
#A28 INTEGERS 21 (2021)

ROBIN’S INEQUALITY FOR 20-FREE INTEGERS

Thomas Morrill1

Department of Mathematics and Physics,Trine University, Angola, Indiana

David John Platt2

School of Mathematics, University of Bristol, Bristol, UK

Received: 9/19/20, Accepted: 2/19/21, Published: 3/23/21

Abstract

In 1984, Robin showed that the Riemann Hypothesis for ζ is equivalent to demon-

strating σ(n) < eγn log log n for all n > 5040. Robin’s inequality has since been

proven for various infinite families of power-free integers: 5-free integers, 7-free

integers, and 11-free integers. We extend these results to cover 20-free integers.

In 1984, Robin gave an equivalent statement of the Riemann Hypothesis for ζ

involving the divisors of integers.

Theorem 1 (Robin [11]). The Riemann Hypothesis is true if and only if for all

n > 5040,

σ(n) < eγn log log n, (RI)

where σ(n) is the sum of divisors function and γ is the Euler–Mascheroni constant.

Since then, (RI) has become known as Robin’s inequality. There are twenty-six

known counterexamples to (RI), of which 5040 is the largest [5].

Robin’s inequality has been proven for various infinite families of integers, in

particular the t-free integers. Recall that n is called t-free if n is not divisible by the

tth power of any prime number, and t-full otherwise. In 2007, Choie, Lichiardopol,

Moree, and Solé [4] showed that (RI) holds for all 5-free integers greater than 5040.

Then, in 2012, Planat and Solé [12] improved this result to (RI) for 7-free integers

greater than 5040, which was followed by Broughan and Trudgian [3] with (RI) for

11-free integers greater than 5040 in 2015. By updating Broughan and Trudgian’s

work, we prove our main theorem.

Theorem 2. Robin’s inequality holds for 20-free integers greater than 5040.
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Since there are no 20-full integers less than 5041, we may give a cleaner statement

for Robin’s theorem.

Corollary 1. The Riemann Hypothesis is true if and only if (RI) holds for all

20-full integers.

1. A Bound for t-free Integers

Solé and Planat [12] introduced the generalised Dedekind Ψ function

Ψt(n) := n
∏
p|n

(1 + p−1 + · · ·+ p−(t−1)) = n
∏
p|n

1− p−t

1− p−1
.

Since

σ(n) = n
∏
pa||n

(1 + p−1 + · · ·+ p−a),

we see that σ(n) ≤ Ψt(n), provided that n is t-free. Thus, we study the function

Rt(n) :=
Ψt(n)

n log log n
.

By Proposition 2 of [12], it is sufficient to consider Rt only at the primorial numbers

pn# =
∏n
k=1 pk where pk is the kth prime. Compare this to the role of colossally

abundant numbers in (RI) by Robin [11].

Using equation (2) of Broughan and Trudgian [3], we have for n ≥ 2

Rt(pn#) =
pn#

∏
p≤pn

1−p−t

1−p−1

pn# log log pn#
=

∏
p>pn

(1− p−t)−1

ζ(t) log ϑ(pn)

∏
p≤pn

(1− p−1)−1

where ϑ(x) is the Chebyshev function
∑
p≤x log p.

In Sections 2 and 3, we construct two non-increasing functions, gB(w; t) and

g∞(w; t) such that for some constants x0, B we have for x0 ≤ pn ≤ B

gB(pn; t) ≥ Rt(pn#) exp(−γ)

and for pn > B

g∞(pn; t) ≥ Rt(pn#) exp(−γ).

For a given t ≥ 2, if we can show that all t-free numbers 5 040 < n ≤ pk# satisfy

(RI), that gB(pk; t) < 1 and that g∞(B; t) < 1, then we are done.
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2. Deriving gB(pn; t)

We start with some lemmas.

Lemma 1. Let ρ be a non-trivial zero of the Riemann zeta function with positive

imaginary part not exceeding3 · 1012. Then <ρ = 1/2.

Proof. See Theorem 1 of [7].

Lemma 2. Let B = 2.169 · 1025. Then we have

|ϑ(x)− x| ≤ 1

8π

√
x log2 x for 599 ≤ x ≤ B.

Proof. Given that one knows the Riemann Hypothesis to height T , [1] tells us that

we may use Schoenfeld’s bounds from [10] but restricted to B such that

4.92

√
B

logB
≤ T.

Using T = 3 · 1012 from Lemma 1 we find B = 2.169 · 1025 is admissible.

Lemma 3. Let log x ≥ 55. Then

|ϑ(x)− x| ≤ 1.388 · 10−10x+ 1.4262
√
x

or

|ϑ(x)− x| ≤ 1.405 · 10−10x.

Proof. From Table 1 of [6] we have for x > exp(55)

|ψ(x)− x| ≤ 1.388 · 10−10x

so that by Theorem 13 of [9] we get, again for x > exp(55), that

|ϑ(x)− x| ≤ 1.388 · 10−10x+ 1.4262
√
x.

The second bound follows trivially.

Lemma 4. Take B as above and define

C1 =

∞∫
B

(ϑ(t)− t)(1 + log t)

t2 log2 t
dt.

