

PRIMES p HAVING AT MOST ONE DIVISOR OF p-1 OF A SPECIFIED MULTIPLICATIVE ORDER

Peter Fletcher

Christiansburg, Virginia

Camron Withrow Department of Mathematics, Virginia Tech, Blacksburg, Virginia cwithrow@vt.edu

Received: 1/30/19, Accepted: 10/25/19, Published: 11/4/19

Abstract

For a prime p, let L(p) denote the least common-multiple of the multiplicative orders in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ of the divisors of p-1. We investigate those primes p with the property that there is exactly one divisor of p-1 of order L(p). This condition is closely related to two other properties: there is exactly one divisor of p-1 that is a primitive root; the restriction of multiplicative order to the set of divisors of p-1 is a permutation on this set. Indeed, through 10^{12} we have found no prime that distinguishes some two of these properties. If p is a prime with the putatively strongest of these three properties and p is not 5, then p-1 is square free. Our proof of this proposition relies on a property of primes for which there is a divisor of p-1of order three. Finally we look at primes p for which no divisor of p-1 has order L(p) and for which p-1 is square free. These primes have interesting properties, but we have only empirical evidence for the two most intriguing possibilities that for these primes L(p) = p-1 and that for these primes the order of any divisor of p-1 other than 1 and p-1 is a multiple of the largest prime divisor of p-1.

1. Introduction

Throughout p denotes a prime greater than 3, $(\mathbb{Z}/p\mathbb{Z})^{\times}$ denotes the group of units of the field $\mathbb{Z}/p\mathbb{Z}$, and for $x \in \mathbb{Z}/p\mathbb{Z}$, $\hat{\mathfrak{o}}(x)$ is the multiplicative order of x.

Let D_{p-1} denote the lattice of divisors of p-1; if the prime p is understood, we will often omit it from the notation, writing D for D_{p-1} . For $d \in D$, d^* denotes (p-1)/d, the complement of d. We investigate the function \mathfrak{o} on D defined by

$$\mathfrak{o}(d) = \widehat{\mathfrak{o}}([d]),$$

where $[d] \in \mathbb{Z}/p\mathbb{Z}$ is the image of d under the canonical quotient $\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$. We

denote the odd part of $\mathfrak{o}(d)$ by $\overline{\mathfrak{o}}(d)$, and the join of the elements

$$\{\mathfrak{o}(d): d \in D\}$$

by L(p). (Note, L(p) is the least common-multiple of the set $\{\mathfrak{o}(d) : d \in D\}$.) We sometimes use terminology relating to $\mathbb{Z}/p\mathbb{Z}$ for elements of D, for example we may say $d \in D$ is a *primitive root* provided $[d] \in \mathbb{Z}/p\mathbb{Z}$ is a primitive root.

We first consider which primes have the property that $\mathfrak{o}: D \to D$ is a permutation. The first five primes have this property, but the property is more restrictive than this auspicious beginning makes it appear. We are also concerned with a related question, which we conjecture is the same question in disguise: for which primes is there exactly one divisor of p-1 that is a primitive root? These questions lead naturally to the consideration of primes for which there is a divisor of p-1of order 3, in part for the reason one might think, that there can be only one such divisor of p-1, but also because if d is the divisor of p-1 with $\mathfrak{o}(d) = 3$, then $d^* = d + 1$. The existence of such a divisor of p-1 is one of two characterizations we give of primes p for which some divisor of p-1 has order 3. The other characterization, that there is a positive integer L such that $L^2 = 4p - 3$, makes it easy to hunt for these primes.

In Section 4, we consider primes p for which there is exactly one divisor of p-1 whose order is p-1. All safe primes, that is primes of the form 2a + 1 where a is also prime, have this property, and through 10^{12} all primes p with this property are either safe primes or primes of the form p = 2ab + 1, where a and b are odd primes. Our main theorem gives several characterizations of such primes (see Corollary 2; we have omitted some of the characterizations which will be motivated later in the paper.)

Theorem 1. Let p = 2ab + 1 where a and b are primes. Then the following statements are equivalent:

- 1. $\mathfrak{o}: D_{p-1} \to D_{p-1}$ is a permutation;
- 2. there is exactly one divisor of p-1 whose order is L(p);
- 3. more than half the divisors of p-1 are orders of divisors of p-1 and the complement of the order of any $d \in D_{p-1}$ is the order of a divisor of p-1.

