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Abstract
Circular Nim is a two-player impartial combinatorial game consisting of n stacks
of tokens placed in a circle. A move consists of choosing k consecutive stacks and
taking at least one token from one or more of the stacks. The last player able to
make a move wins. The question of interest is: Who can win from a given position if
both players play optimally? This question is answered by determining the set of P-
positions, those from which the next player is bound to lose, no matter what moves
s/he makes. We will completely characterize the set of P-positions for n = 7 and
k = 4, adding to the known results for other games in this family. The interesting
feature of the set of P-positions of this game is that it splits into different subsets,
unlike the structures for the previously solved games in this family.

1. Introduction

The game of Nim has been played since ancient times, and the earliest European
references to Nim are from the beginning of the sixteenth century. Its current
name was coined by Charles L. Bouton of Harvard University, who also developed
the complete theory of the game in 1902 [3]. Nim plays a central role among
impartial games as any such game is equivalent to a Nim stack [2]. Many variations
and generalizations of Nim have been analyzed. They include subtraction games,
Wythoff’s game, Nim on graphs and on simplicial complexes, Take-away games,
Fibonacci Nim, etc. [1, 5, 6, 8–13,15,16]. We will study a particular case of another
variation, called Circular Nim, which was introduced in [4]. This game imposes a
geometric structure on Nim heaps which gives rise to interesting features in the set
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of P-positions.

Definition 1. In Circular Nim, n stacks of tokens are arranged in a circle. A move
consists of choosing k consecutive stacks and then removing at least one token from
at least one of the k stacks. Players alternate moves and the last player who is
able to make a legal move wins. We denote this game by CN(n, k). A position in
CN(n, k) is represented by the vector p = (p1, p2, . . . , pn) of non-negative entries
indicating the heights of the stacks in order around the circle. An option of p is
a position to which there is a legal move from p. We denote an option of p by
p′ = (p′1, p

′
2, . . . , p

′
n), and use the notation p→ p′ to denote a legal move from p to

p′.

Note that a position in Circular Nim is determined only up to rotational symme-
try and reflection (reading the position forward or backward). The only terminal
position of CN(n, k) is 0 := (0, 0, . . . , 0), for all n and k. Figure 1 shows an example
of the position p = (1, 7, 5, 6, 2, 3, 6) ∈ CN(7, 4) and one possible move, to option
p′ = (0, 1, 5, 4, 2, 3, 6), where the four stacks enclosed by squares are the stacks that
were selected for play. Note that no tokens were taken from the stack of height
5. We will use play on a stack to mean that the stack is one of the selected ones,
whether actual tokens were removed or not.

Figure 1: A move from p = (1, 7, 5, 6, 2, 3, 6) to p′ = (0, 1, 5, 4, 2, 3, 6).

Circular Nim is an example of an impartial combinatorial game, one for which
both players have the same moves. For impartial games, there are only two types
of positions (= outcomes classes). The outcome classes are described from the
standpoint of which player will win when playing from the given position. An N -
position indicates that the Next player to play from the current position can win,
while a P-position indicates that the Previous player, the one who made the move
to the current position, is the one to win. Thus, the current player is bound to lose
from this position, no matter what moves she or he makes. A winning strategy for
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a player in an N -position is to move to one of the P-positions. More background
on combinatorial games can be found in [1, 2].

Dufour and Heubach [4] proved general results on the set of P-positions of
CN(n, 1), CN(n, n), and CN(n, n−1) for all n. These general cases cover all games
for n ≤ 3. They also gave results for all games with n ≤ 6 except for CN(6, 2), and
also solved the game CN(8, 6). In this paper, the main result is on the P-positions
for CN(7, 4). One sign of the increase in complexity as n and k increase is that,
unlike in the results for the cases already proved, we no longer can describe the set
of P-positions as a single set, which makes the proofs more complicated.

To prove our main result, we use the following theorem.