Then C1 ≤ 2.645 · 10−9.
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Proof. We split the integral at X0 = exp(2000), apply Lemma 3 and consider

1.405 · 10−10
X0∫
B

1 + log t

t log2 t
dt ≤ 1.430 · 10−10

X0∫
B

dt

t log t
≤ 5.055 · 10−10.

For the tail of the integral, we use

|ϑ(x)− x| ≤ 30.3x log1.52 x exp(−0.8
√

log x)

from Corollary 1 of [8], valid for x ≥ X0. We can then majorise the tail with

30.3

∞∫
X0

log t exp(−0.8
√

log t)

t
dt

which is less than 2.139 · 10−9.

Lemma 5. Take B, C1 as above and let 599 ≤ x ≤ B. For t > 1, define

w(t) =
(log t+ 3)

√
B − (logB + 3)

√
t

4π
√
tB

.

Then

∏
p≤x

(
1− 1

p

)
≥ exp(−γ)

log x
exp

(
1.02

(x− 1) log x
+

log x

8π
√
x

+ C1 + w(x)

)
.

Proof. Let M be the Meissel-Mertens constant

M = γ +
∑
p

(log(1− 1/p) + 1/p).

Then by 4.20 of [9] we have∣∣∣∣∣∣
∑
p≤x

1

p
− log log x−M

∣∣∣∣∣∣ ≤ |ϑ(x)− x|
x log x

+

∞∫
x

|ϑ(t)− t|(1 + log t)

t2 log2 t
dt.

Since 599 ≤ x ≤ B we can use Lemma 2 to bound the first term with

log x

8π
√
x
.

We can split the integral at B and over the range [B,∞) use the bound from Lemma

4. This leaves the range [x,B] where we can use Lemma 2 and a straightforward

integration yields a contribution of

(log x+ 3)
√
B − (logB + 3)

√
x

4π
√
xB

= w(x).
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We then simply follow the method used to prove Theorem 5.9 of [6] with our bounds

in place of
ηk

k logk x
+

(k + 2)ηk

(k + 1) logk+1 x
.

We also need Lemma 2 of [12].

Lemma 6 (Solé and Planat [12]). For n ≥ 2,∏
p>pn

1

1− p−t
≤ exp(2/pn).

Putting all this together, we have the following.

Lemma 7. Let w(t) be as per Lemma 5. Now define

gB(pn; t) =
exp

(
2
pn

+ 1.02
(pn−1) log pn + log pn

8π
√
pn

+ C1 + w(pn)
)

log pn

ζ(t) log
(
pn −

√
pn log2 pn

8π

) .

Then for t ≥ 2 and 599 ≤ pn ≤ B = 2.169 · 1025 we have gB(pn; t) non-increasing

in n and Rt(pn#) ≤ exp(γ)gB(pn; t).

3. Deriving g∞(pn; t)

We will need a further bound.

Theorem 3. For x ≥ 767 135 587,∏
p≤x

p

p− 1
≤ eγ log x exp

(
1.02

(x− 1) log x
+

1

6 log3 x
+

5

8 log4 x

)
.

Proof. This is the last display on page 245 of [6] with k = 3 so that ηk = 0.5.

We can now deduce

Theorem 4. Define

g∞(pn; t) =
exp

(
2
pn

+ 1.02
(pn−1) log pn + 1

6 log3 pn
+ 5

8 log4 pn

)
log pn

ζ(t) log
(
pn − 1.338 · 10−10pn − 1.4262

√
pn
) .

Then for t ≥ 2 and log pn ≥ 55 we have

Rt(pn#) ≤ eγg∞(pn; t)

and g∞(pn; t) is non-increasing in n.
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4. Computations

The proof rests on Briggs’ work [2] on the colossally abundant numbers, which

implies (RI) for 5040 < n ≤ 10(10
10). We extend this result with the following

theorem.

Theorem 5. Robin’s inequality holds for all 5040 < n ≤ 10(10
13.114 85).

Proof. We implemented Brigg’s algorithm from [2] but using extended precision

(100 bits) and interval arithmetic to carefully manage rounding errors. The final n

checked was

29 996 208 012 611# · 7 662 961# · 44 293# · 3 271# · 666# · 233# · 109# · 61#

· 37# · 23# · 19# · (13#)2 · (7#)4 · (5#)3 · (3#)10 · 219.

Corollary 2. Robin’s inequality holds for all 13# ≤ n ≤ 29 996 208 012 611#.

We are now in a position to prove Theorem 2. We find that

gB(29 996 208 012 611; 20) < 1

and

g∞(B; 20) < 1

and the result follows.

5. Comments

In terms of going further with this method, we observe that both

gB(29 996 208 012 611; 21) > 1

and

g∞(B; 21) > 1

so one would need improvements in both. We only pause to note that one of the

inputs to Dusart’s unconditional bounds that feed into g∞ is again the height to

which the Riemann Hypothesis is known3, so the improvements from Lemma 1

could be incorporated.

Finally, we observe that if Rt(pn#) could be shown to be decreasing in n, then

our lives would have been much easier.

3Dusart uses T ≥ 2 445 999 556 030.
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