We do not know if there exists a prime p for which there are more than three prime divisors of p-1, and for which there is exactly one divisor d of p-1 with $\mathfrak{o}(d) = p-1$. It seems natural to ask if there is always at least one divisor d of p-1 with $\mathfrak{o}(d) = p-1$, but there are primes, such as 439, for which there is a prime divisor of p-1 that does not divide the order of any divisor of p-1. For this reason, we ask instead if there is always a divisor of p-1 whose order is L(p). The answer to this question is also no, the smallest example, among the primes p for which p-1 is square free, being 77,869,111. We have observed several interrelated properties that hold for all the nearly three thousand primes p for which p-1 is square free and for which no divisor of p-1 has order L(p). Some of the results given in Section 5 hint at the possibility that the observed properties persist for all such primes. The most intriguing of these properties is that the largest prime divisor of p-1 divides the order of every divisor of p-1 other than $\mathfrak{o}(1) = 1$ and $\mathfrak{o}(p-1) = 2$.

2. Preliminary Results

We make frequent use of the following facts about multiplicative order. For all $a, b \in \mathbb{Z}/p\mathbb{Z}$:

- 1. $\widehat{\mathfrak{o}}(ab) \mid \widehat{\mathfrak{o}}(a)\widehat{\mathfrak{o}}(b);$
- 2. if $d \mid \hat{\mathfrak{o}}(a)$ and $d \nmid \hat{\mathfrak{o}}(b)$, then $d \mid \hat{\mathfrak{o}}(ab)$;
- 3. for any positive integer n,

$$\widehat{\mathfrak{o}}(a^n) = \widehat{\mathfrak{o}}(a) / \gcd(n, \widehat{\mathfrak{o}}(a));$$

4. for each $x \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, $\widehat{\mathfrak{o}}(x)$ divides p-1.

Proposition 1. Let p be a prime and $d \in D$.

- 1. If $2 || \mathfrak{o}(d)$, then $\mathfrak{o}(d^*) = \mathfrak{o}(d)/2$.
- 2. If $4 | \mathfrak{o}(d)$, then $\mathfrak{o}(d) = \mathfrak{o}(d^*)$.
- 3. If $2 \nmid \mathfrak{o}(d)$, then $\mathfrak{o}(d^*) = 2\mathfrak{o}(d)$.

Proof. (1) Suppose that $\mathfrak{o}(d) = 2x$, where x is odd. Then

$$d^x \equiv p - 1 \equiv dd^* \pmod{p}$$
 and $d^{x-1} \equiv d^* \pmod{p}$.

Thus

$$\mathfrak{o}(d^*) = \mathfrak{o}(d^{x-1}) = (2x)/\gcd(2x, x-1)$$

= $(2x)/2 = x = \mathfrak{o}(d)/2.$

(2) Since for any positive integer x, the integers 2x - 1 and 4x are coprime, the proof follows as in (1).

(3) Suppose $\mathfrak{o}(d) = x$ where x is odd. Since

$$2 = \mathfrak{o}(p-1) = \mathfrak{o}(dd^*)$$
 and $\mathfrak{o}(dd^*) \mid \mathfrak{o}(d)\mathfrak{o}(d^*)$,

 $\mathfrak{o}(d^*) = 2y$ for some number y. It follows from (2) that y is odd. By (1), $\mathfrak{o}(d) = \mathfrak{o}(d^{**}) = y$. But $\mathfrak{o}(d) = x$. Thus $\mathfrak{o}(d^*) = 2x = 2\mathfrak{o}(d)$.

INTEGERS: 19 (2019)

Proposition 2. The prime p = 5 is the only prime $p \equiv 1 \pmod{4}$ for which there is exactly one divisor of p - 1 that is a primitive root.

Proof. Suppose that $p \equiv 1 \pmod{4}$ and suppose that there is only one divisor d of p-1 such that $\mathfrak{o}(d) = p-1$. By Proposition 1(2), $\mathfrak{o}(d^*) = p-1$ and so $d^* = d$. Therefore

$$2 = \mathfrak{o}(p-1) = \mathfrak{o}(dd^*) = \mathfrak{o}(d^2) = (p-1)/2$$

and p = 5.

