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Abstract
Let p be a prime and let ' 2 Zp[x1, x2, . . . , xp] be a symmetric polynomial, where
Zp is the field of p elements. A sequence T in Zp of length p is called a '-zero
sequence if '(T ) = 0; a sequence in Zp is called '-zero free if it does not contain
any '-zero subsequence. Motivated by the EGZ theorem for the prime p, we define a
symmetric polynomial ' 2 Zp[x1, x2, . . . , xp] to be an EGZ polynomial if it satisfies
the following two conditions: (i) every sequence in Zp of length 2p�1 contains a '-
zero subsequence and (ii) the '-zero free sequences of length 2p�2 are the sequences
which contain exactly any two residues where each residue appears p�1 times. For
a positive integer k and a prime p, a power-sum polynomial over Zp is defined as
sk,p =

Pp
j=1 xk

j . In this paper we answer the question of whether there are EGZ
polynomials among the power-sum polynomials. Indeed, sk,p is an EGZ polynomial
if and only if gcd(k, p � 1) = 1 and these polynomials can be derived from s1,p

and a permutation polynomial. Next, we introduce a definition of rational number,
r(sk,p, Zp) 2 (0, 1], which measures the deviation of a power-sum polynomial from
being an EGZ polynomial. Among some other results we determine r(sk,p, Zp) for
every prime p and positive integer k.

1. Introduction

This paper is motivated by the following theorem of Erdős, Ginzburg, and Ziv [9],
stated below in Theorem 1 (i) for a prime. Part (ii) of the theorem addresses the
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inverse problem which corresponds to the first part. It was first proved by Yuster
and Peterson [15]. Several new proofs of (i) appear in [1], and a proof of (ii) appears
in [5] and [15].

Theorem 1. Let p be a prime and Zp be the additive group of residue classes
modulo p.

(i) Every sequence in Zp of length 2p � 1 contains a zero-sum subsequence of
length p.

(ii) Each sequence of maximal length in Zp that does not contain any zero-sum
subsequence of length p contains exactly two distinct elements, where each
element appears p� 1 times.

Numerous generalizations and developments of the EGZ theorem have appeared
over the years. It is worthwhile to mention the surveys [2, 3, 8, 10] and their com-
prehensive references. We follow a recent new direction (see [6, 7]) which considers
the field structure of Zp rather than of an Abelian group. Furthermore, we consider
symmetric polynomials over Zp. As one can recall, the sum in the EGZ theorem
corresponds to the first elementary symmetric polynomial Zp[x1, x2, . . . , xp].

First we introduce some definitions and notation. Let p be a prime and let Zp be
the prime field of p elements. Let ' be a symmetric polynomial in Zp[x1, x2, . . . , xp].
A sequence a1, a2, . . . , ap of p elements in Zp is called a '-zero sequence if '(a1,
a2, . . . , ap) = 0; a sequence in Zp is called '-zero free if it does not contain any
'-zero subsequence. Define g(', Zp) to be the smallest integer ` such that every
sequence in Zp of length ` contains a '-zero subsequence; if ` does not exist, then
we set g(', Zp) = 1. Define M(', Zp) to be the set of all '-zero free sequences of
length g(', Zp) � 1, whenever g(', Zp) is finite. We consider two sequences in Zp

identical if they di↵er only in the order of their elements, thus we deal with multisets.
But the language of sequences is more commonly used in the literature. We will use
the notation [a1]↵1 [a2]↵2 . . . [ak]↵k to denote a sequence in Zp where each element
ai appears ↵i times. Finally, we will denote by E(2, Zp) the set of all sequences of
the form [u]p�1[v]p�1, where u, v 2 Zp and u 6= v. Clearly |E(2, Zp)| =

�p
2

�
.

The EGZ theorem and the definitions above suggest the introduction of the
following properties:

(E1) a symmetric polynomial ' 2 Zp[x1, x2, . . . , xp] satisfies E1 if g(', Zp) = 2p�1;

(E2) a symmetric polynomial ' 2 Zp[x1, x2, . . . , xp] satisfies E2 if M(', Zp) =
E(2, Zp); and

(E 02) a symmetric polynomial ' 2 Zp[x1, x2, . . . , xp] satisfies E 02 if M(', Zp) \
E(2, Zp) 6= ;.
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By the EGZ theorem, the first symmetric polynomial satisfies E1 and E2 for every
prime p. We define a symmetric polynomial P 2 Zp[x1, x2, . . . , xp] to be an EGZ
polynomial with respect to a prime p if it satisfies E1 and E2. All EGZ polynomials
of degree not exceeding three were classified in [7].