Theorem 1 (Theorem 2.13, [1]). Suppose the positions of a finite impartial game
can be partitioned into mutually exclusive sets A and B with these properties:

I. Every option of a position in A is in B; and

II. Every position in B has at least one option in A.

Then A is the set of P-positions and B is the set of N -positions.

2. The Game CN(7, 4)

In the discussion of CN(7, 4), we will use the generic position p = (a, b, c, d, e, f, g).
Since positions of CN(7, 4) are only determined up to rotation and reflection, we
will assume without loss of generality that in a generic position a is a minimum.
Figure 2 shows a generic position (a, b, c, d, e, f, g) where the minimum stack is
rendered in red (gray). Note that to avoid cumbersome notation, we will use the
label, say a, to refer to either the stack itself or to its number of tokens - which one
it is will be clear from the context.

Figure 2: A generic position in the game CN(7, 4), with a = min(p).

Here is our main result, with a visualization of the P-positions of CN(7, 4) given
in Figure 3. In this figure, we highlight the sum conditions by encircling stacks
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whose sums have to be equal in dark blue, and color any stacks that equal the sums
in the same color. Pairs of stacks that also have the same sum, but for which this
is true due to some symmetry, are encircled in lighter blue.

Theorem 2. Let p = (a, b, c, d, e, f, g) with a = min(p). The P-positions of
CN(7, 4) are given by S = S1 ∪ S2 ∪ S3 ∪ S4, where:

• S1 = {p | a = b = 0, c = g > 0, d+ e+ f = c}.

• S2 = {p | p = (a, a, a, a, a, a, a)}.

• S3 = {p | a = b, c = g, d = f, a+ c = d+ e, 0 < a < e}, and

• S4 = {p | a = f, b+ c = d+ e = g + a, a < min{b, e}, a < max{c, d}}.

(a) P-positions in
S1

(b) P-positions in
S2

(c) P-positions in
S3

(d) P-positions in
S4

Figure 3: Visualization of the P-positions of CN(7, 4).

Note that all the subsets of S are disjoint. The condition a < max{c, d} of S4

prohibits a pair of adjacent minima, which all other sets have. Also, S2 is disjoint
from the other sets because they all have a strict inequality condition. Finally,
S1 ∩ S3 = ∅ since a > 0 for S3.

The following definitions and remarks will aid us in the proofs of our results.
Note that we assume a to be the minimum, not necessarily unique. In the proofs,
we will typically denote the minimal and maximal values of a target position p’ by
m and M , respectively.

Definition 2. A tub configuration xaax is a set of four adjacent stacks that consists
of a pair of adjacent minima (of the position) surrounded by two stacks of equal
height. There are three other stacks in the position, which we denote by x1x2x3

unless we know the actual stack heights. A peak configuration is of the form xXx,
a set of three adjacent stacks with x < X. If x and X are the minimum and the
maximum, respectively, of the position, then we call this configuration a minmax
peak. A position with a peak contains four other stacks which we denote by x1x2x3x4
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unless we know the actual stack heights. Finally, a position has the common sum
requirement if consecutive disjoint pairs of adjacent stacks have to have the same
sum, with one exceptional overlap stack contributing to two sums.

With these definitions, we can make the following remarks regarding the specific
features of each subset of S.

Remark 1.

(1) In S3, a < e and the sum conditions imply that c > max{a, d} and c ≥ e.

(2) In S4, we have the following inequalities: a < min{b, e} implies that g >

max{c, d} due to the common sum requirement. Furthermore, g > a.

(3) Positions in S1 ∪ S3 contain a tub configuration. We have

• p ∈ S1 needs to satisfy the tri-sum condition: x1 + x2 + x3 = x

• p ∈ S3 needs to satisfy: x1 = x3 and x2 + x3 = a+ x.

