

ALTERNATIVE SOLUTIONS TO LINEAR RECURRENCE EQUATIONS

Author Martin W. Bunder

School of Mathematics and Applied Statistics, University of Wollongong, New South Wales, Australia mbunder@uow.edu.au

Received: 8/31/17, Revised: 5/28/19, Accepted: 11/2/19, Published:12/6/19

Abstract

Lagrange has shown that the solution of a k-th order linear recurrence relation can be expressed in terms of the distinct solutions of its characteristic equation and their multiplicities. This paper shows that such a solution can also be expressed in terms of just one solution of the characteristic equation and the solution of a (k - 1)-th order linear recurrence relation. Using this, an explicit solution to an arbitrary third, and the most general case of an arbitrary fourth, order linear recurrence relation are obtained.

1. Introduction

The function satisfying a general k-th order linear recurrence relation can be defined as follows.

Definition 1.1. For $0 \le n < k$,

$$w_{n,k}(a_0, a_1, \dots, a_{k-1}; p_1, p_2, \dots, p_k) = a_n,$$
 (1.1)

and for $n \ge k - 1$, $w_{n+1,k}(a_0, \dots, a_{k-1}; p_1, \dots, p_k) =$

 $p_1 w_{n,k}(a_0, \dots, a_{k-1}; p_1, \dots, p_k) + \dots + p_k w_{n+1-k,k}(a_0, \dots, a_{k-1}; p_1, \dots, p_k).$ (1.2)

If $a_0, \ldots, a_{k-1}, p_1, \ldots, p_k$ remain constant, $w_{n,k}(a_0, \ldots, a_{k-1}; p_1, \ldots, p_k)$ will usually be written as $w_{n,k}$.

Note that $a_0, \ldots, a_{k-1}, p_1, \ldots, p_k$ can be arbitrary complex numbers.

An explicit formulation for $w_{n,k}$ can be found using the following theorem due to Lagrange ([5] and [6]). For more recent work see Cull [2] or Elaydi [3].

Theorem 1. If $\gamma_1, \ldots, \gamma_r$, the distinct roots of the "characteristic equation"

$$\gamma^{k} - p_{1}\gamma^{k-1} - \dots - p_{k} = 0, \qquad (1.3)$$

have multiplicities $m(1), \ldots, m(r)$, (so that $\sum_{i=1}^{r} m(i) = k$), the general solution of (1.2) is

$$w_{n,k} = c_1(n)\gamma_1^n + c_2(n)\gamma_2^n + \ldots + c_r(n)\gamma_r^n,$$

where for each i, $c_i(n)$ is a polynomial in n of order less than m(i) which can be determined using (1.1).

In this paper we provide a method of solving the general linear recurrence relation of Definition 1.1 that requires only one solution of (1.3) and solutions of a (k-1)-th order linear recurrence relation. More precisely, if values of

 $w_{m,k-1}(a'_0,\ldots,a'_{k-2};p'_1,\ldots,p'_{k-1})$ are tabulated, or easily found for m < n, $w_{n,k}(a_0,\ldots,a_{k-1};p_1,\ldots,p_k)$ can be easily determined. This process can be continued to give an expression for $w_{n,k}$ in terms of $w_{m,2}(a^*_0,a^*_1;p^*_1,p^*_2)$ (often called a Horadam function) for some values of a^*_0,a^*_1,p^*_1,p^*_2 .

We do this below for k = 3 and for the most general case of k = 4.

Even when k > 4, and a solution of (1.3) cannot be found explicitly, a good approximation of the smallest solution of (1.3), found numerically, will give, by this method, a good approximate expression for $w_{n,k}$.

In what follows we can assume $p_k \neq 0$ as $w_{0,k}(a_0, \ldots, a_{k-1}; p_1, \ldots, p_{k-1}, 0) = a_0$ and, for n > 0,

 $w_{n,k}(a_0,\ldots,a_{k-1};p_1,\ldots,p_{k-1},0) = w_{n-1,k-1}(a_1,\ldots,a_{k-1};p_1,\ldots,p_{k-1}).$

2. Representing $w_{n+1,k}$ in Terms of $w_{i,k-1}$

The following theorem allows us to represent $w_{n+1,k}$ in terms of $w_{i,k-1}$ for $0 \le i \le n$.

Theorem 2. If γ is a solution of (1.3), where $p_k \neq 0$ and for $0 \le n < k - 1$, $a'_n = a_{n+1} - \gamma a_n$ and $p'_{n+1} = (\sum_{j=0}^n \gamma^j p_{n+1-j}) - \gamma^{n+1}$, then (i) $w_{n+1,k}(a_0, \dots, a_{k-1}; p_1, \dots, p_k)$ $= w_{n,k-1}(a'_0, \dots, a'_{k-2}; p'_1, \dots, p'_{k-1}) + \gamma w_{n,k}(a_0, \dots, a_{k-1}; p_1, \dots, p_k)$, (ii) $w_{n+1,k}(a_0, \dots, a_{k-1}; p_1, \dots, p_k)$ $= \gamma^{n-j+1}a_j + \sum_{i=0}^{n-j} \gamma^i w_{n-i,k-1}(a'_0, \dots, a'_{k-2}; p'_1, \dots, p'_{k-1})$ for $j \le n-1$ and $0 \le j < k$.