In [7], it was shown how to construct new EGZ polynomials from a given EGZ
polynomial. Our paper is motivated by a major open problem of the complete
classification of EGZ symmetric polynomials. In this paper, we have restricted
ourselves to power sum polynomials which provide EGZ symmetric polynomials,
however, these polynomials can be deduced from [7]. For a given prime p, we
define a polynomial ' 2 Zp[x1, x2, . . . , xp] to be a relaxed EGZ polynomial if it
satisfies E1 and E 02. Clearly, an EGZ polynomial is a relaxed EGZ polynomial. For
relaxed EGZ polynomials, the major interest is to investigate the sets M(', Zp) and
M(', Zp) \E(2, Zp).

In this paper, we will look at power sum polynomials defined as sk,p =
Pp

i=1 xk
i ,

where k is a positive integer and p is a prime, through the lens of relaxed EGZ
polynomials. The notation sk,p will be abbreviated as sk when p is clear. For
k = 1 and for every prime p, we get an EGZ polynomial by the EGZ theorem.
Furthermore, it follows from the forthcoming Theorem 2 that for k > 2, the power
sum polynomials are relaxed EGZ polynomials.

Theorem 2. The power sum polynomials sk,p =
Pp

i=1 xk
i , where k is a positive

integer and p is a prime, are relaxed EGZ polynomials.

Proof. Let f(x) = xk. Then sk,p = f(x1) + f(x2) + · · ·+ f(xp). If a1, a2, . . . , a2p�1

is a sequence in Zp of length 2p � 1, then by the EGZ theorem, the sequence
f(a1), f(a2), . . . , f(a2p�1) contains a subsequence of length p. It follows that the
former sequence contains a sk,p-zero subsequence, which implies that g(sk,p, Zp) 6
2p� 1.

On the other hand, if we consider the sequence s = [0]p�1[1]p�1 of length 2p� 2,
then it is easy to see that s does not contain any zero-sum subsequence of length p.
This completes the proof of the theorem.

2. On the Structure of M(sk,p, Zp) for k > 2

In this section, first we analyze thoroughly the set M(s2,p, Zp) and observe that for
a given integer k and a prime p, the number of distinct residues in M(sk,p, Zp) is
pretty small. We prove a theorem about it. Next, we determine the cardinality of
M(sk,p, Zp) for every integer k and every prime p. We start with a definition which
refines the set M(sk,p, Zp).

Definition 1. For t 2 N, let Mt(sk,p, Zp) denote the subset of M(sk,p, Zp) that
consists of all the multisets in M(sk,p, Zp) whose underlying set has cardinality t.
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Theorem 3. Let p � 3 and let Mt(s2,p, Zp) be as defined above. Then

|Mt(s2,p, Zp)| =

8
>>><

>>>:

(p�1)2

2 , if t = 2;
(p�1)(p�2)2

2 , if t = 3;
(p�1)(p�2)2(p�3)

8 , if t = 4;
0, if t � 5.

|M(s2,p, Zp)| =
4X

t=1

|Mt(s2,p, Zp)| =
1
2
(p� 1)

✓
p� 1 +

1
4
(p + 1)(p� 2)2

◆
.

Proof. Let a1, a2, . . . , a2p�2 be a sequence of length 2p � 2. It is clear that the
sequence is sk,p-zero free if and only if the sequence f(a1), f(a2), . . . , f(a2p�2) does
not contain any zero-sum subsequence of length p. It follows from Theorem 2 that
the latter sequence is of the form [x]p�1[y]p�1, where x, y 2 Zp, x 6= y. Since for
a 6= 0, the equation x2 = a2 has only two solutions a and �a, all elements in
M(s2,p, Zp) are of the following form:

[u]↵[�u]p�1�↵[v]� [�v]p�1�� , 0  ↵,�  p� 1. (1)

Now we consider the following cases:

(i) If t = 2, then each element in M2(s2,p, Zp) is of the form [u]p�1[v]p�1. Thus
the number of elements in M2(s2,p, Zp) equals the number of pairs (u, v) 2 Z2

p

satisfying u 6= v, u 6= �v. This implies that |M2(s2,p, Zp)| = (p� 1)2/2.

