

AN IMPROVED INEQUALITY OF ROSSER AND SCHOENFELD AND ITS APPLICATION

Shaohua Zhang

School of Mathematics and Statistics, Yangtze Normal University, P.R. China zhangshaohua@yznu.edu.cn

Received: 11/28/19, Revised: 9/10/20, Accepted: 11/27/20, Published: 12/4/20

Abstract

In this note, using Robin's inequality and Pierre Dusart's inequality, we refine Rosser-Schoenfeld's inequality. As a consequence, we show that every even integer greater than 30 can be represented as the sum of a composite number c and a prime p not dividing c.

1. Introduction

For any positive integer n, let $\omega(n)$ be the number of distinct prime factors of n and $\pi(n)$ be the number of prime numbers which are less than or equal to n. In the 1960s, Rosser and Schoenfeld [6] proved that $2\pi(n) > \pi(2n)$ for n > 2. In 1988, Ehrhart [3] again proved Rosser-Schoenfeld's inequality by using a simple method. However, Rosser-Schoenfeld's inequality has not been improved for a long time. The main reason is that better explicit upper and lower bounds on $\pi(n)$ have not been obtained. We assume that $\frac{n}{\ln n - A} < \pi(n) < \frac{n}{\ln n - B}$. In order to prove that $2\pi(n) > \pi(2n) + 1$, the constants A and B must satisfy $A < B < \ln 2 + A$. This requires very little difference between A and B. It is fortunate that Pierre Dusart showed recently that for $n \geq 5393$, $\pi(n) > \frac{n}{\ln n - 1}$ and for $n \geq 60184$, $\pi(n) < \frac{n}{\ln n - 1, 1}$ [2]. For some better bounds on $\pi(n)$, see [1]. Therefore, Pierre Dusart's results are expected to improve Rosser-Schoenfeld's inequality. In this note, combining with Robin's inequality [5] on $\omega(n)$, we will prove the following theorems.

Theorem 1. For $n \geq 59$, we have $2\pi(n) > \pi(2n) + \omega(2n)$.

Theorem 2. Every even integer greater than 30 is the sum of a composite number c and a prime p not dividing c.

2. Proof of Theorems

Lemma 1 ([2]). For $n \ge 5393$, we have $\pi(n) > \frac{n}{\ln n - 1}$.

Lemma 2 ([2]). For $n \ge 60184$, we have $\pi(n) < \frac{n}{\ln n - 1.1}$.

Lemma 3 ([5]). For $n \geq 3$, we have $\omega(n) \leq c \frac{\ln n}{\ln \ln n}$, where c = 1.38402...

Proof of Theorem 1. We estimate roughly that for $n \geq 30092$,

$$\frac{2n}{\ln n - 1} - 1.385 \frac{\ln 2n}{\ln \ln 2n} - \frac{2n}{\ln 2n - 1.1} > 0.$$

By Lemmas 1, 2, and 3, we have that

$$2\pi(n) - \omega(2n) > \frac{2n}{\ln n - 1} - 1.385 \frac{\ln 2n}{\ln \ln 2n} > \frac{2n}{\ln 2n - 1.1} > \pi(2n).$$

The cases 58 < n < 30092 are verified by computer. Thus the proof of Theorem 1 is completed.

Remark 1. 59 is the best bound because $2\pi(58) - \omega(2 \times 58) = \pi(2 \times 58)$.

Corollary 1. For $n \ge 17$, we have $2\pi(n) > \pi(2n)+1$.

Proof. By Theorem 1, we have that $2\pi(n) > \pi(2n) + 1$ for $n \ge 59$. Do the cases 16 < n < 59 separately. Thus the proof of Corollary 1 is completed.

Proof of Theorem 2. Let 2n be an even positive integer greater than 120, and k be the number of primes which are coprime to 2n and less than n. Note that if n is an odd prime, then $k = \pi(n) - 2$. Otherwise $k = \pi(n) - \omega(2n)$. Denote these prime numbers by $q_1, ..., q_k$. Consider the following k distinct numbers: $2n - q_i, 1 \le i \le k$. If $k > \pi(2n) - \pi(n)$, then there is a composite number c among $2n - q_i, 1 \le i \le k$, and 2n is the sum of a composite number c and a prime p not dividing c.