Proof. Let, for any $\gamma \neq 0$, $w'_{n,k} = w_{n+1,k} - \gamma w_{n,k}$, then for $0 \leq n < k-1$, let

$$a'_n = w'_{n,k} = a_{n+1} - \gamma a_n$$

and

$$p'_{n+1} = \left(\sum_{j=0}^{n} \gamma^{j} p_{n+1-j}\right) - \gamma^{n+1}$$

The latter gives:

$$p_1 = \gamma - p_2/\gamma - p_3/\gamma^2 - \dots - p_{k-1}/\gamma^{k-2} + p'_{k-1}/\gamma^{k-2}$$

If γ is a solution of (1.3), as $p_k \neq 0$, we have that $\gamma \neq 0$, as required above, and so $p_k = -\gamma p'_{k-1}$.

Now for $n \ge k - 1$,

$$w_{n+1,k} = p_1 w_{n,k} + p_2 w_{n-1,k} + \ldots + p_k w_{n-k+1,k}$$

 $= (p'_1 + \gamma)w_{n,k} + (p'_2 - \gamma p'_1)w_{n-1,k} + \ldots + (p'_{k-1} - \gamma p'_{k-2})w_{n-k+2,k} - \gamma p'_{k-1}w_{n-k+1,k}$ and so,

$$w'_{n,k} = p'_1 w'_{n-1,k} + \ldots + p'_{k-1} w'_{n-k+1,k}.$$

So we have proved

$$w'_{n,k} = w_{n,k-1}(a'_0, \dots, a'_{k-2}; p'_1, \dots, p'_{k-1})$$

and for $j \leq n+1$ and $0 \leq j \leq k-1$,

$$w_{n+1,k}(a_0,\ldots,a_{k-1};p_1,\ldots,p_k)$$

= $w_{n,k-1}(a'_0,\ldots,a'_{k-1};p'_1,\ldots,p'_{k-1}) + \gamma w_{n,k}(a_0,\ldots,a_{k-1};p_1,\ldots,p_k)$
= $\gamma^{n-j+1}a_j + \sum_{i=0}^{n-j} \gamma^i w_{n-i,k-1}(a'_0,\ldots,a'_{k-2};p'_1,\ldots,p'_{k-1}).$

Remark. Any solution γ of (1.3), repeated or not, real or complex, can be used to give the result in (i) or (ii). If the values of $w_{n,k-1}$ have been tabulated and such a γ is at hand, $w_{n,k}$ can be evaluated much more easily than by Lagrange's method (i.e., Theorem 1 above).

The following theorem gives a further connection between p_1, \ldots, p_k and p'_1, \ldots, p'_{k-1} .

Theorem 3. If γ is a solution of (1.3), where $p_k \neq 0$, then the other solutions of (1.3) are those of

$$x^{k-1} - p_1' x^{k-2} - \dots - p_{k-1}' = 0$$
(2.1)

where $p'_1 = p_1 - \gamma$, $p'_2 = p_2 + p'_1 \gamma$, ..., $p'_{k-1} = p_{k-1} + p'_{k-2} \gamma$ and $p'_{k-1} = -p_k / \gamma$.

INTEGERS: 19 (2019)

Proof. If $p'_1 = p_1 - \gamma$, $p'_2 = p_2 + p'_1 \gamma$, ..., $p'_{k-1} = p_{k-1} + p'_{k-2} \gamma$ and $p'_{k-1} = -p_k / \gamma$, where γ is a solution of (1.3),

$$x^{k} - p_{1}x^{k-1} - \ldots - p_{k} = (x - \gamma)(x^{k-1} - p'_{1}x^{k-2} - \ldots - p'_{k-1}),$$

so the remaining solutions of (1.3) are the solutions of (2.1).

In Section 4 we will use Theorem 2 to give explicit general formulas for $w_{n+1,3}$ and for the most general case of $w_{n+1,4}$. First we need some properties of $w_{n,2}$.

3. Sums Involving Horadam Functions

In Section 4 we require Lemma 1 below and for that we require the following explicit formulas for $w_{n,2}$. (Proofs can be found in Horadam [4] and Bunder [1].)

Theorem 4. (i) If
$$p_1^2 \neq -4p_2$$
, $\alpha = (p_1 + \sqrt{p_1^2 + 4p_2})/2$ and $\beta = (p_1 - \sqrt{p_1^2 + 4p_2})/2$,
 $w_{n,2}(a_0, a_1; p_1, p_2) = \left(\frac{a_1 - a_0\beta}{\alpha - \beta}\right)\alpha^n - \left(\frac{a_1 - a_0\alpha}{\alpha - \beta}\right)\beta^n$.
(ii) $w_{n,2}(a_0, a_1; p_1, -p_1^2/4) = na_1(p_1/2)^{n-1} - (n-1)a_0(p_1/2)^n$.

The definitions of α and β above will also be used below.