(4) When trying to move from a position p with a = min(p) > 0 to p′ ∈ S1 ∪ S3,
we can create a tub configuration with minimum a′ < a by selecting a pair
of stacks, making them height a′ and then reducing the larger of the two
stacks adjacent to the pair of a′-stacks to the height of the smaller one (if
needed). This height gives the value of x in the tub configuration xa′a′x. Any
remaining play has to occur on x1, the stack adjacent to the stack that was
decreased to x. In labeling the three non-tub configuration stacks, we read
p′ starting from the minima a′ in the direction of the stack whose height was
reduced to x. (If the two stacks adjacent to the pair a′a′ were already of equal
height then either one of the stacks adjacent to the x stacks can play the role
of x1.) Note that we cannot play on the remaining two stacks x2 and x3, so
we may not be able to meet the remaining conditions of S1 or S3, respectively.

(5) Positions in S4 always contain a minmax peak, while positions in S3 may
contain a peak. In either case, the remaining four stacks have to satisfy that
x1 + x2 = x3 + x4 = x+X.

(6) Positions in S4 have either two or three minima. If c = a = m, then
p = (m,M,m, d, e,m,M), that is, two maxima alternate with three minima.
Otherwise, the two minima are separated by the maximum.

(7) The common sum requirement is a condition of S3∪S4 and is trivially satisfied
for positions in S2. It is relatively easy to see that we cannot make a move
from a position p that satisfies the common sum requirement to p′ which
also satisfies the common sum requirement if the location of the overlap stack
remains the same. In that case, at least one sum remains unchanged while
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at least one other sum is decreased. Specifically, there is no move from S2 to
S3 ∪ S4.

We are now ready to embark on the proofs.

2.1. There Is No Move from p ∈ S to p′ ∈ S

Proposition 1. If p ∈ S, then p′ /∈ S.

Proof. To prove condition (I) of Theorem 1 we will use the equivalent statement
that there is no move from a P-position to another P-position. For each of the four
subsets of S, we consider moves to all the other sets. Note that the only terminal
position is 0 ∈ S2.

Moves from S1: We start with p = (0, c, d, e, f, c, 0) ∈ S1, with d + e + f = c.
Note that we cannot move to p′ ∈ S1 ∪ S2 because in either case, we would have
to play on the five stacks cdefc to simultaneously reduce the c stacks and the sum
to a new value c′ < c in the case of S1 and c′ = 0 in the case of S2. A move to S3

is not possible since the minimum in S3 is greater than zero. A move to p′ ∈ S4 is
not possible because S4 does not have adjacent minima by Remark 1(6). Thus, no
move is possible from S1 to S.

Moves from S2: Now assume that p = (a, a, a, a, a, a, a) ∈ S2 with a > 0

because p is the terminal position for a = 0. To move to S1, we have to create a tub
configuration of the form x00x, which requires play on three stacks (even though
we remove tokens from only two stacks). We can at most reduce one of the three
remaining stacks x1x2x3 = aaa, so the sum x1+x2+x3 ≥ 2a, while x = a, so there
is no move from S2 to S1. Clearly, one cannot move from S2 to S2. By Remark 1(7)
there is no move from S2 to S3 ∪ S4.

Moves from S3: Let p = (a, a, c, d, e, d, c) ∈ S3 with a+ c = d+ e. To move to
S1 ∪ S3, we have to create a tub configuration of the form xa′a′x, with a′ = 0 for
p′ ∈ S1 and a′ ≤ a for p′ ∈ S3. First we consider play when the minima a′ of p′ are
located at the a stacks. For a move to S1, we play on both a stacks making them
zero, and then either reduce both c stacks or one of the d stacks, but not both. In
either case, we have that x ≤ c and the tri-sum d′ + e + d ≥ d + e = a + c > c, so
the tri-sum condition is not satisfied. For a move to S3, the overlap stack remains
at the same location, and by Remark 1(7), there is no move to S3.

