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Abstract

We present a general method for computing the abelian complexity ρabs of an auto-
matic sequence s, provided that (a) the Parikh vectors of the length-n prefixes of s
form a synchronized sequence and (b) the abelian complexity is bounded above by
a constant. We illustrate the idea in detail, using the free software Walnut to com-
pute the abelian complexity of the Tribonacci word TR = 0102010 · · · , the fixed
point of the morphism 0 → 01, 1 → 02, 2 → 0. Previously, Richomme, Saari, and
Zamboni showed that the abelian complexity of this word lies in {3, 4, 5, 6, 7}, and
Turek gave a Tribonacci automaton computing it. We are able to “automatically”
rederive these results, and more, using the method presented here.

1. Introduction

Let Σ = {a1, a2, . . . , ak} be a finite ordered alphabet, with an ordering on the letters

given by a1 < a2 < · · · < ak. Let w ∈ Σ∗. We define |w|ai to be the number of

occurrences of ai in w. Thus, for example, |banana|a = 3.

The Parikh vector ψ(w) for w ∈ Σ∗ is defined to be (|w|a1 , . . . , |w|ak
), the k-tuple

that counts the number of occurrences of each letter in w. Thus, for example, if

v < l < s < e, then ψ(sleeveless) = (1, 2, 3, 4).

Let s ∈ Σω be an infinite sequence over Σ. The abelian complexity function

ρabs (n) is defined to be the number of distinct Parikh vectors of length-n factors of

s. This concept was introduced by Richomme, Saari, and Zamboni [15] and has

been studied extensively since then.

We call a numeration system for N regular if

(a) Elements of N have unique representations (up to leading zeros);

(b) The set of all valid representations for N is recognizable by a finite automaton;

(c) The exists another finite automaton recognizing the relation {(x, y, z) : x =

y+z}. By this we mean that there is an automaton recognizing, in parallel, the
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representations of x, y, z satisfying x = y+ z. Here any shorter representation

is padded with leading zeros, if necessary, so that the representations of all

three numbers have the same length, and can be fed into the automaton digit-

by-digit, in parallel.

Examples of regular numeration systems include base k, for integers k ≥ 2 [1];

Fibonacci numeration [9]; Tribonacci numeration [13]; and Ostrowski numeration

systems [2].

In this paper we are concerned with automatic sequences. These are sequences s

that can be computed by a DFAO (deterministic finite automaton with output) M

in the following sense: we express n in some regular numeration system, and feed

M with this representation, most significant digit first. The output associated with

the last state reached is then s[n], the n’th term of the sequence s.

A variation on automatic sequences is the synchronized sequence, introduced by

Carpi and Maggi [5]. A sequence (s(n))n≥0 taking values in N (or Nk) is synchro-

nized if there is an automaton recognizing, in parallel, the representations of n and

s(n), with shorter representations padded with leading zeroes, as above.

Abelian complexity, defined above, is a variation on (ordinary) subword com-

plexity ρs(n), which counts the number of length-n factors of s. It is known

that for automatic sequences, the first difference of the subword complexity func-

tion is “automatically computable”, in the sense that there is an algorithm that,

given the DFAO M , constructs another automaton M ′ that computes the sequence

(ρs(n+ 1)− ρs(n))n≥0 [10]. In contrast, for abelian complexity there is (in general)

no such automaton, as proved in [17, Corollary 5.6].

In this note I will show that there is an algorithm that, given an automatic

sequence s satisfying certain conditions, constructs a DFAO computing ρabs . I will

illustrate the ideas in detail for the Tribonacci word, fixed point of the morphism

0→ 01, 1→ 02, 2→ 0.

2. The Result and Its Proof

Theorem 1. Let s be a sequence that is automatic in some regular numeration

system. Suppose that

(a) the Parikh vectors of length-n prefixes of s form a synchronized sequence; and

(b) the abelian complexity ρabs is bounded above by a constant.

Then (ρabs (n))n≥0 is an automatic sequence and the DFAO computing it is effectively

computable.

Furthermore, if condition (a) holds, then condition (b) can be tested algorithmi-

cally.
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Proof. Here is a summary of how the DFAO computing ρabs (n) can be automatically

constructed. We use the fact that a first-order logical formula ϕ with addition, and

using indexing into an automatic sequence, is itself automatic (that is, there is an

automaton recognizing the values of the free variables that make ϕ true) [6].