Definition. A prime p = 2a + 1, where a is also prime, is called a *safe prime*. (The prime a is called a Sophie Germain prime.)

Proposition 3. For any safe prime p, multiplicative order is a permutation of the set D_{p-1} .

Proof. We have already noted that the proposition holds for p = 5. Let p = 2a + 1 where a is an odd prime. Clearly $\mathfrak{o}(1) = 1$; $\mathfrak{o}(2a) = 2$ and both $\mathfrak{o}(a)$ and $\mathfrak{o}(2)$ belong to $\{a, 2a\}$. By Proposition 1, $\mathfrak{o}(2)$ and $\mathfrak{o}(a)$ have opposite parity.

It is a well-known unsolved problem whether or not there are infinitely many Sophie Germain primes (see [3, Section 1] and [4, Section 5.5.5].) Consequently, it seems likely that it is a difficult problem to decide if there are infinitely many primes for which there is exactly one divisor of p-1 that is a primitive root.

We look briefly at primes of the form 2ab + 1, where a and b are two odd primes. In some sense these primes are as close to safe primes as we can get.

Suppose $\mathfrak{o}(a) = a$ and $\mathfrak{o}(b) = b$. Then $\mathfrak{o}(ab) = ab$, $\mathfrak{o}(2) = 2ab$, $\mathfrak{o}(2b) = 2a$ and $\mathfrak{o}(2a) = 2b$, so that $\mathfrak{o} : D \to D$ is a permutation. The trouble is that we have been unable to find such a prime.

Question 1. Is there a prime of the form 2ab + 1, with two odd primes a and b, such that $\mathfrak{o}(a) = a$ and $\mathfrak{o}(b) = b$?

The same sort of argument as the one given above shows that if $\mathfrak{o}(a) = b$ and $\mathfrak{o}(b) = a$, then $\mathfrak{o} : D \to D$ is a permutation. We have found just one such prime, namely 112643 = 2(17)(3313) + 1.

3. Primes for Which There is a Divisor d Such That $d^* = d + 1$

Proposition 4. Let p be prime. There is at most one $d \in D_{p-1}$ such that $d^* = d+1$. Proof. Let d and e be divisors of p-1 such that $d^* = d+1$ and $e^* = e+1$. Then

$$p-1 = d^2 + d = e^2 + e.$$

If $d \neq e$,

$$d + e \le (p - 1)/2 + (p - 1)/3$$

and so d + e + 1 < p. Since (d - e)(d + e + 1) = 0, we have d = e.

Proposition 5. Let p be a prime greater than 3. The following statements are equivalent:

- 1. there is $d \in D$ with $\mathfrak{o}(d) = 3$;
- 2. there is $d \in D$ such that $d^* = d + 1$ and $\mathfrak{o}(d) = 3$;
- 3. there is $d \in D$ such that $d^* = d + 1$;
- 4. 4p-3 is a square.

Proof. (1) \Rightarrow (2). Let d be a divisor of p-1 such that $\mathfrak{o}(d) = 3$. Then $p \mid d^3 - 1 = (d-1)(d^2 + d + 1)$ and $d \neq 1$. Therefore p divides both d(d+1) + 1 and $d(d^*) + 1$. Hence $p \mid d^* - (d+1)$. As $0 \leq d^* - (d+1) < p$, $d^* = d + 1$.

 $(2) \Rightarrow (3)$ is evident.

 $(3) \Rightarrow (1)$. Let d be a divisor of p-1 such that $d^* = d+1$. Then $p = dd^* + 1 = d^2 + d + 1$ and so $p \mid (d-1)(d^2 + d + 1) = d^3 - 1$. Since p > 3, $d \neq 1$. Thus $\mathfrak{o}(d) = 3$. $(4) \Leftrightarrow (3)$. Suppose there is a divisor d of p-1 such that $d^* = d+1$. Then $4p = 4(dd^* + 1) = 4(d^2 + d + 1) = (2d + 1)^2 + 3$. Now suppose that L is a positive integer such that $4p = L^2 + 3$. The equation $x^2 + x + 1 = p$ has roots $r_1 = -1/2 + L/2$ and $r_2 = -1/2 - L/2$. Set $d = r_1$ and note that $|r_2| = d+1$. Since $d|r_2| = |r_1r_2| = p-1$, $d^* = d+1$.

