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Abstract
We consider di↵erences of one- and two-variable finite products and provide combi-
natorial proofs of the nonnegativity of certain coe�cients. Since the products may
be interpreted as generating functions for certain integer partitions, this amounts
to showing a partition inequality. This extends results due to Berkovich-Garvan
and McLaughlin. We then apply the first inequality and Andrews’ Anti-telescoping
Method to give a solution to an “Ehrenpreis Problem” for recently conjectured
sum-product identities of Kanade-Russell. That is, we provide significant further
evidence for Kanade-Russell’s conjectures by showing nonnegativity of coe�cients
in di↵erences of product-sides as Andrews-Baxter and Kadell did for the product
sides of the Rogers-Ramanujan identities.

1. Introduction

A partition � of an integer n is a multi-set of positive integers {�1, . . . ,�`}, whose
parts satisfy

�1 � �2 � · · · � �` � 1 and
X̀

j=1

�j = n.

We will often use frequency notation to refer to a partition, where (rmr , . . . , 2m2 , 1m1)
represents the partition in which the part i occurs mi times for 1  i  r.

Visually, a partition � may be represented by its Ferrer’s diagram, in which parts
are displayed as rows of dots. For example, the Ferrer’s diagram of the partition
(5, 3, 22) is the array below.

• • • • •
• • •
• •
• •

For two q-series f(q) =
P

n�0 anqn and g(q) =
P

n�0 bnqn, we write f(q) ⌫ g(q)
if an � bn for all n. If f(q) ⌫ 0, we will say that f is a nonnegative series.



INTEGERS: 20 (2020) 2

We will use the standard q-Pochhammer symbol,

(a; q)n :=
n�1Y

j=0

�
1� aqj

�
, (a; q)1 := lim

n!1
(a; q)n, and

(a1, . . . , ar; q)n := (a1; q)n · · · (ar; q)n.

By convention, an empty product equals 1.
The study of the type of partition inequality we consider began at the 1987

A.M.S. Institute on Theta Functions with a question of Leon Ehrenpreis about the
Rogers-Ramanujan Identities ([3], Cor. 7.6 and Cor. 7.7):

RR1 :
X

n�0

qn2

(q; q)n
=

1
(q, q4; q5)1

,

RR2 :
X

n�0

qn2+n

(q; q)n
=

1
(q2, q3; q5)1

.

The identity RR1 may be interpreted as an equality of certain partition generating
functions, giving that the number of partitions of n such that the gap between
successive parts is at least 2 equals the number of partitions of n into parts congruent
to ±1 (mod 5). Similarly, RR2 gives that the number of partitions of n such that
the gap between successive parts is at least 2 and 1 does not occur as a part equals
the number of partitions of n into parts congruent to ±2 (mod 5). Thus, both
combinatorially and algebraically, it is easy to see that

X

n�0

qn2

(q; q)n
�
X

n�0

qn2+n

(q; q)n
⌫ 0.

Therefore, it also holds that

1
(q, q4; q5)1

� 1
(q2, q3; q5)1

⌫ 0. (1)

Ehrenpreis’ Problem was to provide a proof of (1) that did not reference the (heavy-
handed and quite nontrivial) Rogers-Ramanujan identities.

Solutions to Ehrenpreis’ Problem have been given in various ways. In the course
of proving (1), Andrews-Baxter [2] were led to a new “motivated” proof of the
Rogers-Ramanujan Identities themselves. A direct combinatorial proof of (1) was
provided by Kadell [8], who constructed an injection from the set of partitions of n
with parts congruent to ±2 (mod 5) to those with parts congruent to ±1 (mod 5).
Later, Andrews developed the Anti-telescoping Method for showing positivity in
di↵erences of products like (1) [1]. This method was used by Berkovich-Grizzell in
[5] to prove infinite classes of partition inequalities, such as the following.
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Theorem (Theorem 1.2 of [5]). For any octuple of positive integers
(L,m, x, y, z, r, s, u),

1
(qx, qy, qz, qrx+sy+uz; qm)L

� 1
(qrx, qsy, quz, qx+y+z; qm)L

⌫ 0.

In [4], Berkovich-Garvan generalized (1) to an arbitrary modulus as follows.