Now we look at the cases where we create a tub configuration xa′a′x elsewhere.
In each case, we use play on three stacks as described in Remark 1(4). By symmetry
of positions in S3 we have to consider the three possibilities indicated in Figure 4a.
They are x = a with x1x2x3 = edc, x = a with x1x2x3 = dca, or x = d with
x1x2x3 = aac (since c > d by Remark 1(1), so we read counter-clockwise). By
Remark 1(3), we need to satisfy the conditions x1 + x2 + x3 = x + 0 = x + a′ for
p ∈ S1 and both x1 = x3 and x2 + x3 = x+ a′ for p ∈ S3. We will show that even



INTEGERS: 21B (2021) 7

if we reduce x1 to zero, we will not be able to satisfy the respective sum conditions.
When x = a, then x2 + x3 ≥ min{d + c, c + a} > a + a′ = x + a′, and for x = d,
a+ c = d+ e > d+ a′ = x+ a′. Thus, p′ /∈ S1 ∪ S3. It is also not possible to move
to p′ ∈ S2, since by Remark 1(1), min{c, e} > a, so we would need to play on five
stacks to reduce cdedc to aaaaa.

(a) (b)

Figure 4: Visualization of moves from S3 to (a) S1 ∪ S3 (b) S4.

To show that we cannot move from S3 to S4, we consider the possible locations of
the minmax peak of p′. Due to symmetry of positions in S3, we need to consider the
four possible peak configurations shown in Figure 4b: a′aa′ with sums d+e ≤ d+c,
a′ca′ with sums e + d = c + a, a′da′ with sums d + c > a + a, or a′ea′ with sums
c + a (in both cases). Note that in the first three cases, we have a′ < a because
the minimum of the minmax peak in S4 has to be strictly less than the adjacent
stacks, and in each of these cases, the a stack is one of them. We can play on one
more stack adjacent to the a′ stacks and we play on the stack that affects the larger
sum. In the first two cases, the peak sum is smaller than the smaller of the two
sums, and since we can adjust only one sum, we cannot legally move to p′ ∈ S4.
For the third case, equality with the peak sum requires that d′ + c = d + a′ and
hence d′ = d − c + a′ < a′ because c > d by Remark 1(1). For the last case, the
overlap stack is at the same location in p and p′, so by Remark 1(7), we cannot
adjust all four sums with play on only four stacks. This shows that we cannot move
to p′ ∈ S4.

Moves from S4: Finally, we check whether we can move from p = (a, b, c, d, e, a,

g) ∈ S4 to p′ ∈ S. The approach is similar to the one taken when p ∈ S3. For a
move to p′ ∈ S1∪S3, we once more need to create a tub configuration xa′a′x, where
a′ ≤ a, and a′ = 0 for moves to S1. Due to the semi-symmetric nature of positions in
S4, we now need to consider all seven placements of the new pair of minima. We start
by putting them at stacks a and b and get the following cases: x = c, x1x2x3 = aed

(since we have to reduce g), x = a, x1x2x3 = eag, x = min{b, e}, x1x2x3 = aga (no
matter which side we need to play on), x = a, x1x2x3 = bag (since we need to play
on c), x = d, x1x2x3 = abc, x = a, x1x2x3 = dcb, and x = a, x1x2x3 = cde.
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First we look at the cases where x = a. Reducing x1 to zero, we have that
x2+x3 = a+g = c+b = e+d > a+a ≥ a+a′, so the sum conditions of S1 and S3 are
not satisfied. Likewise, for x = c, we have that x2+x3 = e+d = c+b > c+a ≥ c+a′,
and for x = d, we obtain x2 + x3 = b + c = d + e > d + a ≥ d + a′. Finally, for
x = min{b, e}, we have that x2+x3 = g+a = min{b, e}+max{d, c} > min{b, e}+a ≥
min{b, e}+ a′, so we cannot move to p′ ∈ S1 ∪ S3.

Next we look at moves from S4 to S2. Since a < min{b, e, g}, we have to reduce
at least those three stacks to a which requires play on five stacks. Therefore we
cannot move from S4 to S2.