Consider a prime of the form 6a + 1 (where *a* is also prime) that has a divisor *d* of p - 1 such that $d^* = d + 1$. There are only 8 divisors of p - 1, and we know that there is exactly one divisor of p - 1 for each of 1,2,3, and 6. So for such a prime there is a good chance that $\mathfrak{o} : D \to D$ is a permutation. The good news is that this is true for all primes of this form. Alas, there are only two such primes, 31 with d = 5 and 43 with d = 6.

Proposition 6. The primes 31 and 43 are the only primes of the form 6a + 1, where a is a prime greater than 3, for which there exists a divisor d of p - 1 such that $d^* = d + 1$.

Proof. Let p = 6a + 1, where a > 3 and a is prime, and suppose there is a divisor d of p - 1 such that $d^* = d + 1$. Because $6 \in \{d, d^*\}$, either d = 5 and $d^* = 6$ or d = 6 and $d^* = 7$.

Proposition 7. Let p be a prime greater than 5 for which $\mathfrak{o} : D \to D$ is a permutation. Then p-1 is square free.

Proof. The proof is by contradiction. Suppose d^2 is a divisor of p-1 such that $1 < d < d^2 \le p-1$. Because $\mathfrak{o}(d^2) = \mathfrak{o}(d)/\gcd(\mathfrak{o}(d), 2)$, $\mathfrak{o}(d)$ is even, say $\mathfrak{o}(d) = 2K$. By Proposition 2, K is odd. Therefore by Proposition 1(1), $\mathfrak{o}(d^*) = K = \mathfrak{o}(d^2)$, and $d^3 = p-1$. It follows that $2 = \mathfrak{o}(d^3) = 2K/\gcd(3, 2K)$, and so K = 3. Because $\mathfrak{o}(d^2) = 3$, it follows from Proposition 5 that $d = (d^2)^* = d^2+1$, a contradiction. \square

Remark. The previous proposition shows: if $\mathfrak{o} : D \to D$ is a permutation (and p > 5), then D is a Boolean lattice.

We make no use of the last proposition in this section, other than to motivate the following question.

Question 2. Suppose that p = 6ab + 1 where a and b are two primes greater than 3. If there is a divisor d of p - 1 such that $d^* = d + 1$, is it true that 3 is a primitive root?

Example 1. Let p = 71023. Then p - 1 = (6)(7)(19)(89) = (266)(267), but $\mathfrak{o}(3) = (p-1)/7$.

Proposition 8. Let p be a prime of the form p = 6ab + 1, where a and b are two primes greater than 3, for which there is a divisor d of p - 1 such that $d^* = d + 1$. Then 3 is a divisor of p - 1 and $\mathfrak{o}(3)$ is a multiple of 6.

Proof. Since p = 6ab + 1, 3 is a divisor of p - 1. By the law of quadratic reciprocity, $\mathfrak{o}(3)$ is even, because $\left(\frac{p}{3}\right) = \left(\frac{1}{3}\right) = 1$ and since $p \equiv 3 \pmod{4}$, $\left(\frac{3}{p}\right) = -1$. Because $p \equiv 1 \pmod{3}$, there are uniquely determined positive integers L and M such that $4p = L^2 + 27M^2$ (see [1] and [2, Proposition 8.3.2],) and by a result of Jacobi, $3 \mid \mathfrak{o}(3)$ if, and only if, M is not a multiple of 3. There are two cases:

- 1. $d \equiv 0 \pmod{3}$. Set M = d/3. Then $4p 27M^2 = 4d^2 + 4d + 4 3d^2 = (d^* + 1)^2$. Thus $L = d^* + 1$.
- 2. $d \equiv 2 \pmod{3}$. Set $M = d^*/3$. Then $4p 27M^2 = 4d^2 + 4d + 4 3(d^*)^2 = (d-1)^2$. Thus L = d-1.

In either case, $M \mid p-1$ and since $9 \nmid p-1, 3 \nmid M$.

4. A Generalization of Safe Primes

For the remainder of the paper, p always denotes a prime greater than 3 for which p-1 is square free.

Proposition 9. Let p be a prime and let q be an odd prime divisor of L(p). Then there are at least two prime divisors of p-1 whose orders are divisible by q.