Theorem (Theorem 5.3 of [4]). Suppose L � 1 and 1  r < M
2 . Then

1
(q, qM�1; qM )L

� 1
(qr, qM�r; qM )L

⌫ 0

if and only if r - (M � r).

One can apply Berkovich-Garvan’s result to solve similar “Ehrenpreis Problems”
for Kanade-Russell’s “mod 9 identities” in [10].

The first result in this paper extends the above in a way that is independent of
the modulus. We will use this in Section 3 to solve an “Ehrenpreis Problem” for
conjectural product-sum identities of Kanade-Russell in [11].

Theorem 1. Let a, b, c and M be integers satisfying 1 < a < b < c and 1+c = a+b.
Then if a - b,

1
(q, qc; qM )L

� 1
(qa, qb; qM )L

⌫ 0 for any L � 0.

Note that we do not necessarily assume a, b, c  M . Translated into a partition
inequality, Theorem 1.1 says that there are more partitions of n into parts of the
forms Mj + 1 and Mj + c than there are partitions of n into parts of the forms
Mj + a and Mj + b, where throughout 1  j  L.

Partition inequalities with a fixed number of parts were considered by McLaugh-
lin in [13]. Answering two of McLaughlin’s questions, we give combinatorial proofs
of finite analogues of Theorems 7 and 8 from [13].

Theorem 2. Let a, b and M be integers satisfying 1  a < b < M
2 and gcd(b,M) =

1. Define c(m,n) by

1
(zqa, zqM�a; qM )L(1� qLM+a)

� 1
(zqb, zqM�b; qM )L

=:
X

m,n�0

c(m,n)zmqn.

Then for any L,n � 0, we have c(m,nM) � 0. If in addition M is even and a is
odd, then we also have c

�
m,nM + M

2

�
� 0 for every n � 0.

Note that we do not necessarily make the assumption gcd(a,M) = 1 that is in
[13]. While these partition inequalities hold only for n in certain residue classes
(mod M), Theorem 2 is a strengthening of Theorem 1 for these n. The following is
a distinct parts analogue.
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Theorem 3. Let a, b and M be integers satisfying 1  a < b < M
2 and gcd(b,M) =

1. Define d(m,n) by

(�zqa,�zqM�a; qM )L

�
1 + zqLM+a

�
�(�zqb,�zqM�b; qM )L =:

X

m,n�0

d(m,n)zmqn.

Then for any L,n � 0, we have d(m,nM) � 0. If in addition M is even and a is
odd, then we also have d

�
m,nM + M

2

�
� 0 for every n � 0.

Remark. Taking the limit as L !1 in Theorems 2 and 3 recovers McLaughlin’s
original partition inequalities.

In Section 2, we begin by reviewing the M -modular diagram of a partition.
Then we provide combinatorial proofs of Theorems 1-3. In Section 3, we apply
Theorem 1 and Andrews’ Method of Anti-Telescoping (see [1]) to give a solution to
an “Ehrenpreis Problem” for recently conjectured sum-product identities of Kanade-
Russell [11]. Our concluding remarks in Section 4 ask for Andrews-Baxter style
“motivated proofs” of these conjectured identities.

2. Combinatorial Proofs of Theorems 1-3

2.1. Notation

The M-modular diagram of a partition � = {�1, . . . ,�`} is a modification of the
Ferrer’s diagram, wherein each �j is first written as Mq + r for 0  r < M, and
then is represented as a row of q M ’s and a single r at the end of the row. These
r’s we will refer to as ends or r-ends. For example, the 10-modular diagram of
� = (532, 46, 36, 16, 11, 1) has three 6-ends, two 3-ends and two 1-ends:

10 10 10 10 10 3
10 10 10 10 10 3
10 10 10 10 6
10 10 10 6
10 6
10 1
1

We will also speak of attaching and removing a column from an M -modular
diagram. These operations are best defined with an example:
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10 10 10 10 10
10 10 10 10 10
10 10 10 10
10 10 10
10 10 10
10 10 10
10

[|{z}
attach

the column

10
10
10

�!