Lemma 1. (i) If $\gamma \neq \alpha, \gamma \neq \beta$ and $n \geq 2$,

$$\sum_{i=0}^{n-2} \gamma^{i} w_{n-i,2} = \left(\frac{\gamma^{n} (p_{1}a_{1} + p_{2}a_{0}) + \gamma^{n-1} p_{2}a_{1} - \gamma w_{n+1,2} - p_{2} w_{n,2}}{\gamma^{2} - p_{1} \gamma - p_{2}} \right).$$

(ii) If $\gamma = \alpha \neq \beta$ or $\gamma = \beta \neq \alpha$, and $n \ge 2$,

$$\sum_{i=0}^{n-2} \gamma^i w_{n-i,2} = n \left(\frac{a_1 - a_0(p_1 - \gamma)}{2\gamma - p_1} \right) \gamma^n + \frac{a_1 \gamma^{n-1}(p_1 - \gamma)}{2\gamma - p_1} - \frac{w_{n+1,2}}{2\gamma - p_1}$$

(iii) If $\gamma = \alpha = \beta \neq 0$ and $n \geq 2$,

$$\sum_{i=0}^{n-2} \gamma^i w_{n-i,2} = (n-1) \Big(2w_{n+1,2}/p_1 + a_1(p_1/2)^{n-1} \Big)/2.$$

Proof. Case 1. $p_1^2 \neq -4p_2$ (i.e., $\alpha \neq \beta$). By Theorem 4(i),

$$\sum_{i=0}^{n-2} \gamma^i w_{n-i,2} = \sum_{i=0}^{n-2} \left(\frac{a_1 - a_0 \beta}{\alpha - \beta} \right) \gamma^i \alpha^{n-i} - \left(\frac{a_1 - a_0 \alpha}{\alpha - \beta} \right) \gamma^i \beta^{n-i}.$$

(i) If $\gamma \neq \alpha$ and $\gamma \neq \beta$, $\sum_{i=0}^{n-2} \gamma^{i} w_{n-i,2} = \alpha^{2} \left(\frac{a_{1} - a_{0}\beta}{\alpha - \beta}\right) \left(\frac{\gamma^{n-1} - \alpha^{n-1}}{\gamma - \alpha}\right) - \beta^{2} \left(\frac{a_{1} - a_{0}\alpha}{\alpha - \beta}\right) \left(\frac{\gamma^{n-1} - \beta^{n-1}}{\gamma - \beta}\right)$ $= \frac{\gamma^{n-1} ((a_{1} - a_{0}\beta)\alpha^{2}(\gamma - \beta) - (a_{1} - a_{0}\alpha)\beta^{2}(\gamma - \alpha)) - (a_{1} - a_{0}\beta)\alpha^{n+1}(\gamma - \beta)}{(\alpha - \beta)(\gamma - \alpha)(\gamma - \beta)}$ $+ \frac{(a_{1} - a_{0}\alpha)\beta^{n+1}(\gamma - \alpha)}{(\alpha - \beta)(\gamma - \alpha)(\gamma - \beta)} = \frac{\gamma^{n}(p_{1}a_{1} + p_{2}a_{0}) + \gamma^{n-1}p_{2}a_{1} - \gamma w_{n+1,2} - p_{2}w_{n,2}}{\gamma^{2} - p_{1}\gamma - p_{2}}.$ (ii) If $\gamma = \alpha \neq \beta$, then $\beta = p_{1} - \gamma$ and $\alpha - \beta = 2\gamma - p_{1}$. If $\gamma = \beta \neq \alpha$, then $\alpha = p_{1} - \gamma$ and $\alpha - \beta = p_{1} - 2\gamma$. In either case:

$$\sum_{i=0}^{n-2} \gamma^{i} w_{n-i,2} = \sum_{i=0}^{n-2} \left(\frac{a_{1} - a_{0}(p_{1} - \gamma)}{2\gamma - p_{1}} \right) \gamma^{n} - \left(\frac{a_{1} - a_{0}\gamma}{2\gamma - p_{1}} \right) \left(\frac{\gamma}{p_{1} - \gamma} \right)^{i} (p_{1} - \gamma)^{n}$$

$$= (n-1) \left(\frac{a_{1} - a_{0}(p_{1} - \gamma)}{2\gamma - p_{1}} \right) \gamma^{n} - \left(\frac{a_{1} - a_{0}\gamma}{2\gamma - p_{1}} \right) \left(\frac{\gamma^{n-1} - (p_{1} - \gamma)^{n-1}}{2\gamma - p_{1}} \right) (p_{1} - \gamma)^{2}$$

$$= n \left(\frac{a_{1} - a_{0}(p_{1} - \gamma)}{2\gamma - p_{1}} \right) \gamma^{n} - \left(\frac{a_{1} - a_{0}(p_{1} - \gamma)}{(2\gamma - p_{1})^{2}} \right) \gamma^{n+1} + \left(\frac{a_{1} - a_{0}(p_{1} - \gamma)}{(2\gamma - p_{1})^{2}} \right) \gamma^{n} (p_{1} - \gamma)$$

$$- \left(\frac{a_{1} - a_{0}\gamma}{(2\gamma - p_{1})^{2}} \right) (p_{1} - \gamma)^{2} \gamma^{n-1} + \left(\frac{a_{1} - a_{0}\gamma}{(2\gamma - p_{1})^{2}} \right) (p_{1} - \gamma)^{n+1}$$

$$= n \left(\frac{a_{1} - a_{0}(p_{1} - \gamma)}{2\gamma - p_{1}} \right) \gamma^{n} - \frac{w_{n+1,2}}{2\gamma - p_{1}} + \frac{a_{1}\gamma^{n-1}(p_{1} - \gamma)}{2\gamma - p_{1}}.$$

