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Abstract
Consider the algebraic torus (as a variety) X := C⇥⇥C⇥ and its Hilbert scheme of
n points, denoted X [n]. Let E

⇣
eX [n]; q

⌘
be the E-polynomial of the GIT1 quotient

eX [n] := X [n]//G, where G := C⇥ ⇥ C⇥ is the algebraic torus (as a Lie group) and
the action of G on X [n] is induced by the obvious action of G on X. We show a
relationship between the coe�cients of E

⇣
eX [n]; q

⌘
and the existence of a partition

n = m + (m + 1) + (m + 2) + · · · + (m + k � 1),

with m,k 2 Z�1, such that k even.

1. Introduction

Let X := C⇥ ⇥ C⇥ be the algebraic torus as a variety. Denote X [n] the Hilbert
scheme of n points on X. The Lie group G := C⇥ ⇥ C⇥ acts on X in the obvious
way. This action can be extended to X [n]. So, we can define the GIT quotient
eX [n] := X [n]//G.

The E-polynomial of eX [n], denoted E
⇣

eX [n]; q
⌘
, was studied by T. Hausel, E.

Letellier and F. Rodriguez-Villegas [4] and independently2 by C. Kassel and C.
Reutenauer [6, 7, 8]. For more arithmetical results about these polynomials, see
[2, 3].

1GIT is the abbreviation for Geometric Invariant Theory.
2C. Kassel and C. Reutenauer defined E

⇣
eX[n]; q

⌘
, in a rather combinatorial way, as the unique

polynomial Pn(q) = E
⇣

eX[n]; q
⌘

satisfying (q � 1)2 Pn(q) = Cn(q), where Cn(q) is the number of

n-codimensional ideals of the algebra Fq[x, y, x�1, y�1].
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The degree of E
⇣

eX [n]; q
⌘

is 2n�2, it is self-reciprocal and all its coe�cients are
non-negative integers [7], i.e.

E
⇣

eX [n]; q
⌘

= an,0q
n�1 +

n�1X

i=1

an,i

�
qn�1+i + qn�1�i

�
, (1)

for some nonnegative integers an,0, an,1, an,2, . . . , an,n�1. The aim of this paper is
to prove the following result.

Theorem 1. For each integer n � 1, the following statements are equivalent:

(i) all odd divisors of n are smaller than
p

2n;

(ii) an,0 � an,1 � an,2 � · · · � an,n�1;

(iii) for all integers m � 1 and k � 1, the equality3

n = m + (m + 1) + (m + 2) + · · · + (m + k � 1)

implies that k is odd.

It is worth mentioning that a finite sequence s1, s2, . . . , sn is unimodal if and only
if there is some 1  t  n such that

s1  s2  s3  · · ·  st � st+1 � st+2 � st+3 � · · · � sn.

A polynomial having non-negative coe�cients is said to be unimodal if its se-
quence of coe�cients is unimodal. So, if E

⇣
eX [n]; q

⌘
satisfies condition (ii) in The-

orem 1, then it is unimodal.

2. Proof of the Main Result

We will use the generating function

1Y

m=1

(1� tm)2

(1� qtm) (1� q�1tm)
= 1 +

�
q + q�1 � 2

� 1X

n=1

E
⇣

eX [n]; q
⌘

qn�1
tn, (2)

due to T. Hausel, E. Letellier and F. Rodriguez-Villegas [4] and independently to
C. Kassel and C. Reutenauer [6].

3The expression of a number as a sum of consecutive numbers is named polite representation.
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Lemma 1. The number of solutions (m,k) 2 (Z�1)
2 of the equation

n = m + (m + 1) + (m + 2) + · · · + (m + k � 1),

with k even, coincides with the number of odd divisors d of n satisfying the inequality
d >

p
2n.

Proof. This result is due to M. D. Hirschhorn and P. M. Hirschhorn [5].

Lemma 2. Let n � 1 be an integer. For any divisor d of 2n, if d >
p

2n then

n +
1
2

✓
d� 2n

d
� 1

◆
� n > n� 1 � n +

1
2

✓
2n
d
� d� 1

◆
� 0.

Proof. Consider an integer n � 1. Let d be a divisor of 2n. Suppose that d >
p

2n.
The inequality d >

p
2n implies that d� 2n

d > 0. Using the fact that d� 2n
d is an

integer, it follows that d� 2n
d � 1. So, n + 1

2

�
d� 2n

d � 1
�
� n.

The inequality d� 2n
d > 0 implies that 2n

d � d < 0. Using the fact that 2n
d � d is

an integer, it follows that 2n
d � d  �1. So, n + 1

2

�
2n
d � d� 1

�
 n� 1.