(ii) If t = 3, then each element in M3(s2,p, Zp) is of the form [u]↵[�u]p�1�↵[v]p�1

with u 6= v, u 6= �v, and 1  ↵  p � 2. Since the number of ordered pairs
(u, v) 2 Z2

p satisfying u 6= 0, u 6= v, u 6= �v equals (p�1)(p�2)/2, the number
of elements in M3(s2,p, Zp) is (p� 1)(p� 2)2/2.

(iii) If t = 4, then each element in M4(s2,p, Zp) is of the form [u]↵[�u]↵[v]� [�v]p�1��

with u 6= v, u 6= �v, and 1  ↵,�  p � 2. Since the number of un-ordered
pairs (u, v) 2 Z2

p satisfying u, v 6= 0, u 6= v, u 6= �v equals
�(p�1)/2

2

�
= (p �

1)(p�3)/8, the number of elements in M4(s2,p, Zp) is (p�1)(p�2)2(p�3)/8.

(iv) If t � 5, then it follows from (1) that |Mt(s2,p, Zp)| = 0. Putting these cases
together, we obtain

|M(s2,p, Zp)| =
4X

t=1

|Mt(s2,p, Zp)| =
1
2
(p� 1)

✓
p� 1 +

1
4
(p + 1)(p� 2)2

◆
,

which concludes the proof of the theorem.
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We proceed with some definitions and examples.

Definition 2. (i) Let Xk,p denote the image of the function xk mod p with
x 2 Zp \ {0}.

(ii) Let Yk,p denote the family defined as

Yk,p =
��

x : xk ⌘ a (mod p)
 

: a 2 Xk,p

 

Example 1. If p = 13, then X3,13 = {1, 5, 8, 12} with |X3,13| = 4 such that

Y3,13 = {{1, 3, 9} , {7, 8, 11} , {2, 5, 6} , {4, 10, 12}} .

Example 2. If p = 19, then X12,13 = {1, 7, 11} with |X12,19| = 3 such that

Y12,19 = {{1, 7, 8, 11, 12, 18} , {2, 3, 5, 14, 16, 17} , {4, 6, 9, 10, 13, 15}} .

Note that |Xk,p| = |Yk,p|. For the sake of simplicity, whenever k and p are fixed,
we will use the notation x = |Xk,p| = |Yk,p| and we will use y to denote the number
of elements in each set in Yk,p. It is not di�cult to prove that xy = p � 1. In
order to compute |M(sk,p, Zp)|, first we need to compute x; and to do this, we will
introduce the following definition.

Definition 3. Let p and q be distinct primes and let � be a positive integer.

Exp(p, q,�) =
⇢

0, if p 6⌘ 1 (mod q�) for all � 2 {1, 2, . . . ,�};
maximum � 2 {1, 2, . . . ,�} such that p ⌘ 1 (mod q�), otherwise.

Example 3. Let p = 5, q = 3 and � = 3. Then 5 ⌘ 2 mod 3, 5 ⌘ 4 mod 32 and
5 ⌘ 2 mod 33, and hence Exp(11, 5, 3) = 0. Let p = 11, q = 5 and � = 3. Then
11 ⌘ 1 mod 5, 11 = 11 mod 52 and 11 ⌘ 11 mod 53, and hence Exp(51, 5, 3) = 1.

Lemma 1. For positive integer k with prime decomposition k =
Qt

i=1 p↵i
i and a

prime p,

x =
p� 1

Qt
i=1 pExp(p,pi,↵i)

i

.

Proof. Given a 2 [1, p � 1], consider the congruence xk ⌘ a (mod p). It has been
shown [12, p.45] that if a(p�1)/gcd(k,p�1) ⌘ 1 (mod p), then there is a solution to
xk ⌘ a (mod p), and the number of solutions to a(p�1)/gcd(k,p�1) ⌘ 1 (mod p) is
(p� 1)/gcd(k, p� 1). Thus it su�ces to prove that

gcd(k, p� 1) =
tY

i=1

pExp(p,pi,↵i)
i . (2)

We now prove (2) by induction on the number of primes in the prime factorization
of k. For the base case t = 1, we consider the following two cases:
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1. If p (mod k) ⌘ 1 (mod p�
1 ) with maximum � 2 [1,↵� 1], then we have

gcd(p↵1
1 , p� 1) = p�

1 .

2. If p (mod k) 6⌘ 1 (mod p�
1 ) for all � 2 [1,↵� 1], then we have

gcd(p↵
1 , p� 1) = 1.