10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 10
10 10 10 "
10 10 10
10 10 10
10

10 10 10 10 10
10 10 10 10 10
10 10 10 10
10 10 10
10 10 10
10 10 10
10 "

\
|{z}

remove
the column

10
10
10
10
10
10

�!

10 10 10 10
10 10 10 10
10 10 10
10 10
10 10
10 10
10

We shall only attach or remove columns consisting entirely of M ’s, and it is easy to
see that these operations preserve M -modular diagrams.

2.2. Proof of Theorem 1

We provide a combinatorial proof via injection that is nearly identical to that of
Theorem 5.1 in [4], but we highlight a technical di↵erence that arises in the general
version. In keeping with [4], we let ⌫j = ⌫j(�) denote the number of parts of
� congruent to j (mod M). (The modulus never varies and will be clear from
context.)

Proof. First let L = 1. We will prove the general case as a consequence of this one.
For each n, we seek an injection

'1 :
�
(ak, b`) ` n : k, ` � 0

 
,!

�
(1k, c`) ` n : k, ` � 0

 
.

Let d :=gcd(a, b). Explicitly, '1 is as follows:

'1

�
ak, b`

�
=

8
><

>:

�
1`+a(k�`), c`

�
if k � `, (Case 1)�

1k+b(`�k), ck
�

if ` > k and a
d - (`� k), (Case 2)�

1k+1+b(`�k�1)�a, ck+1
�

if ` > k and a
d | (`� k). (Case 3)

This definition can be motivated by noting that each pre-image consists either of k
pairs (a, b) and k� ` excess a’s, or of ` pairs (a, b) and `� k excess b’s. (There can
also be no excess.) The pairs are mapped as (a, b) 7! (1, c). The excess a’s or b’s
are treated by the following cases.
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Case 1. For the k � ` excess a’s, (a) 7! (1a).
Case 2. For the `� k excess b’s, (b) 7! (1b).
Case 3. For all but the last two excess b’s, (b) 7! (1b). For the last two b’s,

(b2) 7! (1b�a+1, c).

Note that in Case 3 there are at least two excess b’s, for if not, a
d = 1 and then a | b,

a contradiction. Also, by hypothesis, b > c
2 , so that 2b > c.

Let (1⌫1 , c⌫c) be a partition in the image of '1. The cases are separated as follows:

Case 1. a | (⌫1 � ⌫c),
Case 2. a - (⌫1 � ⌫c) and b | (⌫1 � ⌫c),
Case 3. ⌫1 � ⌫c ⌘ �b (mod a) and ⌫1 � ⌫c ⌘ �a (mod b).

This concludes the proof for L = 1.
Now let L � 2. Again we define an injection

'L : {� ` n : �j 2 {a, b, . . . , LM + a,LM + b}}

,! {� ` n : �j 2 {1, c, . . . , LM + 1, LM + c}} .

Let � be a partition in the left set. Then � consists of the triple
�
�(a),�(b), (ak, b`)

�
,

where �(a) is the M -modular diagram obtained by subtracting a from every part of
the form Mj + a; �(b) is defined similarly. We apply '1 to (ak, b`) and reattach the
1-ends and c-ends based on the case into which (ak, b`) falls.

Case 1: k � `. Attach the 1-ends to �(a) and the c-ends to �(b). The map '1 guar-
antees exactly #�(b) c-ends. Likewise, there are at least as many 1-ends as there
are parts of �(a); any excess 1’s are attached as parts to �(a). The required image
of � is then the union of these two partitions.

Cases 2 and 3: ` > k. Attach the 1-ends to �(b) and the c-ends to �(a) as before.
'1 guarantees at least #�(a) c-ends. In Case 2 we are guaranteed at least #�(a)

1-ends because b > 1 implies

k + b(`� k) > `.

In Case 3, a
d > 1 implies `� k > 1, so

k + 1 + b(`� k � 1)� a = ` + (b� 1)(`� k � 1)� a � `,
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and we are guaranteed at least #�(a) 1-ends.

Given the image of �, we may clearly recover �(a) and �(b) based on its 1-ends
and c-ends and the fact that '1 is an injection. Thus, 'L is an injection.

Remark. The condition a - b in Theorem 1 is necessary to avoid cases like

1
(q, q5; q6)L

� 1
(q2, q4; q6)L

,

in which the coe�cient of q4 is �1.