1. Given a synchronized automaton computing the Parikh vectors of prefixes of s,

we can find (by subtracting) a synchronized automaton computing the Parikh

vector for arbitrary factors s[i..i+ n− 1]. This is first-order expressible. The

resulting automaton recognizes (in parallel) triples of the form (i, n, ψ(s[i..i+

n− 1])).

2. Define

f(i, n) := ψ(s[i..i+ n− 1])− ψ(s[0..n− 1])

An := {f(i, n) : i ≥ 0}.

Then ρabs (n) = |An|. (The f(i, n) were called relative Parikh vectors by by

Turek [20].)

3. If supn≥0 ρ
ab
s (n) < ∞, then the range of each coordinate of the elements of

An is finite, and automata recognizing the representation of the ranges can be

algorithmically constructed. It is now easy to check whether these automata

recognize finite or infinite sets. If all of these automata recognize only finite

sets, then condition (b) is satisfied.

4. If condition (b) is satisfied, then there are only finitely many possibilities

for each coordinate of f(i, n). We can then compute the (finite) set of all

possibilities S.

5. Once we have S, we can test each of the finitely many subsets to see if whether

it actually occurs for some n, and obtain an automaton recognizing those n

for which it does.

6. All the different automata can then be combined into a single DFAO that,

given n as input, computes An and ρabs (n), using the direct product construc-

tion discussed in [18, Lemma 2.4].

With the exception of the last step, all these steps can be achieved using the free

software Walnut. We implemented the last step in Dyalog APL, although it should

be a feature of a future version of Walnut.

We now illustrate the ideas in detail on a particular infinite word, the Tribonacci

word. In doing so, we recover almost all of the results from two papers: [14] and

[20]. In particular, we avoid the long, ad hoc, and case-based reasoning of the first
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paper; it is replaced by calculations done “automatically” by Walnut. The second

paper, by Turek, is much closer to our approach in spirit and details, but still has

some ad hoc aspects. In an earlier paper on Tribonacci-automatic sequences [13],

we stated that we could not yet obtain the abelian complexity of the Tribonacci

word, a deficiency we remedy here.

3. The Tribonacci Word and Tribonacci Representations

The infinite Tribonacci word TR = TR[0..∞) = 0102010 · · · is the fixed point of

the map 0→ 01, 1→ 02, 2→ 0. It was studied, for example, in [7, 3, 16].

The word TR is Tribonacci-automatic. This means there is a DFAO that takes

the Tribonacci representation of n as input, and computes TR[n], the n’th term

of the Tribonacci sequence. (Indexing starts with 0.) Here the Tribonacci rep-

resentation of a natural number n is a binary word w = e1e2 · · · er such that

n =
∑

1≤i≤r eiTr+2−i, where (Ti)i≥0 is the Tribonacci sequence, defined by T0 = 0,

T1 = 1, T2 = 1, and Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3. The Tribonacci rep-

resentation for n is unique, provided the word w begins with 1 (for n ≥ 1) and

contains no block of the form 111; see [4]. We write this unique representation

as (n)T . If w = e1 · · · er, the inverse map [w]T maps a binary word to the sum∑
1≤i≤r eiTr+2−i.

More specifically, we have that

TR[n] =


0, if (n)T ends in 0;

1, if (n)T ends in 01;

2, if (n)T ends in 11.

To see that the Parikh vector of length-n prefixes of TR is synchronized, it suffices

to show that each of the three functions n→ |TR[0..n−1]|a is synchronized, for a ∈
{0, 1, 2}. This is easily seen using the following relations. Write (n)T = e1e2 · · · er.

Then

|TR[0..n− 1]|0 = [e1 · · · er−1]T + er

|TR[0..n− 1]|1 = [e1 · · · er−2]T + er−1 (1)

|TR[0..n− 1]|2 = [e1 · · · er−3]T + er−2

See, for example, [13, Theorem 20] and [8, Theorem 13].

In the next section we prove, using a computation by Walnut, the following

theorem about TR:

Theorem 2. The following hold:

(a) The only possible relative Parikh vectors for TR are {(0, 0, 0), (1, 0,−1),

(1,−1, 0), (0, 1,−1), (−1, 2,−1), (−1, 1, 0), (0,−1, 1), (−1, 0, 1), (−1,−1, 2)}.
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(b) There are only 26 distinct An, and they are given by Ai for i in the set T =

{0, 1, 2, 3, 4, 5, 6, 9, 11, 17, 30, 31, 55, 57, 101, 105, 185, 340, 341, 342, 355, 629,

653, 1157, 1201, 3914}.