Finally, we look at moves from S4 to S4. If we keep the location of the minima
and hence the overlap stack, then by Remark 1(7) there is no move to p′ ∈ S4.
Thus we need to consider whether we can create a minmax peak a′Xa′ with a′ < a

and remaining stacks x1x2x3x4 which satisfy x1 + x2 = x3 + x4 = a′ + X by
Remark 1(5). We can play on either x1 or x4, but in either case we can only modify
one of the two sums x1 + x2 and x3 + x4. The common sum for p is s = g + a,
while for p′ it is s′ = X + a′ < s. Furthermore, x2 and x3 cannot be adjusted.
Let us look at the possible cases, going clockwise and starting with new minimia
at the g and b stacks, for a total of six cases: (1) X ≤ a and x1x2x3x4 = cdea;
(2) X ≤ b and x1x2x3x4 = deag; (3) X ≤ c and x1x2x3x4 = eaga; (4) X ≤ d

and x1x2x3x4 = agab; (5) X ≤ e and x1x2x3x4 = gabc; and (6) X ≤ a and
x1x2x3x4 = abcd. In cases (1) and (3), x3 > X, while in cases (4) and (6), x2 > X,
either directly from the definition of positions in S4 or by Remark 1(2). For the
remaining two cases, (2) and (5), we have that x1 + x2 = x3 + x4 = g + a = s > s′

and we can adjust only one of the two sums. This shows that there is no move
from S4 to S4, and thus shows that there is no move from S to S, completing the
proof.

2.2. There Always Is a Move from p ∈ Sc to p′ ∈ S

We now show the second part of Theorem 1.

Proposition 2. If p ∈ Sc, then there is a move to p′ ∈ S.

To show that we can make a legal move from any position p ∈ Sc to a position
p′ ∈ S, we partition the set Sc according to the number of zeros of p and, for
positions without a zero stack, according to the locations of the maximal stacks.
We will only need to distinguish between the case of exactly one zero and the case
of at least two zeros. Note that in [14], Sc was partitioned according to the ex-
act number of minima of p. The proof presented here is shorter and uses some of
the ideas from [14], such as Definition 3 and Lemma 1. We call out these struc-
tures and CN(3, 2)-equivalence (defined below) because they give insight into stack
configurations from which it is easy to move to P-positions.
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Definition 3. A position p is called deep-valley if and only if five consecutive stacks
p1p2p3p4p5 satisfy p2+ p3+ p4 ≤ min{p1, p5}. It is called shallow-valley if and only
if p1 ≤ p5 and p2 + p3 ≤ p1 < p2 + p3 + p4.

Lemma 1 (Valley Lemma). If p = (p1, p2, p3, p4, p5, p6, p7) is deep-valley with
stacks p1p2p3p4p5 and s = p2+p3+p4, then there is a move to p′ = (s, p2, p3, p4, s, 0, 0) ∈
S1. On the other hand, if p is shallow-valley with p1p2p3p4p5, then there is a move
to p′ = (p1, p2, p3, p1 − (p2 + p3), p1, 0, 0) ∈ S1.

Proof. If p is deep-valley, then p′1 = p′5 = p2 + p3 + p4 ≤ min{p1, p5}, so it follows
that p → p′ ∈ S1 is a legal move. If p is shallow-valley, then p′1 = p′5 = p1 ≤ p5,
p1− (p2+ p3) ≥ 0, and p4 ≥ p′4 = p1− (p2+ p3). Also, p1− (p2+ p3)+ p2+ p3 = p1,
p→ p′ ∈ S1 is a legal move.

The notion of CN(3, 2)-equivalence comes into play when p contains zero stacks.
It builds on the structure of the P-positions of CN(3, 2), which are those with equal
stack heights (see either [4] or convince yourself easily with a one-line proof). Note
that the definition below is not specific to the game CN(7, 4).

Definition 4. A position p of a CN(n, k) game is CN(3, 2)-equivalent if the stacks
of p can be partitioned into (mutually exclusive) subsets A1, A2, and A3 together
with a set (or sets) of consecutive zero stacks, where A1, A2, and A3 satisfy the
following conditions:

(1) Any pair of the three sets A1, A2, and A3, together with any zero stacks that
are between them, are contained in k consecutive stacks;

(2) Any move that involves at least one stack from each of the three sets A1, A2,
and A3 requires play on at least k+1 consecutive stacks, thus is not allowed.