Proof. Because $q \mid L(p)$, there is a divisor d of p-1 such that

 $q \mid \mathfrak{o}(d) \mid \prod \{ \mathfrak{o}(x) : x \text{ is a prime and } x \mid d \}.$

Thus there is a prime divisor x of d such that $q | \mathfrak{o}(x)$. By Proposition 1, $q | \mathfrak{o}(d^*)$ and so there is a prime y such that $y | d^*$ and $q | \mathfrak{o}(y)$. As p-1 is square free, $x \neq y$.

Definition. A prime p has the *two-prime property* provided that for each odd prime divisor q of p-1 there are at most two divisors $d, e \in D$ such that d, e are prime, and $q \mid \mathfrak{o}(d)$ and $q \mid \mathfrak{o}(e)$.

Evidently all safe primes have the two-prime property: this is true vacuuously for the safe prime 5 and true trivially for all other safe primes.

We adopt the following notation, which the authors refer to as "wedge" (short for "the wedge product of.") Let $a, b \in D$. Then

$$\overline{\mathfrak{o}}(a)\nabla \overline{\mathfrak{o}}(b) := \prod \{ d \in D : d \text{ is a prime and } d \mid \overline{\mathfrak{o}}(a) \text{ XOR } d \mid \overline{\mathfrak{o}}(b) \}.$$

Note that for $a, b \in D$

$$\overline{\mathfrak{o}}(a)\nabla \overline{\mathfrak{o}}(b) \mid \overline{\mathfrak{o}}(ab) \mid \overline{\mathfrak{o}}(a)\overline{\mathfrak{o}}(b).$$

Proposition 10. Let p have the two-prime property and let d and e be coprime divisors of p-1. Then

$$\overline{\mathfrak{o}}(d)\nabla \,\overline{\mathfrak{o}}(e) = \overline{\mathfrak{o}}(de).$$

Proof. It suffices to show that $\overline{\mathfrak{o}}(de) | \overline{\mathfrak{o}}(d) \nabla \overline{\mathfrak{o}}(e)$. Let u be an odd prime divisor of $\overline{\mathfrak{o}}(de)$. Then $u | \overline{\mathfrak{o}}(d)$ or $u | \overline{\mathfrak{o}}(e)$. Suppose that u divides both $\overline{\mathfrak{o}}(d)$ and $u | \overline{\mathfrak{o}}(e)$ and let r and s be the two prime divisors of p-1 whose orders are divisible by u. Then rs | de and so $u \nmid \mathfrak{o}(de)$. Thus $u | \overline{\mathfrak{o}}(d) \nabla \overline{\mathfrak{o}}(e)$.

Definition. A prime p is order multiplicative provided that whenever a and b are coprime divisors of p - 1, $\overline{\mathfrak{o}}(a) \nabla \overline{\mathfrak{o}}(b) = \overline{\mathfrak{o}}(ab)$.

Lemma 1. Suppose that p is order multiplicative and let a and b be coprime divisors of p-1 such that $ab \neq 1$ and such that $\overline{\mathfrak{o}}(a) = \overline{\mathfrak{o}}(b)$. Then $b = a^*$.

Proof.
$$\overline{\mathfrak{o}}(ab) = \overline{\mathfrak{o}}(a) \nabla \overline{\mathfrak{o}}(b) = 1$$
. Since $ab \neq 1$, $ab = p - 1$.

Lemma 2. Suppose that p is order multiplicative, let a and b be divisors of p-1 such that $\overline{\mathfrak{o}}(a) = \overline{\mathfrak{o}}(b)$, and let $x = \gcd(a, b)$. Then $\overline{\mathfrak{o}}(a/x) = \overline{\mathfrak{o}}(b/x)$.

Proof. $\overline{\mathfrak{o}}(a/x)\nabla \overline{\mathfrak{o}}(x) = \overline{\mathfrak{o}}(a) = \overline{\mathfrak{o}}(b) = \overline{\mathfrak{o}}(b/x)\nabla \overline{\mathfrak{o}}(x)$. Let q be a prime that divides $\overline{\mathfrak{o}}(a/x)$. There are two cases:

- 1. $q \mid \overline{\mathfrak{o}}(x)$. Then $q \nmid \overline{\mathfrak{o}}(b/x) \nabla \overline{\mathfrak{o}}(x)$ and so $q \mid \overline{\mathfrak{o}}(b/x)$.
- 2. $q \nmid \overline{\mathfrak{o}}(x)$. Then $q \mid \overline{\mathfrak{o}}(b/x) \nabla \overline{\mathfrak{o}}(x)$ and so $q \mid \overline{\mathfrak{o}}(b/x)$.