Case 2. $p_1^2 = -4p_2$ (i.e., $\alpha = \beta = p_1/2$). By Theorem 4(ii),

$$\sum_{i=0}^{n-2} \gamma^{i} w_{n-i,2} = \sum_{i=0}^{n-2} \gamma^{i} (a_{1}(n-i)(p_{1}/2)^{n-i-1} - (n-i-1)a_{0}(p_{1}/2)^{n-i})$$
$$= (p_{1}/2)^{n-1} \sum_{i=0}^{n-2} ((na_{1} - (n-1)a_{0}p_{1}/2)(2\gamma/p_{1})^{i} - (a_{1} - a_{0}p_{1}/2)i(2\gamma/p_{1})^{i}).$$

(i) If $\gamma \neq p_1/2$,

$$\sum_{i=0}^{n-2} \gamma^{i} w_{n-i,2} = (p_{1}/2)(na_{1} - (n-1)a_{0}p_{1}/2) \left(\frac{\gamma^{n-1} - (p_{1}/2)^{n-1}}{\gamma - p_{1}/2}\right) - \gamma(a_{1} - a_{0}p_{1}/2)p_{1}/2 \left(\frac{(n-2)\gamma^{n-1} - (n-1)p_{1}/2\gamma^{n-2} + (p_{1}/2)^{n-1}}{(\gamma - p_{1}/2)^{2}}\right) - \frac{\gamma(p_{1}/2)^{n}((n+1)a_{1} - na_{0}p_{1}/2 - na_{1}p_{1}/2 + (n-1)a_{0}(p_{1}/2)^{2})}{(\gamma - p_{1}/2)^{2}}$$

$$= \left(\frac{\gamma^n(p_1a_1+p_2a_0)+\gamma^{n-1}p_2a_1-\gamma w_{n+1,2}-p_2w_{n,2}}{\gamma^2-p_1\gamma-p_2}\right).$$

(iii) If $\gamma = p_1/2$,

$$\sum_{i=0}^{n-2} \gamma^{i} w_{n-i,2} = (p_{1}/2)^{n-1} \left[\sum_{i=0}^{n-2} (na_{1} - (n-1)a_{0}p_{1}/2) - (a_{1} - a_{0}p_{1}/2)i \right]$$

= $(p_{1}/2)^{n-1} \left[(n-1)(na_{1} - (n-1)a_{0}p_{1}/2) - (a_{1} - a_{0}p_{1}/2)(n-2)(n-1)/2 \right]$
= $(n-1)((n+2)a_{1}(p_{1}/2)^{n-1} - na_{0}(p_{1}/2)^{n})/2$
= $(n-1)\left(2w_{n+1,2}/p_{1} + a_{1}(p_{1}/2)^{n-1}\right)/2.$

Note that (i) and (ii) also hold if $\gamma = 0$.

4. The Third Order Recurrence

The following theorem allows us to represent $w_{n+1,3}$ in terms of $w_{n+1,2}$ and $w_{n,2}$.

 $\begin{aligned} \text{Theorem 5. If } \gamma \text{ is a solution of } \gamma^3 - p_1 \gamma^2 - p_2 \gamma - p_3 &= 0, \text{ then,} \\ a'_0 &= a_1 - \gamma a_0, a'_1 = a_2 - \gamma a_1, p'_1 = p_1 - \gamma, p'_2 = -p_3 / \gamma, \alpha' = (p'_1 + \sqrt{p'_1^2 + 4p'_2})/2, \\ \beta' &= (p'_1 - \sqrt{p'_1^2 + 4p'_2})/2 \text{ and} \\ (i) \text{ if } \gamma \neq \alpha' \text{ and } \gamma \neq \beta', \\ w_{n+1,3}(a_0, a_1, a_2; p_1, p_2, p_3)) &= \\ &\frac{\gamma^{n+1}(a_2 - a_1p'_1 - a_0p'_2) - \gamma w_{n+1,2}(a'_0, a'_1; p'_1, p'_2) - p'_2 w_{n,2}(a'_0, a'_1; p'_1, p'_2)}{\gamma^2 - p'_1 \gamma - p'_2}. \end{aligned}$ $\begin{aligned} \text{(ii) if } \gamma &= \alpha' \neq \beta' \text{ or } \gamma = \beta' \neq \alpha', \\ w_{n+1,3}(a_0, a_1, a_2; p_1, p_2, p_3) &= \\ &\frac{\gamma^n(n(a'_1 - a'_0(p'_1 - \gamma)) + a_2 - a_1(p'_1 - \gamma)) - w_{n+1,2}(a'_0, a'_1; p'_1, p'_2)}{2\gamma - p'_1}. \end{aligned}$ $\begin{aligned} \text{(iii) if } \gamma &= \alpha' = \beta' \text{ (i.e., } p_1 = 3\gamma, p_2 = -3\gamma^2 \text{ and } p_3 = \gamma^3), \end{aligned}$