Thus, the base case follows directly from the definition of Exp(p, p1,↵). Suppose
that the statement is true for k =

Qt�1
i=1 p↵i

i . We now show that it also holds for
k =

Qt
i=1 p↵i

i . Indeed, let k1 = k/p↵t
t . By the induction hypothesis,

gcd(k1, p� 1) =
t�1Y

i=1

pExp(p,pi,↵i)
i .

Clearly, by the definition of Exp(p, q,�), we have

gcd(k, p� 1) = pExp(p,pt,↵t)
t gcd(k1, p� 1) =

tY

i=1

pExp(p,pi,↵i)
i ,

which concludes the proof of the lemma.

Now we are ready to compute the cardinality of M(sk,p, Zp).

Theorem 4. For positive integer k and prime p > 3,

|M(sk,p, Zp)| =
✓

x

2

◆✓
p + y � 2

y � 1

◆2

+ (p� 1).

Proof. The sk,p-zero free sequences are of the form

[u1]↵1 [u2]↵2 · · · [uy]↵y [v1]�1 [v2]�2 · · · [vy]�y (3)

such that (u1, u2, . . . , uy), (v1, v2, . . . , vy) 2 Yk,p, uk
1 = uk

2 = · · · = uk
y (mod p),

vk
1 = vk

2 = · · · = vk
y (mod p), where ui 6= vj for 1 6 i, j 6 y and ↵1 +↵2 + · · ·+↵y =

�1 + �2 + · · · + �y = p� 1.
There are

�x
2

�
ways to choose two sets from Yk,p and there are

�p+y�2
y�1

�
ordered

y-tuples in Zy
p with sum of elements equal to p� 1. Therefore, adding the (2p� 2)-

sequences of the form [0]p�1[u]p�1 with u 6= 0, we get

|M(sk,p, Zp)| =
✓

x

2

◆✓
p + y � 2

y � 1

◆2

+ (p� 1),

which is the desired size of M(sk,p, Zp) as stated above.



INTEGERS: 19 (2019) 7

We will demonstrate Theorem 4 for k = 3.

Corollary 1. For p � 3,

|M(s3,p, Zp)| =

( �p
2

�
, if p 6⌘ 1 (mod 3);�(p�1)/3
2

��p+1
2

�2
+ (p� 1), if p ⌘ 1 (mod 3).

Proof. From Definition 3 and Lemma 1, we have

x =
⇢

p� 1, if p 6⌘ 1 (mod 3);
p�1
3 , if p ⌘ 1 (mod 3).

Thus, the corollary follows directly from Theorem 4.

Motivated by Theorem 3, we introduce the following definition.

Definition 4. For an integer k and a prime p, let f(k, p) denote the minimal
number such that for any t � f(k, p) we have Mt(sk,p, Zp) = ;.

Theorem 5. For a positive integer k and a prime p,

f(p, k) = 2y + 1.

Proof. From the proof of Theorem 4, it follows that the sk,p-zero free sequences are
of the form

[u1]↵1 [u2]↵2 · · · [uy]↵y [v1]�1 [v2]�2 · · · [vy]�y

such that (u1, u2, . . . , uy), (v1, v2, . . . , vy) 2 Yk,p, uk
1 = uk

2 = · · · = uk
y (mod p),

vk
1 = vk

2 = · · · = vk
y (mod p), where ui 6= vj for 1 6 i, j 6 r and ↵1 +↵2 + · · ·+↵y =

�1 + �2 + · · · + �y = p� 1.
This implies that there is no sk,p-zero free sequence of more than 2y elements,

thus f(k, p)  2y+1 . On the other hand, since y  p�1, it follows that f(k, p) > 2y.
This concludes the proof of the theorem.

3. On the Cardinality of E(2, Zp) \ M(sk, Zp)

For a given prime p and a positive integer k, our interest is to measure how much
is sk,p relaxed. In the following section, we will provide an answer to this question.

Theorem 6. Let the decomposition of k into power of primes be k =
Qt

i=1 p↵i
i ,

where pi are distinct primes and ↵i are positive integers for i = 1, 2, . . . , t. Then

|E(2, Zp) \M(sk, Zp)| =
✓

p

2

◆
·
 

1�
Qt

i=1 pExp(p,pi,↵i)
i � 1

p

!