Remark. If we had copied the proof of Theorem 5.1 in [4] exactly, then the con-
ditions “a

d |” and “a
d -” would be replaced by “a |” and “a -”. But this is not

an injection because Case 2 is only correctly separated from the other two when
gcd(a, b) = 1. For example, this direct version of Berkovich-Garvan’s map gives:

(
47, 64

44, 66
�! (116, 94), instead of our

(
47, 64

44, 66
�!

(
116, 94

17, 95
.

In the first example, the partitions fall into cases 1 and 2. The second example
corrects the overlap and places the partitions into cases 1 and 3.

We demonstrate the injection of Theorem 1 with an example.

Example 1. Here, (n,M,L, a, b, c) = (52, 10, 2, 4, 6, 9). Numbers above arrows
indicate the case into which a pre-image falls.

163, 4 3! 113, 92, 1
162, 14, 6 3! 19, 112, 9, 12

162, 62, 42 3! 112, 93, 13

162, 45 1! 192, 114

16, 142, 42 1! 19, 112, 111

16, 14, 63, 4 3! 19, 11, 92, 14

16, 14, 6, 44 1! 19, 11, 9, 113

16, 66 2! 11, 141

16, 64, 43 3! 11, 94, 15

16, 62, 46 1! 19, 92, 115

16, 49 1! 19, 133

143, 6, 4 1! 113, 9, 110

142, 64 3! 192, 9, 15

142, 62, 43 1! 112, 92, 112

142, 46 1! 112, 130

14, 65, 42 3! 19, 93, 16

14, 63, 45 1! 11, 93, 114

14, 6, 48 1! 11, 9, 132

68, 4 2! 9, 143

66, 44 3! 95, 17

64, 47 1! 94, 116

62, 410 1! 92, 134

413 1! 152
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2.3. Proofs of Theorems 2 and 3

We begin by recalling the main steps in McLaughlin’s proof of Theorem 7 from [13];
our proof is based on a combinatorial reading. First, Cauchy’s Theorem ([3], Th.
2.1) is used with some algebraic manipulation to write, for fixed m,

X

n�0

c(m,n)qn =
X

0k< m
2

M |m�2k

qkM

(qM ; qM )m�k(qM ; qM )k

⇥
⇣
qa(m�2k) + q(M�a)(m�2k) � qb(m�2k) � q(M�b)(m�2k)

⌘
.

It then happens that the factor in parentheses is equal to

qa(m�2k)
⇣
1� q(b�a)(m�2k)

⌘⇣
1� q(M�b�a)(m�2k)

⌘
.

But the conditions on a, b and M that lead to the condition M | (m�2k) in the sum
imply that both factors above are canceled in 1

(qM ;qM )m�k
. This gives nonnegativity.

The key steps in the proof are the decomposition of the sum over k and the
nonnegativity of

(1� qr)(1� qs)
(q; q)n

for 1  r < s  n.

Both of these have simple combinatorial explanations, which we employ with M -
modular diagrams to piece together a proof of Theorem 2. Our proof naturally
leads to the finite versions with any L � 1 instead of 1. The proof of Theorem 3
is then a slight modification.

Proof of Theorem 2. Let P(n,m, j,A) denote the set of partitions of n into m parts
congruent to ±j modulo M such that the largest part is at most A. (We have
suppressed the modulus M from the notation.) Let Pk(n,m, j,A) be the subset of
partitions � 2 P(n,m, j,A) with either ⌫j(�) = k or ⌫M�j(�) = k.

Clearly, we have the disjoint union P(n,m, j,A) =
F

0km
2
Pk(n,m, j,A). Thus,

to show
P(nM,m, b, LM � b) ,! P(nM,m, a, LM + a),

we may provide injections

'k : Pk(nM,m, b, LM � b) ,! Pk(nM,m, a, LM + a)

for each k 2 [0, m
2 ].

Each � 2 P(nM,m, b, LM � b) consists of a triple
�
�(b),�(M�b), (b⌫b , (M � b)⌫M�b)

�
,
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where �(b) is the M -modular diagram with ⌫b nonnegative parts created by removing
the b-ends. The M -modular diagram �(M�b) is defined analogously by removing
the (M � b)-ends.