(iii) if $\gamma = \alpha' = \beta'$ (i.e., $p_1 = 3\gamma, p_2 = -3\gamma^2$ and $p_3 = \gamma^3$), $w_{n+1,3}(a_0, a_1, a_2; p_1, p_2, p_3) =$

$$(p_1'/2)^{n-1}a_2 + \frac{n-1}{2} \Big(\frac{2w_{n+1,2}(a_0',a_1';p_1',p_2')}{p_1'} + a_1'(p_1'/2)^{n-1}\Big).$$

Proof. By Theorem 2(ii), with k = 3 and j = 2, for $n \ge 1$,

$$w_{n+1,3}(a_0, a_1, a_2; p_1, p_2, p_3) = \gamma^{n-1}a_2 + \sum_{i=0}^{n-2} \gamma^i w_{n-i,2}(a'_0, a'_1; p'_1, p'_2),$$

where γ is a solution of $\gamma^3 - p_1\gamma^2 - p_2\gamma - p_3 = 0$, $a'_0 = a_1 - \gamma a_0$, $a'_1 = a_2 - \gamma a_1$, $p'_1 = p_1 - \gamma$ and $p'_2 = -p_3/\gamma = p_2 + p_1\gamma - \gamma^2$.

(i) By Lemma 1(i), if $\gamma \neq \alpha'$ and $\gamma \neq \beta'$, $w_{n+1,3}(a_0, a_1, a_2; p_1, p_2, p_3)) = \gamma^{n-1}a_2 + \gamma^{n-1$

 $w_{n+1,3}(u_0, u_1, u_2, p_1, p_2, p_3)) = \gamma \quad u_2 +$

$$\frac{\gamma^n(a_1'p_1'+a_0'p_2')+\gamma^{n-1}a_1'p_2'-\gamma w_{n+1,2}(a_0',a_1';p_1',p_2')-p_2'w_{n,2}(a_0',a_1';p_1',p_2')}{\gamma^2-p_1'\gamma-p_2'}$$

Now $a'_1 = a_2 - \gamma a_1$ and $a'_0 = a_1 - \gamma a_0$ give the result.

(ii) If $\gamma = \alpha' \neq \beta'$ or $\gamma = \beta' \neq \alpha'$, Lemma 1(ii) gives the result. (iii) If $\gamma = \alpha' = \beta'$ (i.e. $\gamma = p'_1/2 = p_1/3$, $p'_1^2 = -4p'_2$ so that $p_2 = -3\gamma^2$ and

 $p_3 = \gamma^3$), Lemma 1(iii) gives the result.

Example 1. $a_0 = 0, a_1 = 1, a_2 = 2, p_1 = p_2 = 1, p_3 = 2$. In this case $\gamma = 2$ satisfies $\gamma^3 - \gamma^2 - \gamma - 2 = 0$, and then gives $a'_0 = 1, a'_1 = 0, p'_1 = p'_2 = -1, \alpha' = (-1 + \sqrt{3}i)/2$ and $\beta' = (-1 - \sqrt{3}i)/2$. So by Theorem 5(i),

$$w_{n,3}(0,1,2;1,1,2) = (3\cdot 2^n - 2w_{n,2}(1,0;-1,-1) + w_{n-1,2}(1,0,-1,-1))/7.$$

Given (previously tabulated) $w_{2,2}(1,0;-1,-1) = -1, w_{3,2}(1,0;-1,-1) = 1$ and $w_{4,2}(1,0;-1,-1) = 0$, we have $w_{3,3}(0,1,2;1,1,2) = 3$ and $w_{4,3}(0,1,2;1,1,2) = 7$.

If we had chosen $\gamma = (-1 + \sqrt{3}i)/2$ or $(-1 - \sqrt{3}i)/2$ we would need Theorem 5(ii) and require messier arithmetic. The standard method, which uses all three values of γ requires even messier arithmetic.

Example 2. $a_0 = 1, a_1 = 2, a_2 = 3, p_1 = 1, p_2 = 8, p_3 = -12$. In this case $\gamma = 2$ and -3 satisfy $\gamma^3 - \gamma^2 - 8\gamma + 12 = 0$. With $\gamma = 2$, we have $a'_0 = 0, a'_1 = -1, p'_1 = -1, p'_2 = 6, \alpha' = 2 = \gamma$ and $\beta' = -3$. So by Theorem 5(ii),

$$w_{n,3}(1,2,3;1,8,-12) = [(10-n)2^{n-1} - w_{n,2}(0,-1;-1,6)]/5$$

and (previously tabulated) $w_{2,2}(0, -1; -1, 6) = 1, w_{3,2}(0, -1; -1, 6) = -7$ and $w_{4,2}(0, -1; -1, -6) = 13$ give $w_{3,3}(1, 2, 3; 1, 8, -12) = 7$ and $w_{4,3}(1, 2, 3; 1, 8, -12) = 7$.