(c) For all i ∈ T − {0}, the set {j ≥ 0 : Aj = Ai} is infinite.

(d) The set-valued function n→ An is Tribonacci-automatic.

(e) The function n→ ρabTR(n) is Tribonacci-automatic.

(f) The abelian complexity function ρabTR(n) takes on only the values {3, 4, 5, 6, 7}
for n ≥ 1.

The first four results are new. Result (e) was proved previously by Turek [20,

Theorem 10]. Result (f) was proved previously by Richomme, Saari, and Zamboni

[14, Theorem 1.4].

4. Walnut Implementation of the Algorithm for TR

In this section we show how to implement our ideas using the word TR as an

example, thus providing a proof of Theorem 2. The code is given in Walnut, a

theorem-prover for first-order logical formulas on automatic sequences [12].

Let us start by implementing the formulas (1) given above.

In order to do this, we need to be able to tell whether a number is a right-shift

of another (in Tribonacci representation). For example, 6 = [110]T is the right shift

of 12 = [1101]T . It is easy to create a 2-D Tribonacci automaton for this, and it

is illustrated in Figure 1. It takes the Tribonacci representations of m and n in

parallel, and accepts if (n)T is the right shift of (m)T . We call the result $rst and

we store it in the Result directory of Walnut. We also need to be able to compute

the last bit of n in Tribonacci representation. Again, this is very easy, and an

automaton computing it is illustrated in Figure 2. We call the result TRL, and the

appropriate file is stored under the name TRL.txt in the Word Automata Library

of Walnut.

0

[0,0]

1[1,0]
[0,1]

2

[1,1]

[0,1]

Figure 1: Tribonacci shift is synchronized.
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0/0

0

1/11
0

2/1

1

0

Figure 2: DFAO for the last bit.

Now, using this, we can find DFAO’s computing the maps n → |TR[0..n − 1]|a
for a ∈ {0, 1, 2}. Here is the Walnut code:

def tribsync0 "?msd_trib Ea Eb (s=a+b) & ((TRL[n]=@0)=>b=0) &

((TRL[n]=@1)=>b=1) & $rst(n,a)":

def tribsync1 "?msd_trib Ea Eb Ec (s=b+c) & ((TRL[a]=@0)=>c=0) &

((TRL[a]=@1)=>c=1) & $rst(n,a) & $rst(a,b)":

def tribsync2 "?msd_trib Ea Eb Ec Ed (s=c+d) & ((TRL[b]=@0)=>d=0) &

((TRL[b]=@1)=>d=1) & $rst(n,a) & $rst(a,b) & $rst(b,c)":

This gives three synchronized automata computing |TR[0..n − 1]|a for a ∈
{0, 1, 2}, in Figures 3–5. We could, if we wished, combine the three automata

in those figures into one synchronized automaton computing all three elements of

the Parikh vector of TR[0..n − 1], but the resulting automaton has 31 states and

is a little awkward to display.

0

[0,0]

1
[1,0]

2

[1,1]

[0,1]
3[1,1]

4

[1,0]

5[0,1]

6[0,0]

[0,0]

[1,0]

[1,0]

Figure 3: Synchronized automaton for |TR[0..n− 1]|0.
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0

[0,0]

1

[1,0]

2

[0,0]

3
[1,0]

4

[0,1]

5

[1,1]

[0,1]

[1,1]

6
[0,1]

7

[0,0]

[0,1]

8

[1,1]

9

[1,0]

[0,0]
[1,0]

[0,0]
[1,0]

Figure 4: Synchronized automaton for |TR[0..n− 1]|1.