We define the set sums p̃i =
∑

pj∈Ai
pj and call a move a CN(3, 2) winning

move if play on the stacks in the sets Ai results in equal set sums in p′. A
CN(3, 2)-equivalent position that has equal set sums is called a CN(3, 2)-equivalent
P-position.

CN(3, 2)-equivalent positions are perfectly suited to moves to S1 since the con-
ditions on the non-zero stacks in S1 require equality of the tri-sum and the two
adjacent stack heights (set sum of a single stack). But we will also see that a
CN(3, 2) winning move can be used when there are additional inequality conditions
on some of the stacks as long as those conditions can be maintained. In other in-
stances, the sum conditions may involve a stack outside the three sets, but the sum
condition can be achieved without play on that “outside” stack.
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The proof of Proposition 2 will proceed as a sequence of lemmas where we will
consider the individual cases according to the number of zeros and the location(s)
of the maximum values in the case when the position does not have a zero. We
start by dealing with positions that have at least two zero stacks.

Lemma 2 (Multiple Zeros Lemma). If p ∈ Sc and p has at least two stacks without
tokens, then there is a move to p′ ∈ S1 ∪ S2 ∪ S4.

Proof. Note that we will label the individual stacks as x, xi, y, and yj depending on
the symmetry of the position as well as the role the different stacks play. Typically,
stacks labeled x or xi are between zeros (short distance) or adjacent to zeros. Since
the positions in S1 ∪ S3 ∪ S4 all have sum conditions that need to be satisfied, we
will typically use s to denote this target sum. We consider the case of two adjacent
zeros, two zeros separated by one stack and finally two zeros separated by two (or
three) stacks, where distance is always assumed to be the shorter distance between
any stacks. Figure 5 shows the generic positions in each of the cases. Any position
with at least three zeros falls into either case (a) or case (b).

(a) (b) (c)

Figure 5: Generic positions with at least two zeros. (a) Two consecutive zeros. (b)
Two zeros separated by one stack. (c) Two zeros separated by two stacks.

First, suppose there are two consecutive zeros in the position as shown in Fig-
ure 5a. Note that p = (x1, 0, 0, x2, y3, y2, y1) is CN(3, 2)-equivalent with sets
A1 = {x1}, A2 = {x2}, and A3 = {y1, y2, y3}. Thus we can make the CN(3, 2)

winning move to p′ ∈ S1 ∪ S2 by adjusting the stacks in two of the Ai to make the
set sums in p′ equal to the minimal set sum in p. This can be achieved with play
on four stacks or fewer. Note that we move to S2 when either x1 or x2 (or both)
equal zero, that is, we have at least three consecutive zeros, and p′ is the terminal
position in that case.

Now we can assume that any zeros in p are isolated, that is, they are either
separated by one stack or by two stacks. Let us first consider the case of two zeros
separated by a single stack, that is, p = (0, x, 0, y1, y2, y3, y4) withmin{x, y1, y4} > 0

because of the isolated zero condition (see Figure 5b). Our goal is to move to S4.
Due to the zeros (which will also be the minima in p′), the sum conditions of S4
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reduce to x′ = y′1 + y′2 = y′3 + y′4, with min{y′1, y′4} > 0. Since p is CN(3, 2)-
equivalent with sets A1 = {x}, A2 = {y1, y2}, and A3 = {y3, y4}, and we can
make the CN(3, 2) winning move to p′. Note that we can achieve the condition
min{y′1, y′4} > 0 because the original stacks were non-zero, and any set of two
stacks that is being played on can be adjusted to achieve the desired sum without
making y1 or y4 equal to zero because x > 0 by assumption of the isolated zeros.
However, if in the process we need to make y′2 = y′3 = 0, then the resulting position
is in S1.