Example 3. $a_0 = 1, a_1 = 2, a_2 = 3, p_1 = 6, p_2 = -12, p_3 = 8$. In this case $\gamma = 2$ satisfies $\gamma^3 - 6\gamma^2 + 12\gamma - 8 = 0$ and gives $a'_0 = 0, a'_1 = -1, p'_1 = 4, p'_2 = -4$ and $\alpha' = \beta' = \gamma = 2$. So by Theorem 5(iii),

$$w_{n,3}(1,2,3;6,-12,8) = 3 \cdot 2^{n-2} + (n-2)(w_{n,2}(0,-1;4,-4) - 2^{n-1})/4$$

and (previously tabulated) $w_{3,2}(0, -1; 4, -4) = -12$ and $w_{4,2}(0, -1; 4, -4) = -32$ imply $w_{3,3}(1, 2, 3; 6, -12, 8) = 2$ and $w_{4,3}(1, 2, 3; 6, -12, 8) = -8$.

5. The Fourth Order Recurrence

By Theorem 2(ii), we can express $w_{n+1,4}(a_0, a_1, a_2, a_3; p_1, p_2, p_3, p_4)$ in terms of δ , a solution of a quartic equation, and a sum from i = 0 to i = n - 2 of $\delta^i w_{n-i,3}(a'_0, a'_1, a'_2; p'_1, p'_2, p'_3)$. We can express each $w_{n-i,3}$, by Theorem 5, in terms of γ , a solution of a cubic equation, and terms $w_{n-i,2}(a''_0, a''_1; p''_1, p''_2)$ and can then perform the summation using Lemma 1. Altogether there are 14 cases to consider, depending on which of δ , γ , $\alpha'' = (p''_1 + \sqrt{p''_1} + 4p''_2)/2$ and $\beta'' = (p''_1 - \sqrt{p''_1} + 4p''_2)/2$ are equal to each other. We will solve "the statistically most likely" case where all of these are different.

Theorem 6. If

 $\begin{array}{l} (a) \ \delta \ is \ a \ solution \ of \ \delta^4 - p_1 \delta^3 - p_2 \delta^2 - p_3 \delta - p_4 \ = \ 0, \ a_0' \ = \ a_1 - \delta a_0, \ a_1' \ = \\ a_2 - \delta a_1, \ a_2' \ = \ a_3 - \delta a_2, \ p_1' \ = \ p_1 - \delta, \ p_2' \ = \ p_2 + p_1' \delta \ and \ p_3' \ = \ -p_4/\delta; \\ (b) \ \gamma \ is \ a \ solution \ of \ \gamma^3 - p_1' \gamma^2 - p_2' \gamma - p_3' \ = \ 0, \ a_0'' \ = \ a_1' - \gamma a_0', \ a_1'' \ = \ a_2' - \gamma a_1', \ p_1'' \ = \\ p_1' - \gamma, \ p_2'' \ = \ -p_3'/\gamma, \\ (c) \ \alpha'' \ = \ (p_1'' + \sqrt{p_1''^2 + 4p_2''})/2 \ and \ \beta'' \ = \ (p_1'' - \sqrt{p_1''^2 + 4p_2''})/2, \\ and \\ (d) \ \delta \ \neq \ \gamma, \ \delta \ \neq \ \alpha'', \ \delta \ \neq \ \beta'', \ \gamma \ \neq \ \alpha'' \ and \ \gamma \ \neq \ \beta'', \\ then \end{array}$

$$\begin{split} w_{n+1,4}(a_0, a_1, a_2, a_3; p_1, p_2, p_3, p_4) &= \delta^{n-1}a_2 + [(p_2''/\delta)w_{n,2}(a_0'', a_1''; p_1'', p_2'') - p_2''\delta^{n-2}a_1'' \\ &+ \gamma^2(\delta^{n-1} - \gamma^{n-1})(a_2' - a_1'p_1'' - a_0'p_2'')/(\delta - \gamma) - (\gamma + p_2''/\delta)[\delta^n(p_1''a_1'' + p_2''a_0'') + \delta^{n-1}p_2''a_1'' \\ &- \delta w_{n+1,2}(a_0'', a_1''; p_1'', p_2'') - p_2''w_{n,2}(a_0'', a_1''; p_1'', p_2'')]/(\delta^2 - p_1''\delta - p_2'')]/(\gamma^2 - p_1''\gamma - p_2''). \end{split}$$

Proof. By Theorem 2(ii), with k = 4 and j = 2, for $n \ge 1$,

$$w_{n+1,4}(a_0, a_1, a_2, a_3; p_1, p_2, p_3) = \delta^{n-1}a_2 + \sum_{i=0}^{n-2} \delta^i w_{n-i,3}(a'_0, a'_1, a'_2; p'_1, p'_2, p'_3)$$

where δ is a solution of $\delta^4 - p_1 \delta^3 - p_2 \delta^2 - p_3 \delta - p_4 = 0$, $a'_0 = a_1 - \delta a_0$, $a'_1 = a_2 - \delta a_1$, $a'_2 = a_3 - \delta a_2$, $p'_1 = p_1 - \delta$, $p'_2 = p_2 + p'_1 \delta$ and $p'_3 = -p_4 / \delta$. By Theorem 5(i), if γ is a solution of $\gamma^3 - p'_1 \gamma^2 - p'_2 \gamma - p'_3 = 0$, $a''_0 = a'_1 - \gamma a'_0$, $a''_1 = a'_1 -$