0

[0,0] 1
[1,0]

2

[0,0] 3

[1,0]

4

[0,0]

5[1,0]

6

[0,1]

[1,1]

7
[0,0]

8

[0,1]

[0,1]

[1,1]

[0,1]

[1,1]

[0,1]

9
[1,1]

[0,0]

10
[1,0]

11

[0,1]
12[1,1]

13
[0,0]

14
[1,0]

[0,0][1,0]

[0,0]

[0,0]

[1,0]

[0,0]

Figure 5: Synchronized automaton for |TR[0..n− 1]|2.
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Next we compute synchronized Tribonacci automata computing |TR[i..i+n−1]|a
for a ∈ {0, 1, 2}. We can do this with the following first-order formulas computing

|TR[0..i+ n− 1]|a − |TR[0..i− 1]|a,

namely

def tribfac0 "?msd_trib Aq Ar ($tribsync0(i+n,q) & $tribsync0(i,r)) => (q=r+s)":

def tribfac1 "?msd_trib Aq Ar ($tribsync1(i+n,q) & $tribsync1(i,r)) => (q=r+s)":

def tribfac2 "?msd_trib Aq Ar ($tribsync2(i+n,q) & $tribsync2(i,r)) => (q=r+s)":

The resulting automata have 239, 283, and 406 states, respectively — much too

large to display here.

We now move on to computing the abelian complexity of TR. We want to

compute the number of distinct triples ψ(TR[i..i + n − 1]) for i ≥ 0. This is the

same as the number of distinct triples of the form

f(i, n) := ψ(TR[i..i+ n− 1])− ψ(TR[0..n− 1]).

In the notation used in Section 2, we then have

An := {f(i, n) : i ≥ 0}.

In order to determine f(i, n), we first need to know the range of each coordinate.
Since this range could include negative integers, and Walnut is currently restricted
to N, this is slightly awkward, but can be done as follows:

def posrange0 "?msd_trib E i,n,s,t $tribfac0(i,n,s) & $tribfac0(0,n,t) & u+t=s":

def negrange0 "?msd_trib E i,n,s,t $tribfac0(i,n,s) & $tribfac0(0,n,t) & u+s=t":

def posrange1 "?msd_trib E i,n,s,t $tribfac1(i,n,s) & $tribfac1(0,n,t) & u+t=s":

def negrange1 "?msd_trib E i,n,s,t $tribfac1(i,n,s) & $tribfac1(0,n,t) & u+s=t":

def posrange2 "?msd_trib E i,n,s,t $tribfac2(i,n,s) & $tribfac2(0,n,t) & u+t=s":

def negrange2 "?msd_trib E i,n,s,t $tribfac2(i,n,s) & $tribfac2(0,n,t) & u+s=t":

By inspecting the resulting six automata, we see that

f(i, n) ∈ {−1, 0, 1} × {−1, 0, 1, 2} × {−1, 0, 1, 2} (2)

for all n, which incidentally proves that TR has bounded abelian complexity and

also proves that TR is 2-balanced [14, Theorem 1.3].

We now proceed to determine which specific triples can appear as elements of of

An. Since we know the range from (2), we can do this as follows:

def validtriples "?msd_trib Ei,n,a,b,c,d,e,f $tribfac0(i,n,a) &

$tribfac0(0,n,b) & s+b=a+1 & $tribfac1(i,n,c) & $tribfac1(0,n,d)

& t+d=c+1 & $tribfac2(i,n,e) & $tribfac2(0,n,f) & u+f=e+1":

Here the free variables (s, t, u) encode the possible elements f(i, n)+(1, 1, 1), which

from (2) is guaranteed to be in N3. The resulting automaton is as follows:
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0

[0,0,0]

1

[1,0,0]

2[0,1,0]
[0,0,1]

3

[1,1,1]

[0,1,0]

[0,0,1]

[1,0,0]
[0,1,0]
[0,0,1]

Figure 6: Range of f(i, n) + (1, 1, 1).

As we can see by inspecting the automaton in Figure 6, the automaton accepts

the Tribonacci representation of exactly nine triples, namely

{(1, 1, 1), (2, 1, 0), (2, 0, 1), (1, 2, 0), (0, 3, 0), (0, 2, 1), (1, 0, 2), (0, 1, 2), (0, 0, 3)}.

Thus we have proven that the range of f(i, n) is

{(0, 0, 0), (1, 0,−1), (1,−1, 0), (0, 1,−1), (−1, 2,−1), (−1, 1, 0), (0,−1, 1), (−1, 0, 1), (−1,−1, 2)}.

This proves part (a) of Theorem 2.