When k = m
2 , we simply map

'm
2

�
�(b),�(M�b), (b

m
2 , (M � b)

m
2 )
�

:=
�
�(b),�(M�b), (a

m
2 , (M � a)

m
2 )
�
.

The required partition is then obtained by reattaching the a-ends to �(b) and reat-
taching the (M � a)-ends to �(M�b).

Now assume k < m
2 . Note that

0 ⌘ nM ⌘ b⌫b(�)� b⌫M�b(�) (mod M), (2)

which implies ⌫b(�) � ⌫M�b(�) ⌘ 0 (mod M) because gcd(b,M) = 1. Thus, we
assume without loss of generality that M | (m� 2k).

Let y := (b�a)(m�2k)
M and z := (M�b�a)(m�2k)

M . These are positive integers.

Case 1: ⌫M�b(�) = k. There are k pairs of (b,M � b) and m � 2k excess b’s. We
map

'k

�
�(b),�(M�b), (bm�k, (M � b)k)

�
:=

0

BBBBBB@
�(b) [

2

64
M
...

M

3

75

| {z }
y rows

,�(M�b), (am�k, (M � a)k)

1

CCCCCCA

=:
⇣
�0(b),�(M�b), (am�k, (M � a)k

⌘
.

Here �0(b) is the M -modular diagram formed by attaching the above column to �(b).
Note that a < b < M implies 0 < y < m � k, so that �0(b) is still an M -modular
diagram with m� k nonnegative parts.

To obtain the required partition, attach the a-ends to �0(b) and the (M � a)-ends
to �(M�b). It is evident that there are m parts. Size is preserved, as

|�0(b)|+ |�(M�b)|+ (m� k)a + k(M � a)
= |�(b)|+ My + |�(M�b)|+ a(m� 2k) + kM

= |�(b)|+ (b� a)(m� 2k) + |�(M�b)|+ a(m� 2k) + kM

= |�(b)|+ |�(M�b)|+ b(m� 2k) + kM

= |�|.

Moreover, it is clear that the operations are reversible, so that, within Case 1,
'k is an injection.
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Case 2a: ⌫b(�) = k and �(M�b) does not contain a column of height y.1 There are
k pairs of (b,M � b) and m� 2k excess (M � b)’s. We map

'k

�
�(b),�(M�b), (bk, (M � b)m�k)

�
:=

0

BBBBBB@
�(b),�(M�b) [

2

64
M
...

M

3

75

| {z }
z rows

, (am�k, (M � a)k)

1

CCCCCCA

=:
⇣
�(b),�

0
(M�b), (a

m�k, (M � a)k
⌘

,

where �0(M�b) is defined by attaching the above column. Note again that b, a < M
2

implies 0 < z < m� k, so that �0(M�b) is still an M -modular diagram with m� k
nonnegative parts. Furthermore, b�a 6= M � b�a, so �0(M�b) still does not contain
a column of height y.

To obtain the required partition, attach the a-ends to �0(M�b) and the (M � a)-
ends to �(b). It is evident that there are m parts. Size is preserved, as

|�(b)|+ |�0(M�b)|+ (m� k)a + k(M � a)
= |�(b)|+ |�(M�b)|+ Mz + a(m� 2k) + kM

= |�(b)|+ |�(M�b)|+ (M � b� a)(m� 2k) + a(m� 2k) + kM

= |�(b)|+ |�(M�b)|+ (M � b)(m� 2k) + kM

= |�|.

Moreover, it is clear that the operations are reversible, so that, within Case 2a, 'k

is an injection.

Case 2b: ⌫b(�) = k and �(M�b) contains a column of height y.2 In this case we
send

�
�(b),�(M�b), (bk, (M � b)m�k)

�
7!

0

BBBBBB@
�(b),�(M�b) \

2

64
M
...

M

3

75

| {z }
y rows

, (ak, (M � a)m�k)

1

CCCCCCA

=:
⇣
�(b),�

0
(M�b), (a

k, (M � a)m�k
⌘

,

where �0(M�b) is defined by removing the above column. As before, we still may
consider �0(M�b) an M -modular diagram with m� k nonnegative parts.