Now we turn to the case where the zeros are separated by two stacks, that is,
p = (0, x1, x2, 0, y2, y, y1), with min{x1, x2, y1, y2} > 0 since we assume isolated
zeros (see Figure 5c). We also assume without loss of generality that y2 ≥ y1. Now
we need to consider two subcases: y1 ≥ x1 and y1 < x1. Note that for each of the
subcases, the sum s will be defined on a case-by-case basis.

In the first case, we let s = min{x1+x2, y1} and move to p′ = (0, x1, x
′
2, 0, s, 0, s) ∈

S4 with x1 + x′2 = s. While this looks like there is play on five stacks, either x2 or
y1 will remain the same. If s = y1, then play is on the x2, 0, y2 and y stacks, and
because x1 ≤ y1, we have x′2 = s − x1 = y1 − x1 ≥ 0. If s = x1 + x2, then play is
on the three y stacks.

Now we look at y1 < x1, which is a little bit more involved. Here our goal is
to move to S1, so we need to create a pair of zeros. Since y2 ≥ y1, we choose
x′2 = 0 and show that we can make x′1, y′2, and the tri-sum 0 + y′1 + y′ equal
in p′. Let s = min{x1, y1 + y, y2}. Unless s = y2 with y > y2, we can move to
p′ = (s, 0, 0, s, y′, y′1, 0) with y′+y′1 = s by playing on at most four stacks as follows:
If s = x1, then play is on stacks x2, y2, and y, with y′ = s − y1 = x1 − y1 > 0. If
s = y1 + y, then play is on stacks x1, x2, and y2. Finally, if s = y2 ≥ y, then play
is on stacks x2, x1, and y1, with y′1 = y2 − y ≥ 0.

This leaves the case of y1 < x1, y1 ≤ y2, y2 < {x1, y1+y} with y > y2 unresolved.
This set of inequalities can be simplified to y1 ≤ y2, y1 < x1, and y2 < {x1, y}.
Note specifically that y > yi for i = 1, 2. We need to make further distinctions as to
where the maximal value occurs. In all cases we will move to S1, but the location
of the maximal value determines where the pair of adjacent zeros is created. Let
M = max(p) = max{x1, x2, y} (all other stacks cannot be maximal due to the
inequalities).

First we consider the case where the maximal value occurs next to a zero, that
is, M = x1 or M = x2. Let s = min{x1 + y1, x2 + y2, y} and assume that M = x1.
We claim that there is a legal move to p′ ∈ S1 where p′ = (0, s, x′2, 0, y2, s, 0) with
x′2 + y2 = s. Note that M = x1 implies that s < x1 + y1 because s = x1 + y1 leads
to a contradiction. Specifically, because yi > 0 due to isolated zeros, we would have
x1 < x1 + y1 = s ≤ y ≤ M = x1. If s = x2 + y2, then play is on stacks x1, 0, y1,
and y and it is a legal move since x1 = M ≥ y ≥ s. If s = y, then play is on stacks
y1, 0, x1, and x2, with x′2 = s − y2 = y − y2 > 0. Since y > yi, the same proof,
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except with subscripts 1 and 2 changing places, applies when M = x2.
The final case is when M = y > max{x1, x2}. We first consider x1 > x2 and

let s = min{x1, x2 + y2}. Then the move is to p′ = (0, s, x2, 0, y
′
2, s, 0) ∈ S1 with

x2 + y′2 = s. If s = x1, then play is on y1, y, and y2. The move is legal since
y > x1 and y′2 = x1 − x2 > 0. On the other hand, if s = x2 + y2, then play is
on stacks y, y1, 0, and x1 and y > x1 > s. When x1 ≤ x2, then the move is to
p′ = (0, x1, s, 0, 0, s, y

′
1) ∈ S1 with y′1 + x1 = s and s = min{x2, x1 + y1}. The proof

follows like in the case x1 > x2. This completes the case of two zeros that are two
stacks apart, and therefore, the case of more than two zeros.