It now remains to see which of the 29 possible subsets of A can be an An for

some n. (Actually, since (0, 0, 0) occurs for each n, a priori there are only 28 possible

subsets.) We could do this by blindly following the recipe in Section 2, but since

most subsets are not reachable, we can use a faster way. First let us make Walnut

formulas for the assertion that f(i, n) equals each of the nine tuples listed

def t000 "?msd_trib Ea,b,c,d,e,f $tribfac0(i,n,a) &

$tribfac0(0,n,b) & a=b & $tribfac1(i,n,c) & $tribfac1(0,n,d)

& c=d & $tribfac2(i,n,e) & $tribfac2(0,n,f) & e=f":

def t10m1 "?msd_trib Ea,b,c,d,e,f $tribfac0(i,n,a) &

$tribfac0(0,n,b) & a=b+1 & $tribfac1(i,n,c) & $tribfac1(0,n,d)

& c=d & $tribfac2(i,n,e) & $tribfac2(0,n,f) & e+1=f":

def t1m10 "?msd_trib Ea,b,c,d,e,f $tribfac0(i,n,a) &

$tribfac0(0,n,b) & a=b+1 & $tribfac1(i,n,c) & $tribfac1(0,n,d)

& c+1=d & $tribfac2(i,n,e) & $tribfac2(0,n,f) & e=f":

def t01m1 "?msd_trib Ea,b,c,d,e,f $tribfac0(i,n,a) &

$tribfac0(0,n,b) & a=b & $tribfac1(i,n,c) & $tribfac1(0,n,d)

& c=d+1 & $tribfac2(i,n,e) & $tribfac2(0,n,f) & e+1=f":

def tm12m1 "?msd_trib Ea,b,c,d,e,f $tribfac0(i,n,a) &

$tribfac0(0,n,b) & a+1=b & $tribfac1(i,n,c) & $tribfac1(0,n,d)
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& c=d+2 & $tribfac2(i,n,e) & $tribfac2(0,n,f) & e+1=f":

def tm110 "?msd_trib Ea,b,c,d,e,f $tribfac0(i,n,a) &

$tribfac0(0,n,b) & a+1=b & $tribfac1(i,n,c) & $tribfac1(0,n,d)

& c=d+1 & $tribfac2(i,n,e) & $tribfac2(0,n,f) & e=f":

def t0m11 "?msd_trib Ea,b,c,d,e,f $tribfac0(i,n,a) &

$tribfac0(0,n,b) & a=b & $tribfac1(i,n,c) & $tribfac1(0,n,d)

& c+1=d & $tribfac2(i,n,e) & $tribfac2(0,n,f) & e=f+1":

def tm101 "?msd_trib Ea,b,c,d,e,f $tribfac0(i,n,a) &

$tribfac0(0,n,b) & a+1=b & $tribfac1(i,n,c) & $tribfac1(0,n,d)

& c=d & $tribfac2(i,n,e) & $tribfac2(0,n,f) & e=f+1":

def tm1m12 "?msd_trib Ea,b,c,d,e,f $tribfac0(i,n,a) &

$tribfac0(0,n,b) & a+1=b & $tribfac1(i,n,c) & $tribfac1(0,n,d)

& c+1=d & $tribfac2(i,n,e) & $tribfac2(0,n,f) & e=f+2":

Interestingly enough, each of these automata has 101 states.

We now create a Walnut formula of two arguments, m and n, that is true if
Am = An.

def subset "?msd_trib ((Ei $t000(i,m)) <=> (Ej $t000(j,n)))

& ((Ei $t10m1(i,m)) <=> (Ej $t10m1(j,n))) & ((Ei $t1m10(i,m)) <=> (Ej $t1m10(j,n)))

& ((Ei $t01m1(i,m)) <=> (Ej $t01m1(j,n))) & ((Ei $tm12m1(i,m)) <=> (Ej $tm12m1(j,n)))

& ((Ei $tm110(i,m)) <=> (Ej $tm110(j,n))) & ((Ei $t0m11(i,m)) <=> (Ej $t0m11(j,n)))

& ((Ei $tm101(i,m)) <=> (Ej $tm101(j,n))) & ((Ei $tm1m12(i,m)) <=> (Ej $tm1m12(j,n)))":

The resulting Tribonacci automaton has 5251 states.

Now we iteratively determine the possible subsets of A that occur as some An.