By Theorem 5(i), if γ is a solution of $\gamma^3 - p'_1 \gamma^2 - p'_2 \gamma - p'_3 = 0$, $a''_0 = a'_1 - \gamma a'_0$, $a''_1 = a'_2 - \gamma a'_1$, $p''_1 = p'_1 - \gamma p''_2 = -p'_3 / \gamma, \gamma \neq \alpha''$ and $\gamma \neq \beta''$, $w_{n-i,3}(a'_0, a'_1, a'_2; p'_1, p'_2, p'_3) =$

$$[\gamma^{n-i}(a'_2-a'_1p''_1-a'_0p''_2)-\gamma w_{n-i,2}(a''_0,a''_1;p''_1,p''_2)-p''_2w_{n-i-1,2}(a''_0,a''_1;p''_1,p''_2)]/(\gamma^2-p''_1\gamma-p''_2).$$

So,

 $w_{n+1,4}(a_0, a_1, a_2, a_3; p_1, p_2, p_3) =$

$$\delta^{n-1}a_2 + \left[(p_2''/\delta)w_{n,2}(a_0'',a_1'';p_1'',p_2'') - p_2''\delta^{n-2}w_{1,2}(a_0'',a_1'';p_1'',p_2'') \right]$$

INTEGERS: 19 (2019)

$$+\gamma^{n}\sum_{i=0}^{n-2} ((\delta/\gamma)^{i}(a_{2}^{\prime}-a_{1}^{\prime}p_{1}^{\prime\prime}-a_{0}^{\prime}p_{2}^{\prime\prime}) - (\gamma+p_{2}^{\prime\prime}/\delta)\sum_{i=0}^{n-2}\delta^{i}w_{n-i,2}(a_{0}^{\prime\prime},a_{1}^{\prime\prime};p_{1}^{\prime\prime},p_{2}^{\prime\prime})]/(\gamma^{2}-p_{1}^{\prime\prime}\gamma-p_{2}^{\prime\prime}).$$
Now if $\gamma \neq \delta, \delta \neq \alpha^{\prime\prime}$ and $\delta \neq \beta^{\prime\prime}$, using Lemma 1(i),
 $w_{n+1,4}(a_{0},a_{1},a_{2},a_{3};p_{1},p_{2},p_{3}) = \delta^{n-1}a_{2} + [(p_{2}^{\prime\prime}/\delta)w_{n,2}(a_{0}^{\prime\prime},a_{1}^{\prime\prime};p_{1}^{\prime\prime},p_{2}^{\prime\prime}) - p_{2}^{\prime\prime}\delta^{n-2}a_{1}^{\prime\prime}$
 $+\gamma^{2}(\delta^{n-1}-\gamma^{n-1})(a_{2}^{\prime}-a_{1}^{\prime}p_{1}^{\prime\prime}-a_{0}^{\prime}p_{2}^{\prime\prime})/(\delta-\gamma) - (\gamma+p_{2}^{\prime\prime}/\delta)[\delta^{n}(p_{1}^{\prime\prime}a_{1}^{\prime\prime}+p_{2}^{\prime\prime}a_{0}^{\prime\prime}) - \delta w_{n+1,2}(a_{0}^{\prime\prime},a_{1}^{\prime\prime};p_{1}^{\prime\prime},p_{2}^{\prime\prime}) + \delta^{n-1}p_{2}^{\prime\prime}a_{1}^{\prime\prime} - p_{2}^{\prime\prime}w_{n,2}(a_{0}^{\prime\prime},a_{1}^{\prime\prime};p_{1}^{\prime\prime},p_{2}^{\prime\prime})]/(\delta^{2}-p_{1}^{\prime\prime}\delta-p_{2}^{\prime\prime})]/(\gamma^{2}-p_{1}^{\prime\prime}\gamma-p_{2}^{\prime\prime}).$

6. The Lengyel-Marques Functions

Special cases of $w_{n,k}$ are the functions $T_n(k)$ studied by Lengyel and Marques in [7] and [8]. These are given by:

Definition 6.1. $T_n(k) = w_{n,k}(0, 1, \dots, 1; 1, 1, \dots, 1).$

By Theorem 2 we have:

Theorem 7. If γ is a solution of $\gamma^k = \gamma^{k-1} + \ldots + \gamma + 1$,

$$(i) T_n(k) = w_{n-1,k-1}(1, 1-\gamma, \dots, 1-\gamma; 1-\gamma, 1+\gamma-\gamma^2, \dots, \frac{\gamma^{k-1}-1}{\gamma-1} - \gamma^{k-1}) + \gamma T_{n-1}(k)$$

$$(ii) T_n(k) = \gamma^{n-1} + \sum_{i=0}^{n-2} \gamma^i w_{n-1-i,k-1}(1, 1-\gamma, \dots, 1-\gamma; 1-\gamma, 1+\gamma-\gamma^2, \dots, \frac{\gamma^{k-1}-1}{\gamma-1} - \gamma^{k-1}).$$

We can use Theorem 5(i) and Theorem 4 to give $T_n(3)$ in terms of Horadam functions.