For x � 1 and y � 1, we have the trivial inequality

(x� 1) (y � 1) � 2 (1� y) .

From the above inequality, it follows that xy � x � y + 1. Substituting x = d
and y = 2n

d , we obtain

2n � d� 2n
d

+ 1,

which is equivalent to

n +
1
2

✓
2n
d
� d� 1

◆
� 0.

Lemma 3. Let n � 1 be an integer. For any divisor d of 2n, if d <
p

2n, then

n +
1
2

✓
2n
d
� d� 1

◆
� n > n� 1 � n +

1
2

✓
d� 2n

d
� 1

◆
� 0.

Proof. It is enough to apply Lemma 2 with d = 2n
d .

We proceed to prove our main result.

Proof. (Theorem 1) The equality

E
⇣

eX [n]; q
⌘

=
X

d|n
d ⌘ 1 (mod 2)

qn+(2n/d�d�1)/2 � qn+(d�2n/d�1)/2

q � 1
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follows from the combination of (2) with the classical identity [4, p. 113]

1
✓(w)

� 1
1� w

=
X

n, m � 1
n 6⌘ m (mod 2)

(�1)nqnm/2w(m�n�1)/2,

attributed to L. Kronecker and C. Jordan, where ✓(w) is the formal product

✓(w) := (1� w)
Y

n�1

(1� qnw)
�
1� qnw�1

�

(1� qn)2
.

We can express E
⇣

eX [n]; q
⌘

as the di↵erence E
⇣

eX [n]; q
⌘

= Rn(q)�Sn(q) of two
polynomials given by4

Sn(q) =
X

d|n
d ⌘ 1 (mod 2)

d >
p

2n

qn+(d�2n/d�1)/2 � qn+(2n/d�d�1)/2

q � 1
,

Rn(q) =
X

d|n
d ⌘ 1 (mod 2)

d <
p

2n

qn+(2n/d�d�1)/2 � qn+(d�2n/d�1)/2

q � 1
.

Applying Lemmas 2 and 3, the coe�cients of Sn(q) and Rn(q) are non-negative
integers. Using the expansion qn�1

q�1 = 1 + q + q2 + · · · + qn�1, it follows from the
explicit formulae for Sn(q) and Rn(q) that the coe�cients from (1) can be expressed
as an,i = a+

n,i � a�n,i, where

a+
n,i = #

⇢
d|n : d odd, d <

p
2n, i  1

2

✓
2n
d
� d� 1

◆�
,

a�n,i = #
⇢

d|n : d odd, d >
p

2n, i  1
2

✓
d� 2n

d
� 1

◆�
.

Notice that the functions Z�0 �! Z�0, given by i 7! a+
n,i and i 7! a�n,i, are both

weakly decreasing5. Hence, condition (ii) holds provided that d <
p

2n for each odd
divisor d of n, because in this case, a�n,i = 0 for all i.

Suppose that d0 >
p

2n for a fixed odd divisor d0 of n. On the one hand,
a�n,i0

> a�n,i0+1, where i0 := 1
2

⇣
d0 � 2n

d0
� 1

⌘
. On the other hand, a+

n,i0
= a+

n,i0+1,

because the equality 1
2

⇣
d0 � 2n

d0
� 1

⌘
= 1

2

�
2n
d � d� 1

�
is impossible6 for any odd

4Notice that, if d =
p

2n, for some integer d, then d is even.
5A sequence s1, s2, . . . , sn is weakly decreasing if s1 � s2 � · · · � sn.
6This equality would imply that the product d d0 = 2n is even, while both d0 and d are odd.
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divisor d of n. So, an,i0 < an,i0+1. Hence, condition (ii) does not hold provided
that there is at least one odd divisor d of n satisfying d >

p
2n.

In virtue of Lemma 1, we conclude that conditions (iii) and (ii) are equivalent.
The equivalence between (i) and (iii) follows by Lemma 1.

3. Final Remarks

Consider the symmetric Dyck word [1] hhnii := w1w2 · · ·wk 2 {+,�}⇤, whose letters
are given by

wi :=

(
+, if ui 2 Dn\ (2Dn) ;
�, if ui 2 (2Dn) \Dn;

where Dn is the set of divisors of n, 2Dn := {2d : d 2 Dn} and u1, u2, . . . , uk

are the elements of the symmetric di↵erence Dn42Dn written in increasing or-
der. This word encodes the non-zero coe�cients of (q � 1)E

⇣
eX [n]; q

⌘
. Theorem

1 admits the language-theoretical reformulation: condition (iii) is equivalent to
hhnii = + + · · ·+| {z }

s times

�� · · ·�| {z }
s times

, for some s 2 Z�1. For details, see [1].
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