INTEGERS: 19 (2019)

Thus $\overline{\mathfrak{o}}(a/x) | \overline{\mathfrak{o}}(b/x)$ and by symmetry $\overline{\mathfrak{o}}(b/x) = \overline{\mathfrak{o}}(a/x)$.

Proposition 11. Suppose that p is order multiplicative. Then multiplicative order is a permutation of the divisors of p - 1.

Proof. Let a and b be divisors of p-1. It suffices to show that if $\overline{\mathfrak{o}}(a) = \overline{\mathfrak{o}}(b)$, then a = b or $a = b^*$. For it follows that if $\mathfrak{o}(a) = \mathfrak{o}(b)$, either a = b or $a = b^*$ and $a \neq b^*$ because, by Proposition 1, b and b^* have different orders. To this purpose, suppose that $\overline{\mathfrak{o}}(a) = \overline{\mathfrak{o}}(b)$ and $a \neq b$. Let $x = \gcd(a, b)$. By Lemma 2, $\overline{\mathfrak{o}}(a/x) = \overline{\mathfrak{o}}(b/x)$. By Lemma 1, if $ab/x^2 \neq 1$, $b/x = (a/x)^*$. Since $a \neq b$, $ab/x^2 \neq 1$. Thus $(b/x) = (a/x)^*$ and x = 1. Thus $b = a^*$.

Corollary 1. Let p be a prime such that $L(p) \neq p-1$. Then there is an odd prime divisor of p-1 that divides $\mathfrak{o}(d)$ for at least three prime divisors $d \in D_{p-1}$.

We make the conjecture, which we have confimed for primes less than 10^{11} , that when p is a prime for which $L(p) \neq p-1$, the largest prime divisor of p-1 always divides $\mathfrak{o}(d)$ for at least three prime divisors $d \in D_{p-1}$.

Example 2. Let p = 71. Then L(p) = p - 1, $\mathfrak{o}(2) = 35$, $\mathfrak{o}(5) = 5$, and $\mathfrak{o}(7) = 70$. Thus the largest prime divisor of 70, namely 7, divides $\mathfrak{o}(d)$ for only two prime divisors d of p - 1, whereas 5 divides $\mathfrak{o}(d)$ for every divisor d of p - 1 other than 1 and p - 1.

Corollary 2. Let p = 2ab + 1 where a and b are prime. Then the following statements are equivalent:

- 1. the prime p has the two-prime property;
- 2. the prime p is order multiplicative;
- 3. $\mathfrak{o}: D \to D$ is a permutation;
- 4. there is exactly one divisor d of p-1 such that $\mathfrak{o}(d) = L(p)$;
- 5. for each $d \in D$, there is a divisor $e \in D$ such that $\mathfrak{o}(e) = \mathfrak{o}(d)^*$, and more than half of the elements of D are in the image of \mathfrak{o} .

Proof. We have seen that $(1) \Rightarrow (2) \Rightarrow (3)$ and it follows immediately from Proposition 9 that $(3) \Rightarrow (1)$. Clearly (3) implies both (4) and (5).

Suppose that (4) holds. Note that for each $d \in D \setminus \{1, p-1\}$, $\mathfrak{o}(d)$ is a multiple of a or b. Therefore L(p) = p-1. Also every divisor of p-1 other than 1 and p-1 is either prime or the complement of a prime, and exactly one $d \in D$ such that d is prime, and $\mathfrak{o}(d)$ is a multiple of ab. Moreover, by Proposition 9, both a and b divide $\mathfrak{o}(d)$ for at least two prime divisors d of p-1. By the pigeonhole property, p satisfies the two-prime property.

