(2 D_{n}\right) \\ -, & \text { if } u_{i} \in\left(2 D_{n}\right) \backslash D_{n}\end{cases}
$$

where D_{n} is the set of divisors of $n, 2 D_{n}:=\left\{2 d: d \in D_{n}\right\}$ and $u_{1}, u_{2}, \ldots, u_{k}$ are the elements of the symmetric difference $D_{n} \triangle 2 D_{n}$ written in increasing order. This word encodes the non-zero coefficients of $(q-1) E\left(\widetilde{X}^{[n]} ; q\right)$. Theorem 1 admits the language-theoretical reformulation: condition (iii) is equivalent to $\langle\langle n\rangle\rangle=\underbrace{++\cdots+}_{\mathrm{s} \text { times }} \underbrace{--\cdots-}_{\mathrm{s} \text { times }}$, for some $s \in \mathbb{Z}_{\geq 1}$. For details, see [1].

References

[1] J. M. R. Caballero, Symmetric Dyck Paths and Hooley's Δ-function, Combinatorics on Words. Springer International Publishing AG (2017).
[2] J. M. R. Caballero, On a function introduced by Erdős and Nicolas, J. Number Theory 194 (2019), 381-389.
[3] J. M. R. Caballero, On Kassel-Reutenauer q-analog of the sum of divisors and the ring $\mathbb{F}_{3}[X] / X^{2} \mathbb{F}_{3}[X]$, Finite Fields Appl. 51 (2018), 183-190.
[4] T. Hausel, E. Letellier, and F. Rodriguez-Villegas, Arithmetic harmonic analysis on character and quiver varieties II. Advances in Mathematics 234 (2013): 85-128.
[5] M. D. Hirschhorn and P. M. Hirschhorn. Partitions into consecutive parts, Mathematics Magazine 78.5 (2005), 396-397.
[6] C. Kassel and C. Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, The Ramanujan Journal 46.3 (2018), 633655.
[7] C. Kassel and C. Reutenauer, Counting the ideals of given codimension of the algebra of Laurent polynomials in two variables, Michigan Math. J. 67.4 (2018), 715-741.
[8] C. Kassel and C. Reutenauer, The Fourier expansion of $\eta(z) \eta(2 z) \eta(3 z) / \eta(6 z)$, Archiv der Mathematik 108.5 (2017), 453-463.

[^0]: ${ }^{1}$ GIT is the abbreviation for Geometric Invariant Theory.
 ${ }^{2}$ C. Kassel and C. Reutenauer defined $E\left(\tilde{X}^{[n]} ; q\right)$, in a rather combinatorial way, as the unique polynomial $P_{n}(q)=E\left(\widetilde{X}^{[n]} ; q\right)$ satisfying $(q-1)^{2} P_{n}(q)=C_{n}(q)$, where $C_{n}(q)$ is the number of n-codimensional ideals of the algebra $\mathbb{F}_{q}\left[x, y, x^{-1}, y^{-1}\right]$.

[^1]: ${ }^{3}$ The expression of a number as a sum of consecutive numbers is named polite representation.

[^2]: ${ }^{4}$ Notice that, if $d=\sqrt{2 n}$, for some integer d, then d is even.
 ${ }^{5} \mathrm{~A}$ sequence $s_{1}, s_{2}, \ldots, s_{n}$ is weakly decreasing if $s_{1} \geq s_{2} \geq \cdots \geq s_{n}$.
 ${ }^{6}$ This equality would imply that the product $d d_{0}=2 n$ is even, while both d_{0} and d are odd.