Theorem 8. If γ is a solution of $\gamma^3 = \gamma^2 + \gamma + 1$, $\alpha' = (1 - \gamma + \sqrt{(5 - 3\gamma)(1 + \gamma)})/2$ and $\beta' = (1 - \gamma - \sqrt{(5 - 3\gamma)(1 + \gamma)})/2$,

$$T_{n}(3) = [\gamma^{n+1} + (1-2\gamma)w_{n,2}(1,1-\gamma;1-\gamma,1+\gamma-\gamma^{2})]/((3\gamma+1)(\gamma-1))$$
$$-w_{n+1,2}(1,1-\gamma;1-\gamma,1+\gamma-\gamma^{2})/((3\gamma+1)(\gamma-1)))$$
$$= \left(\gamma^{n+1} + \frac{(1-2\gamma-\alpha')(1-\gamma-\beta')}{(\alpha'-\beta')}\alpha'^{n}\right)/((3\gamma+1)(\gamma-1)).$$
$$-\left(\frac{(1-2\gamma-\beta')((1-\gamma-\alpha')}{(\alpha'-\beta')}\beta'^{n}\right)/((3\gamma+1)(\gamma-1)).$$

Proof. With $a_0 = 0, a_1 = a_2 = p_1 = p_2 = p_3 = 1$, and γ a solution of $\gamma^3 = \gamma^2 + \gamma + 1$, we have $p'_1 = 1 - \gamma, \ p'_2 = 1 + \gamma - \gamma^2, \ \alpha' = (1 - \gamma + \sqrt{(5 - 3\gamma)(1 + \gamma)})/2$ and $\beta' = (1 - \gamma - \sqrt{(5 - 3\gamma)(1 + \gamma)})/2$.

As $\gamma \neq -1$ or 5/3, $\alpha' \neq \beta'$. Also $\gamma = \alpha'$ or β' is inconsistent with $\gamma^3 = \gamma^2 + \gamma + 1$, so we can use Theorem 5(i) to give:

$$\begin{split} T_n(3) &= [\gamma^{n+1} - \gamma w_{n,2}(1, 1 - \gamma; 1 - \gamma, 1 + \gamma - \gamma^2)]/(3\gamma + 1)(\gamma - 1) \\ &- [(1 + \gamma - \gamma^2)w_{n-1,2}(1, 1 - \gamma; 1 - \gamma, 1 + \gamma - \gamma^2)]/(((3\gamma + 1)(\gamma - 1))) \\ &= [\gamma^{n+1} + (1 - 2\gamma)w_{n,2}(1, 1 - \gamma; 1 - \gamma, 1 + \gamma - \gamma^2)]/((3\gamma + 1)(\gamma - 1)) \\ &- w_{n+1,2}(1, 1 - \gamma; 1 - \gamma, 1 + \gamma - \gamma^2)/((3\gamma + 1)(\gamma - 1))) \\ &= \Big(\gamma^{n+1} + \frac{(1 - 2\gamma - \alpha')(1 - \gamma - \beta')}{(\alpha' - \beta')}\alpha'^n\Big)/((3\gamma + 1)(\gamma - 1)) \\ &- \Big(\frac{(1 - 2\gamma - \beta')((1 - \gamma - \alpha')}{(\alpha' - \beta')}\beta'^n\Big)/((3\gamma + 1)(\gamma - 1)). \end{split}$$

As in these representations of $T_n(k)$, γ is irrational, they do not help to solve the problem of finding the highest power of two that divides $T_n(k)$, which is the main topic of [7] and [8].

References

- M.W.Bunder, Horadam functions and powers of irrationals, *Fibonacci Quart.* 50 (2012), 304-315.
- [2] Paul Cull, Mary Flahive, Robby Robson, *Difference Equations*, Springer, Undergraduate Texts in Mathematics, New York, 1995.
- [3] Saber N. Elaydi, An Introduction to Difference Equations, Springer, Undergraduate Texts in Mathematics, New York, 2004.
- [4] A.F. Horadam, Basic Properties of a certain generalised sequence of numbers, *Fibonacci Quart.* 3 (1965), 161–175.
- [5] J.L.Lagrange, Oeuvres de Lagrange, Vol IV, J.A.Serret (ed.), Gallica, Paris, 1867.
- [6] J.L.Lagrange, Oeuvres de Lagrange, Vol V, J.A.Serret (ed.), Gallica, Paris, 1867.
- [7] D. Marques and T. Lengyel, The 2-adic order of the Tribonacci numbers and the equation $T_n = m!$, J.Integer Seq. 17 (2014).
- [8] T. Lengyel and D. Marques, The 2-adic order of some Generalised Fibonacci Numbers, Integers 17 (2017), #A5, 10pp.