Suppose that (5) holds and suppose that there is a divisor d of p-1 not in the image of \mathfrak{o} . If d is odd, $d, d^*, 2d$, and $(2d)^*$ are four divisors of p-1 that are not in the image of \mathfrak{o} , and if d is even, $d, d^*, d/2$, and $(d/2)^*$ are four divisors of p-1 that are in the image of \mathfrak{o} . In either case, the condition that more than half the divisors of p-1 are in the image of \mathfrak{o} cannot hold.

Through 10^{12} , we have found only three primes, p, other than the safe primes for which there is exactly one divisor d of p-1 such that $\mathfrak{o}(d) = L(p)$. They are p = 31, p = 43, and p = 112643, and all these primes are of the form p = 2ab + 1, where a and b are prime. Thus the reappearance of 31 and 43 from Section 3 is explained by condition (3) of the previous corollary.

5. Primes p for Which No Divisor has o(d) = L(p)

As we mentioned in the introduction, p = 77869111 is the least prime for which there is no divisor d of p-1 such that $\mathfrak{o}(d) = L(p)$. We have found 2989 such primes less than 10^{12} .

Definitions. A nonempty subset of D that is closed under complementation and coprime multiplication is called a *complete set*.

Note that if C is a complete set of divisors of p-1, then $\{1, p-1\} \subset C$. If A and B are complete sets of divisors of p-1 and $A \cap B = \{1, p-1\}$, we say that A and B are almost disjoint.

Lemma 3. Let $C \subset D$ be a complete set that contains a prime divisor q of p-1 and suppose that C is the almost disjoint union of two complete sets A and B. Then A = C or B = C.

Proof. It suffices to show that $A = \{1, p - 1\}$ or $B = \{1, p - 1\}$. The proof is by contradiction. Suppose without loss of generality that $q \in A \setminus \{1, p - 1\}$ and that there exists $b \in B \setminus \{1, p - 1\}$. Either gcd(q, b) = 1 or $gcd(q, b^*) = 1$ and since both b and b^* belong to B we assume without loss of generality that gcd(q, b) = 1. Then $q^*/b = (qb)^* \in C$ and $q^*/b \notin B$, lest q^* belongs to B. Thus $q^*/b \in A$ and $b^* = q(q^*/b) \in A$, a contradiction.

Proposition 12. Let p be a prime for which there is no $d \in D$ such that $\mathfrak{o}(d) = L(p)$ and suppose that p - 1 has four or fewer prime divisors. Then L(p) = p - 1.

Proof. We consider only the case that p-1 has exactly four prime divisors, say p-1 = 2abc. The proof is by contradiction. Suppose that L(p) < p-1. Then without loss of generality we may assume that L(p) = 2ab. Let $A = \{d \in D : a \nmid \mathfrak{o}(d)\}$ and $B = \{d \in D : b \nmid \mathfrak{o}(d)\}$. Then A and B are almost disjoint complete sets

and $A \cup B = D$. By Lemma 3, A = D or B = D, which contradicts the assumption that $ab \mid L(p)$.

Definition. A prime divisor of p-1 is *dense* provided it divides $\mathfrak{o}(d)$ for every $d \in D \setminus \{1, p-1\}$. We denote the set of prime divisors of p-1 that are not dense by S(p).

Proposition 13. Let p be a prime for which L(p) = p - 1 and for which there is no divisor d of p - 1 such that $\mathfrak{o}(d) = p - 1$. Then S(p) has at least four members. If S(p) has exactly four members, then for each odd prime $x \in S(p)$, $x^* = \mathfrak{o}(d)$ for some $d \in D$.

Proof. It is clear that S(p) has at least three members. For if $S(p) = \{2\}$ and $d \in D \setminus \{1, p-1\}$, either d or d^* is a primitive root, and if $S(p) = \{2, s\}$ there is a divisor d of p-1 such that $s \mid \mathfrak{o}(d)$ and either d or d^* is a primitive root. Let 2, a, b be three members of S(p). By Proposition 9 there are prime divisors, r and s, of p-1 such that $a \mid \mathfrak{o}(r)$ and $b \mid \mathfrak{o}(s)$. Then ab divides at least one of $\mathfrak{o}(r), \mathfrak{o}(s)$ and $\mathfrak{o}(rs)$, and so there is a fourth member of S(p).

Now suppose that $S(p) = \{2, r, s, t\}$ and let x be one of r, s, t. By the argument just given there is a divisor d of p - 1 such that $(rst/x) | \mathfrak{o}(d)$ and so $x^* = \mathfrak{o}(d)$ or $x^* = \mathfrak{o}(d^*)$.