1Or equivalently, the y-th part of �(M�b) equals the (y + 1)-st part.
2Or equivalently, the y-th part of �(M�b) is strictly greater than the (y + 1)-st part.
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To obtain the required partition, attach the a-ends to �(b) and the (M � a)-ends
to �0(M�b). It is evident that there are m parts. Size is preserved, as

|�(b)|+ |�0(M�b)|+ ka + (m� k)(M � a)
= |�(b)|+ |�(M�b)|�My + kM + (M � a)(m� 2k)
= |�(b)|+ |�(M�b)|� (b� a)(m� 2k) + kM + (M � a)(m� 2k)
= |�(b)|+ |�(M�b)|+ (M � b)(m� 2k) + kM

= |�|.

Moreover, it is clear that the operations are reversible, so that, within Case 2b, 'k

is an injection.
Let

�
�(a),�(M�a), a

⌫a , (M � a)⌫M�a
�

lie in the image of 'k. Then cases are
separated as follows.

Case 1: ⌫a > ⌫M�a and �(a) contains a column of height y.
Case 2a: ⌫a > ⌫M�a and �(a) does not contain a column of height y.
Case 2b: ⌫a < ⌫M�a.

Finally, note that in each case 'k adds at most M to the largest part of what
becomes �(a), so indeed 'k maps Pk(nM,m, b, LM � b) into Pk(nM,m, a, LM +a)
as required. This completes the proof of the first statement.

When M is even and a is odd, we can use exactly the same injections, assuming
because of (2) that m � 2k ⌘ M

2 (mod M). We note that gcd(b,M) = 1 implies
that b is also odd, so y and z are still integers.

Remark. We note that the extra factor 1
(1�qLM+a) in the left term of Theorem 2

is necessary. For example, in

1
(zq2, zq5; q7)2

� 1
(zq3, zq4; q7)2

,

the coe�cients of z7q70, z13q70, z16q70, and z18q70 are all negative.

The proof of Theorem 3 is similar, but now cases are determined by columns
that occur twice.

Proof of Theorem 3. We define injections '0k to be the same as 'k, except that in
Cases 2a and 2b we condition on whether or not a partition contains two columns
of height y. This ensures that '0k preserves distinct parts partitions:

Case 1: Note that �(b) is a distinct parts partition into m�k nonnegative parts (so
0 occurs at most once). As such, �(b) must contain a column of height y. (Recall
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that y < m� k.) Attaching another such column means that �0(b) still has distinct
nonnegative parts. Attaching the ends as above also preserves distinct parts.

Case 2a: Again attaching the column to �(M�b) preserves distinct parts because
z < m � k. The fact that M � b � a 6= b � a implies that �0(M�b) still does not
contain two columns of height y.

Case 2b: Since �(M�b) contains two columns of height y, removing one such column
preserves distinct parts.

Cases are separated as follows.

Case 1: ⌫a > ⌫M�a and �(a) contains two columns of height y.
Case 2a: ⌫a > ⌫M�a and �(a) does not contain two columns of height y.
Case 2b: ⌫a < ⌫M�a.

This concludes the proof.

Remark. Unlike in Theorem 2, it appears that the extra factor
�
1 + qLM+a

�
in

the left term of Theorem 3 is often not needed for nonnegativity. A computational
search up to M  12, L  20 and nM  250 reveals that for

X

m,n�0

d0(m,n)zmqn := (�zqa,�zqM�a; qM )L � (�zqb,�zqM�b; qM )L,

we have some d0(m,nM) < 0 only when (a, b,M) = (1, 2, 5).

In fact, we can condition on more than just 2 columns to prove the following new
result.

Proposition 1. Let d � 0, 1  a < b < M
2 and gcd(b,M) = 1. Let p(d)(n,m, j,A)

denote the number of partitions of n into m parts congruent to ±j (mod M), whose
parts are at most A such that the gap between successive parts is greater than dM .
Then for all n,m � 0,

p(d)(nM,m, a, LM + a) � p(d)(nM,m, b, LM � b).

If in addition a is odd, then we also have

p(d)

✓
nM +

M

2
,m, a, LM + a

◆
� p(d)

✓
nM +

M

2
,m, b, LM � b

◆
.