We will do this iteratively as follows: Starting with the subset A0 = {(0, 0, 0)}
we find the least n for which a different subset occurs than the ones we found

previously. Then we find the subset corresponding to this particular n. This gives

us all possible subsets occurring as an An and the smallest n for which this subset
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occurs:

A0 = {(0, 0, 0)}
A1 = {(−1, 0, 1), (−1, 1, 0), (0, 0, 0)}
A2 = {(0,−1, 1), (0, 0, 0), (1,−1, 0)}
A3 = {(−1, 0, 1), (−1, 1, 0), (0,−1, 1), (0, 0, 0)}
A4 = {(0, 0, 0), (0, 1,−1), (1, 0,−1)}
A5 = {(−1, 0, 1), (−1, 1, 0), (0, 0, 0), (0, 1,−1)}
A6 = {(0,−1, 1), (0, 0, 0), (1,−1, 0), (1, 0,−1)}
A9 = {(−1, 0, 1), (0,−1, 1), (0, 0, 0), (1,−1, 0)}
A11 = {(−1, 1, 0), (0, 0, 0), (0, 1,−1), (1, 0,−1)}
A17 = {(0, 0, 0), (0, 1,−1), (1,−1, 0), (1, 0,−1)}
A30 = {(0,−1, 1), (0, 0, 0), (0, 1,−1), (1,−1, 0), (1, 0,−1)}
A31 = {(−1, 0, 1), (−1, 1, 0), (0,−1, 1), (0, 0, 0), (0, 1,−1)}
A55 = {(−1, 0, 1), (−1, 1, 0), (0, 0, 0), (0, 1,−1), (1, 0,−1)}
A57 = {(−1, 0, 1), (0,−1, 1), (0, 0, 0), (1,−1, 0), (1, 0,−1)}
A101 = {(−1, 0, 1), (−1, 1, 0), (0,−1, 1), (0, 0, 0), (1,−1, 0)} (3)

A105 = {(−1, 1, 0), (0, 0, 0), (0, 1,−1), (1,−1, 0), (1, 0,−1)}
A185 = {(−1, 0, 1), (−1, 1, 0), (−1, 2,−1), (0, 0, 0), (0, 1,−1)}
A340 = {(−1,−1, 2), (−1, 0, 1), (0,−1, 1), (0, 0, 0), (1,−1, 0)}
A341 = {(−1,−1, 2), (−1, 0, 1), (−1, 1, 0), (0,−1, 1), (0, 0, 0)}
A342 = {(−1, 0, 1), (−1, 1, 0), (0,−1, 1), (0, 0, 0), (0, 1,−1), (1, 0,−1)}
A355 = {(−1, 0, 1), (0,−1, 1), (0, 0, 0), (0, 1,−1), (1,−1, 0), (1, 0,−1)}
A629 = {(−1, 0, 1), (−1, 1, 0), (0,−1, 1), (0, 0, 0), (1,−1, 0), (1, 0,−1)}
A653 = {(−1, 0, 1), (−1, 1, 0), (0, 0, 0), (0, 1,−1), (1,−1, 0), (1, 0,−1)}
A1157 = {(−1, 1, 0), (0,−1, 1), (0, 0, 0), (0, 1,−1), (1,−1, 0), (1, 0,−1)}
A1201 = {(−1, 0, 1), (−1, 1, 0), (0,−1, 1), (0, 0, 0), (0, 1,−1), (1,−1, 0)}
A3914 = {(−1, 0, 1), (−1, 1, 0), (0,−1, 1), (0, 0, 0), (0, 1,−1), (1,−1, 0), (1, 0,−1)}

For example, having computed A0, . . . , A1201, to find the next and final term we

can use the following Walnut code:

def last "?msd_trib ~($subset(n,0) | $subset(n,1) | $subset(n,2)

| $subset(n,3) | $subset(n,4) | $subset(n,5) | $subset(n,6)

| $subset(n,9) | $subset(n,11) | $subset(n,17) | $subset(n,30)

| $subset(n,31) | $subset(n,55) | $subset(n,57) | $subset(n,101)

| $subset(n,105) | $subset(n,185) | $subset(n,340) | $subset(n,341)
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| $subset(n,342) | $subset(n,355) | $subset(n,629) | $subset(n,653)

| $subset(n,1157) | $subset(n,1201))":

def missing "?msd_trib $last(n) & Am (m<n) => ~$last(m)":

Then the Tribonacci automaton computed by Walnut and stored in missing.txt,

depicted in Figure 7, accepts exactly one word, which is 10011000000000, represent-

ing 3914 in Tribonacci representation. So we know the next term is A3914.

0

0

11 20 30 41 51 60 70 80 90 100 110 120 130 140

Figure 7: The next term is 3914.