Corollary 3. Let p be a prime for which L(p) = p - 1 and for which there is no divisor $d \in D$ such that d is a primitive root, and let x be the least odd prime divisor of p - 1. If $x \in S(p)$ and S(p) has exactly four members, then x^* is the largest divisor in the image of \mathfrak{o} .

Examples. The following are examples of primes p for which L(p) = p - 1 and for which there is no divisor d of p - 1 with $\mathfrak{o}(d) = p - 1$:

- 1. $p = 77869111 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 235967 + 1$. The only dense divisor of p 1 is 235967. By the corollary, 3^* is the largest divisor in the image of \mathfrak{o} .
- 2. $p = 7624557571 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 1171207 + 1$. The only dense divisor of p 1 of p 1 is 1171207. For this prime $3^*, 5^*, 7^*$ are in the image of \mathfrak{o} but 31^* is not.
- 3. $p = 694081875103 = 2 \cdot 3 \cdot 7 \cdot 11 \cdot 41 \cdot 59 \cdot 621059 + 1$ has three dense divisors of p 1, namely 41, 59 and 621059.
- 4. $p = 398975049691 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 111757717 + 1$. The only dense divisor of p-1 is 111757717 and x^* is in the image of \mathfrak{o} for each odd member x of S(p).

We have found that if p is a prime less than 10^{12} and p has no divisor d of p-1 such that $\mathfrak{o}(d) = L(p)$, then p has the following properties:

- 1. L(p) = p 1;
- 2. the largest prime divisor of p-1 is dense;
- 3. if $x \in S(p)$ and y is a dense prime divisor of p 1, then x < y (cf. Example 2 of Section 4);
- 4. the largest divisor in the image of \mathfrak{o} is x^* , where x is the least odd prime divisor of p-1;
- 5. there is an odd member x of S(p) for which x^* in the image of \mathfrak{o} ;
- 6. $3 \mid p 1 \text{ or } 5 \mid p 1$.

It is noteworthy that through 3×10^{11} properties 1,2, and 6 also hold for primes $p \equiv 3 \pmod{4}$ for which p-1 is not square free. There is not much point in considering primes $p \equiv 1 \pmod{4}$. The prime q = 3541 illustrates what goes wrong: although there are two divisors d of p-1 such that $\mathfrak{o}(d) = L(q)/2$, there is no divisor e of p-1 with the property $\mathfrak{o}(e) = L(q)$.

Examples. The following are examples of primes $p \equiv 3 \pmod{4}$ for which p-1 is not square free, and there is no divisor d of p-1 with $\mathfrak{o}(d) = L(p)$.

- 1. $p = 3815197471 = 2 \cdot 3^3 \cdot 5 \cdot 7 \cdot 2018623 + 1$ has dense prime divisors 3 and 2018623. Hence p does not satisfy property 3. Since $S(p) = \{2, 5, 7\}$, Proposition 13 does not extend to primes for which p - 1 is not square free.
- 2. $p = 26499741031 = 2 \cdot 3^3 \cdot 5 \cdot 7 \cdot 14021027 + 1$. The largest divisor in the image of \mathfrak{o} is $\mathfrak{o}(6) = 5^*$. Thus p does not satisfy property 4.
- 3. $p = 336932887411 = 2 \cdot 3^3 \cdot 5 \cdot 7 \cdot 178271369 + 1$ has no odd prime divisor x for which x^* is in the image of \mathfrak{o} .
- 4. $p = 819267931 = 2 \cdot 3^3 \cdot 5 \cdot 13 \cdot 700229 + 1$ is the least prime for which $p \equiv 3 \mod 4$, p-1 is not square free, and no divisor d of p-1 such that $\mathfrak{o}(d) = L(p)$.

References

- K. Williams, On Euler's criterion for cubic nonresidues, Proc. Amer. Math. Soc. 49 (1975), 277-283.
- [2] K. Ireland, and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1990.
- [3] P. Leonetti, A characterization of Sophie Germain primes, Int. J. Number Theory 14 (2018), 653-660.
- [4] V. Shoup, A Computational Introduction to Number Theory and Algebra, Cambridge University Press, Cambridge, 2009.