If n is a composite number, then by Theorem 1, we have that $k = \pi(n) - \omega(2n) > \pi(2n) - \pi(n)$. If n is an odd prime, then $2\pi(n) - 2 = 2\pi(n-1)$ and n-1 is a composite number. By Theorem 2 again, we have that $2\pi(n-1) > \omega(2(n-1)) + \pi(2(n-1)) \geq \pi(2n)$. Thus, $k = \pi(n) - 2 > \pi(2n) - \pi(n)$. Therefore, each even positive integer greater than 120 can be expressed as the sum of a composite number c and a prime p not dividing c.

 31+55,88=31+57,90=13+77,92=11+81,94=13+81,96=71+25,98=73+25,100=73+27,102=17+85,104=17+87,106=19+87,108=83+25,110=83+27,112=31+81,114=89+25,116=19+87,118=9+109,120=71+49. Thus, the proof of Theorem 2 is completed. $\hfill\Box$

Corollary 2. Every odd integer greater than 23 can be represented as p + q + c, where p and q are prime, and c is a composite number satisfying that p, q and c are pairwise coprime.

Proof of Corollary 2. Let *n* be an odd integer greater than 73. A result of Nagura [4] states that there is a prime in the interval [x, 1.2x] for $x \ge 25$. This implies that there is an odd prime *q* in the interval $[\frac{n}{2}, n - 30)$ for $n \ge 75$. But n - q is even and greater than 30. By Theorem 2, n - q can be expressed as the sum of a composite number *c* and a prime *p* not dividing *c*. Since $q > \frac{n}{2}$, it follows that *p*, *q* and *c* are pairwise coprime. Finally, do the cases 23 < n < 75 separately: 73 = 41 + 5 + 27,71 = 43 + 3 + 25,69 = 41 + 3 + 25,67 = 31 + 11 + 25,65 = 29+11+25,63 = 29+7+27,61 = 29+5+27,59 = 19+7+33,57 = 17+7+33,55 = 17+13+25,53 = 17+11+25,51 = 17+7+27,49 = 17+7+25,47 = 13+7+27,45 = 13+7+25,43 = 11+7+25,41 = 19+13+9,39 = 17+13+9,37 = 17+11+9,35 = 19+7+9,33 = 17+7+9,31 = 17+5+9,29 = 13+7+9,27 = 11+7+9,25 = 11+5+9. But, 23 cannot be represented as p + q + c, where *p* and *q* are prime, and *c* is a composite number satisfying that *p*, *q* and *c* are pairwise coprime. Thus, the proof is completed. □

Remark 2. Based on the method of proof of Theorem 2 and Corollary 1, one will see that every even integer greater than 10 can be represented as the sum of a composite number and a prime. Note that 12k = 3 + (12k - 3), 12k + 2 = 5 + (12k - 3), 12k + 4 = 7 + (12k - 3), 12k + 6 = 3 + (12k + 3), 12k + 8 = 11 + (12k - 3), 12k + 10 = 7 + (12k + 3). But, this method fails as a proof of Theorem 2. So, a refinement of Rosser-Schoenfeld's inequality is of some reference value.

Acknowledgements. The author is very grateful to the referee for his comments improving the presentation of the note, and also to Shuhua Liu, for verifying that $2\pi(n) - \omega(2n) > \pi(2n)$ when 58 < n < 30092 with the aid of a computer.

References

- Djamel Berkane and Pierre Dusart, On a Constant Related to the Prime Counting Function, Mediterr. J. Math. 13 (2016), 929-938.
- [2] Pierre Dusart, Estimates of some functions over primes without R.H., preprint (2010), arxiv.1002.0442v1.
- [3] E. Ehrhart, On prime numbers, Fibonacci Quart. 26(3)(1988), 271-274.

INTEGERS: 20 (2020) 4

[4] J. Nagura, On the interval containing at least one prime number, Proc. Japan Acad. 28(1952), 177-181.

- [5] G. Robin, Sur la différence $Li(\theta(x)) \pi(x)$, Ann. Fac. Sci. Toulouse Math, $\mathbf{6}(1984)$, 257-268.
- [6] J. B. Rosser and L. Schoenfeld, Abxtracts of scientific communications, Intern. Congr. Math. Moscow, 1966, Section 3, Theory of Numbers.