Substituting d = 0 and d = 1 gives Theorems 2 and 3 respectively.
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Proof. Let � =
�
�(b),�(M�b), (b⌫b , (M � b)⌫M�b)

�
be a partition counted by

p(d)(nM,m, b, LM � b). Then the M modular diagrams �(b) and �(M�b) are parti-
tions into nonnegative multiples on M such that the di↵erence in successive parts
is at least (d + 1)M . Our injections '(d)

k are the same as before, except that we
condition in cases 2 or 3 on whether or not �(M�b) contains d+2 columns of height
y.

3. Applications to Kanade-Russell’s Conjectures

In [11], Kanade and Russell conjectured several new Rogers-Ramanujan-type product-
sum identities—three arising from the theory of a�ne Lie algebras, and several com-
panions. Bringmann, Jennings-Sha↵er and Mahlburg were able to prove many of
these [6], and they reduced the sum-sides of the four conjectures below from triple
series to a single series. Here, KRj is Identity j in [11], and Hj(x) is the sum side
as denoted in [6].

KR4 : H4(1) =
1

(q, q4, q5, q9, q11; q12)1
,

KR4a : H5(1) =
1

(q, q5, q7, q8, q9; q12)1
,

KR6 : H8(1) =
1

(q, q3, q7, q8, q11; q12)1
,

KR6a : H9(1) =
1

(q3, q4, q5, q7, q11; q12)1
.

The pairs of sum-sides, (H4(1),H5(1)) and (H8(1),H9(1)), are composed of two
generating functions for partitions that satisfy the same set of gap conditions, but
H5 and H9 have an additional condition on the smallest part (see [11]). Hence, as
with the Rogers-Ramanujan sum-sides, we have the inequalities

H4(1)�H5(1) ⌫ 0 and H8(1)�H9(1) ⌫ 0,

which, if the conjectures are true, imply the following result.

Proposition 2. The following inequalities hold.

1
(q, q4, q5, q9, q11; q12)1

� 1
(q, q5, q7, q8, q9; q12)1

⌫ 0, (3)

1
(q, q3, q7, q8, q11; q12)1

� 1
(q3, q4, q5, q7, q11; q12)1

⌫ 0. (4)
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Proof. (4) is an immediate consequence of Theorem 1, since for every L � 0,

1
(q, q8; q12)L

� 1
(q4, q5; q12)L

⌫ 0.

Multiplying both sides by the positive series 1
(q3,q7,q11;q12)1

and taking the limit as
L !1 finishes the proof of (4).

Andrews’ Anti-telescoping Method [1] works seamlessly to show (3). Define

P (j) := (q, q4, q11; q12)j and Q(j) := (q, q7, q8; q12)j ,

and note that the following implies (3):

1
P (L)

� 1
Q(L)

⌫ 0 for all L � 0. (5)

Now we write

1
P (L)

� 1
Q(L)

=
1

Q(L)

✓
Q(L)
P (L)

� 1
◆

=
1

Q(L)

LX

j=1

✓
Q(j)
P (j)

� Q(j � 1)
P (j � 1)

◆

=
LX

j=1

1
Q(L)

Q(j�1)P (j)

✓
Q(j)

Q(j � 1)
� P (j)

P (j � 1)

◆
,

whose j-th term is

(1� q12j�11)q12(j�1)

(q12j�11, q12j�5, q12j�4; q12)L�j+1(q, q4, q11; q12)j
⇥
�
�q7 � q8 + q4 + q11

�

=
(1� q12j�11)q12(j�1)

(q12j�11, q12j�5, q12j�4; q12)L�j+1(q, q4, q11; q12)j
⇥ q4(1� q3)(1� q4). (6)

The terms (1� q4) and (1� q12j�11) are cancelled in the denominator, and we can
write 1�q3

1�q = 1+ q + q2. Hence, (6) is nonnegative for every j, proving (5) and then
(3).

Another pair of identities in [11] with an Ehrenpreis Problem set-up is the fol-
lowing.