This proves part (b) of Theorem 2.

Now we can use the direct product construction mentioned above in Section 2 to

obtain two DFAO’s, which differ only in output function. The transition function δ

and the two output functions τ1 and τ2 are given in Table 1. The DFAO with output

function τ1 computes, for each n, the minimal n′ such that An = An′ ; it is called

TRAS.txt. The DFAO with output function τ2 computes, for each n, the value of

ρabTR(n); it is called TRAC.txt. This proves parts (d), (e), and (f) of Theorem 2.

The reason why the second automaton given in Table 1 differs from that of

Turek [20] is that our automaton detects illegal Tribonacci representations (in state

7) and produces an output −1 for those representations, while Turek’s automaton

does not. We have checked the output of Turek’s automaton against ours for the

first 1,000,000 terms and they agree in all cases. This serves as a double-check on

our results.

Once we have the automaton, additional basic results such as Turek’s Corollary

7.2 of [19] (asserting that ρabTR(n) = 4 for infinitely many n) follow immediately. It

can also be easily obtained with Walnut as follows:

eval test4 "?msd_trib An Em (m>n) & TRAC[m]=@4":

which evaluates to true. In fact, the analogous result holds for each of the abelian

complexities 3, 4, 5, 6, 7.

Finally, part (c) of Theorem 2 can be verified with a similar Walnut computation.

For example, for i = 3914 we can execute the command

eval testa3914 "?msd_trib An Em (m>n) & TRAS[m]=@3914":

which evaluates to true.

All the Walnut code referred to in this paper is available from

https://cs.uwaterloo.ca/~shallit/papers.html

https://cs.uwaterloo.ca/~shallit/papers.html
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q δ(q, 0) δ(q, 1) τ1(q) τ2(q) q δ(q, 0) δ(q, 1) τ1(q) τ2(q) q δ(q, 0) δ(q, 1) τ1(q) τ2(q)
0 0 1 0 1 26 31 19 55 5 52 57 24 629 6
1 2 3 1 3 27 29 32 5 4 53 58 7 3 4
2 4 5 2 3 28 33 5 57 5 54 59 39 653 6
3 6 7 3 4 29 16 20 9 4 55 60 61 5 4
4 8 9 4 3 30 34 35 6 4 56 41 62 185 5
5 10 11 5 4 31 36 24 101 5 57 63 46 1157 6
6 12 5 6 4 32 37 7 3 4 58 64 65 30 5
7 7 7 −1 −1 33 38 39 105 5 59 66 46 1201 6
8 6 13 3 4 34 18 40 11 4 60 49 67 9 4
9 14 15 1 3 35 41 42 185 5 61 68 7 341 5
10 16 5 9 4 36 43 27 30 5 62 69 7 341 5
11 17 7 3 4 37 26 44 30 5 63 70 46 342 6
12 18 19 11 4 38 45 46 31 5 64 31 40 55 5
13 6 3 3 4 39 47 15 31 5 65 71 72 185 5
14 4 20 2 3 40 30 48 3 4 66 73 27 355 6
15 21 7 3 4 41 49 50 340 5 67 31 25 55 5
16 22 23 17 4 42 51 7 341 5 68 26 74 30 5
17 12 20 6 4 43 52 19 342 6 69 34 65 6 4
18 21 24 3 4 44 29 53 5 4 70 70 46 3914 7
19 17 15 3 4 45 54 27 355 6 71 49 67 340 5
20 10 25 5 4 46 47 32 31 5 72 58 7 341 5
21 26 27 30 5 47 33 20 57 5 73 70 39 3914 7
22 28 19 31 5 48 36 7 101 5 74 60 75 5 4
23 29 15 5 4 49 22 55 17 4 75 76 7 341 5
24 28 11 31 5 50 31 11 55 5 76 26 77 30 5
25 30 7 3 4 51 34 56 6 4 77 60 72 5 4

Table 1: The two DFAO’s computing An and ρabTR(n).

5. Conclusions

We have shown that in some cases the abelian complexity function of an automatic

sequence can be “automatically” computed. This continues in the spirit of other

papers (e.g., [6, 13]) that try to automate results in combinatorics on words that

formerly needed extensive case analysis to prove. For example, exactly the same

method can be used to compute the abelian complexity of (i) the Thue-Morse word

t = 01101001 · · · [15] and (ii) the so-called ternary Thue-Morse word [11].
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