.
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Proof. Let m(p, k) denote the number of sequences [u]p�1[v]p�1 2 E(2, Zp) such
that uk mod p = vk mod p for some u, v 2 [1, p�1] where u 6= v. Such a sequence
contains an sk-zero subsequence of length p. Thus, in order to prove Theorem 6, it
is su�cient to prove that

m(p, k) =
✓

p

2

◆
·
Qt

i=1 pExp(p,pi,↵i)
i � 1

p
. (4)

Indeed, given a 2 [1, p � 1], let N(p, k, a) be defined as the number of solutions
y satisfying the congruence yk ⌘ a (mod p). Consider the congruence xk ⌘ a
(mod p). If a(p�1)/gcd(k,p�1) ⌘ 1 (mod p), then N(p, k, a) = gcd(k, p � 1), or else
N(p, k, a) = 0. Therefore,

m(p, k) =
p�1X

a=1

✓
N(p, k, a)

2

◆
= (gcd(k, p� 1)� 1) · p� 1

2
.

This implies that the equation (4) is equivalent to

gcd(k, p� 1) =
tY

i=1

pExp(p,pi,↵i)
i , (5)

which has been proved in Lemma 1. Therefore the theorem follows.

Next, as promised, we will introduce a measurement to indicate how much is sk,p

relaxed. It is a number r 2 (0, 1]. The closer r = r(sk, Zp) is to 1, the closer sk,p

is to being an EGZ polynomial. Furthermore, r = 1 if and only if sk,p is an EGZ
polynomial.

Definition 5. Given a positive integer k and a prime p, we define

r(sk, Zp) =
|E(2, Zp) \M(sk, Zp)|

|E(2, Zp)|
=

|E(2, Zp) \M(sk, Zp)|�p
2

� .

With this definition, Theorem 4 can be presented in the following form.

Theorem 7. Let the decomposition of k into power of primes be k =
Qt

i=1 p↵i
i ,

where pi are distinct primes and ↵i are positive integers for i = 1, 2, . . . , t. Then

r(sk, Zp) = 1�
Qt

i=1 pExp(p,pi,↵i)
i � 1

p
.

Theorem 8. Let p be a prime and let k be a positive integer. Then the power sum
polynomial sk,p is an EGZ polynomial if and only if gcd(k, p� 1) = 1.

Proof. The power sum polynomial sk,p is an EGZ polynomial if and only if r(sk, Zp) =
1. And, by Theorem 7 and (5), r(sk, Zp) = 1 if and only if gcd(k, p� 1) = 1.
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Remark 1. Since by [13, p. 351] the monomial xk is a permutation of polynomial
of Zp if and only if gcd(k, p � 1) = 1, it follows from [7] that the EGZ power sum
polynomials in Theorem 8 are already known EGZ polynomials.

Corollary 2. If k is prime and p is also a prime, then

r(sk, Zp) =
⇢

1� (k � 1)/p, if p ⌘ 1 (mod k);
1, if p 6⌘ 1 (mod k).

Corollary 3. If k is a positive integer such that k = 2q where q 6⌘ 1, 2 (mod k)
and q is a prime, then

r(sk, Zp) = 1� (1/p).

Hence
lim inf r(sk,p, Zp) = 0, lim sup(sk,p, Zp) = 1

where k is a positive integer and p is a prime.

Corollary 4. The only k for which the power sum polynomials sk,p is an EGZ
polynomial for every prime p is k = 1.

We conclude with a problem.

Problem 1. Is the set {sk,p : k a positive integer and p a prime} dense in [0, 1]?

Acknowledgements. The authors would like to thank the anonymous referee for
his suggestion to include references [11] and [14].
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[9] P. Erdős, A. Ginzburg, and A. Ziv, Theorem in additive number theory, Bull. Res. Council
Israel 10F (1961), 41–43.

[10] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo.
Math. 24 (2006), 337–369.

[11] W. Gao, Y. Li, P. Yuan and J. Zhuang, On the structure of long zero-sum free sequences and
n-zero-sum free sequences over finite cyclic groups, Arch. Math. (Basel) 105 (2015), 361–370.

[12] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Second edition,
Graduate Texts in Mathematics, 84, Springer-Verlag, New York, 1990.

[13] R. Lidl and H. Niederreiter, Finite Fields, Second edition, Encyclopedia of Mathematics and
its Applications, 20, Cambridge University Press, Cambridge, 1997.

[14] S. Savchev and F. Chen, Long n-zero-free sequences in finite cyclic groups, Discrete Math.
308 (2008), 1–8.

[15] T. Yuster and B. Peterson, On a generalization of an addition theorem for solvable groups,
Canad. J. Math. 36(3) (1984), 529–536.