KR5 : H6(1) =
1

(q2; q4)1

Y

n�0

⇣
1 + q4n+1 + q2(4n+1)

⌘
,

KR5a : H7(1) =
1

(q2; q4)1

Y

n�0

⇣
1 + q4n+3 + q2(4n+3)

⌘
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Both identities were proved in [6], and there is an obvious injection proving

1
(q2; q4)1

Y

n�0

⇣
1 + q4n+1 + q2(4n+1)

⌘
� 1

(q2; q4)1

Y

n�0

⇣
1 + q4n+3 + q2(4n+3)

⌘
⌫ 0,

namely, sending each (4n + 3) to the pair (4n + 1, 2).
Finally, we discuss the Ehrenpreis problems among KR1, KR2 and KR3. These

were proved in [6], and their respective sum-sides were denoted H1(x), H2(x) and
H3(x). Using the methods of [11], we have found slightly di↵erent conditions for
the partitions enumerated on the sum-side:

1. No consecutive parts are allowed.

2. Odd parts do not repeat.

3. Even parts appear at most twice.

4. We have (�j ,�j+1,�j+2) /2 {(2k, 2k, 2k+2), (2k, 2k, 2k+3), (2k+1, 2k+3, 2k+
5), (2k � 2, 2k, 2k)} for any j and k.3

Note that our fourth condition is changed slightly from Kanade and Russell’s
in [11], page 5. The sum-side of KR2 has the further restriction that the part 1
may not appear, and in the sum-side of KR3, the parts 1, 2 and 3 may not appear.
Hence, H1(1) ⌫ H2(1) ⌫ H3(1) and it follows from Theorem 1.1 of [6] that

1
(q, q4, q6, q8, q11; q12)1

⌫ (�q3,�q9; q12)1
(q2, q4, q8, q10; q12)1

⌫ 1
(q4, q5, q6, q7, q8; q12)1

.

The inequality between the far left and right products is a consequence of The-
orem 5.3 of [4], but a direct proof of the other two inequalities remains open.

4. Concluding Remarks

As we pointed out in the introduction, (1) was the start of Andrews-Baxter’s
“motivated” proof of the Rogers-Ramanujan identities [2]. They defined G1 :=
(q, q4; q5)�1

1 and G2 := (q2, q3; q5)�1
1 , and then recursively

Gi :=
Gi�2 �Gi�1

qi�2
, for i � 3. (7)

They then observed computationally that Gi = 1+
P

n�i gi,nqn ⌫ 0. Thus, as i !1
the coe�cient of qn in Gi is eventually 0. This was their “Empirical Hypothesis,”
and proving it leads easily to a new proof of the Rogers-Ramanujan identities.

3As in [11], we have written parts in increasing order.
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Note that, starting from the sum-sides of G1 and G2, the recursive definition (7)
and the Empirical Hypothesis are completely natural. For example, if RR denotes
the set of gap-2 partitions, then by the Rogers-Ramanujan Identities,

G1 �G2 =
X

�2RR
�31

q|�| = q

0

BB@1 +
X

�2RR
�j�3

q|�|

1

CCA ,

and so

G2 �G3 =
X

�2RR
�j�2
�j32

q|�| = q2

0

BB@1 +
X

�2RR
�j�4

q|�|

1

CCA ,

and so on.
For KR4, KR4a, KR6 and KR6a, we can expect the more complicated condi-

tions on the sum-sides to lead to more complicated recurrences. For example, the
recurrence below was shown for KR4 ([6], equation 4.2).

H4(x) = (1 + xq)H4(xq2) + xq2(1 + xq3)H4(xq4) + x2q6(1� xq4)H4(xq6).

Combinatorial proofs of the above and the similar recurrences in [6] may give
insight into an “Empirical Hypothesis” for KR4, KR4a, KR6 and KR6a. Indeed, the
techniques for “motivated proofs” have been expanded to accommodate identities
with gap-conditions more complicated than those of RR, notably in [7], [9] and
[12]. Perhaps further developments will give an answer to the following question:
Do there exist “motivated proofs” of KR4, KR4a, KR6 and KR6a?

This would be especially interesting, since to our knowledge there have not yet
been “motivated proofs” featuring asymmetric products.

Acknowledgements. The author thanks Alexander Berkovich, Shashank Kanade
and the anonymous referee for their helpful comments.
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