We next consider the case of a single isolated zero.

Lemma 3 (Unique Zero Lemma). If a position p ∈ Sc has a unique zero, then
there is a move to p′ ∈ S.

Figure 6: Generic position with a unique zero.

Proof. The generic position for this case is shown in Figure 6. Note that due to the
assumption of the unique zero, we have that all other stack heights are non-zero, so
xi > 0 and yi > 0 for i = 1, 2, 3. We may also assume without loss of generality that
x2 ≥ y2. We will see that in almost all cases, we can move to S1; there is a single
subcase where we will move to S4. Table 1 gives a quick overview of the structure
of the subcases.

x1 + y1 ≤ min{x2, y2} = y2 (a) p′ ∈ S1

x1 + y1 > y2

y2 ≥ y1 (b) p′ ∈ S1

y2 < y1
x2 ≥ y1 (c) p′ ∈ S1

x2 < y1 (d) p′ ∈ S1 ∪ S4

Table 1: Subcases for unique zero.
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(a) If s = x1 + y1 ≤ min{x2, y2}, then we can move to p′ = (0, x1, s, 0, 0, s, y1) ∈
S1.

(b) When x1 + y1 > y2 ≥ y1, we have that y2y10x1x2 is a shallow valley and by
the Valley Lemma, there is a move to S1.

(c) Since y1 > y2 implies that x1 + y1 > y2, the conditions of this case reduce
to y1 > y2, x2 ≥ y1 and x2 ≥ y2. Let s = min{y1, y2 + y3 + x3}. The goal
is to keep stacks y2 and 0 and then adjust the other stacks according to the
value of s. If s = y1, then we move to p′ = (0, y1, y2, y

′
3, x
′
3, s, 0) ∈ S1 with

y2 + y′3 + x′3 = s = y1, otherwise, we move to p′ = (0, y′1, y2, y3, x3, s, 0) ∈ S1

with y′1 = s = y2 + y3 + x3. These two moves are legal because x2 ≥ y1 ≥ s

and y′3 + x′3 = s− y2 = y1 − y2 > 0.

(d) The conditions for this case, namely y2 < y1, x2 < y1, and x2 ≥ y2 reduce
to y2 ≤ x2 < y1. We distinguish between two main cases, namely whether
x3+y3 ≤ min{x1, y1} or not. We first consider the case x3+y3 ≤ min{x1, y1}.

– If y2 < s = x3 + y3 ≤ min{x1, y1}, then we can move to p′ = (0, s −
y2, y2, y3, x3, 0, s) ∈ S4. Since min{s − y2, y2, x3} > 0, the conditions of
S4 are satisfied.

– If s = x3 + y3 ≤ y2 ≤ x2, then x2x3y3y2y1 is either a shallow valley or a
deep valley, depending on whether x3+y3+y2 > x2 or x3+y3+y2 ≤ x2,
and there is a move to S1.

Now we look at the second case, x3 + y3 > x1 or x3 + y3 > y1. We show
that with this condition alone (disregarding the overall conditions of subcase
d), we can show that there is a move to S4 ∪ S1. We can therefore assume,
without loss of generality, that x1 ≥ y1, and consider two subcases, namely
x1 ≥ x3 + y3 > y1 and x3 + y3 > x1.

– If x1 ≥ x3 + y3 > y1 and x3 + y3 > y1 + y2, then we let s = y1 + y2
and can move to p′ = (0, y1, y2, y

′
3, x
′
3, 0, s) ∈ S4 with y′3 + x′3 = s. We

can adjust the sum y′3 + x′3 such that x′3 > 0. Also, min{y1, y2} > 0, so
the S4 conditions are satisfied. If, on the other hand, x3 + y3 ≤ y1 + y2,
then we can move to p′ = (0, y′1, y2, y3, x3, 0, s) ∈ S4 with s = x3 + y3
and y′1 = s− y2 > 0 and the S4 conditions are satisfied.

– If x3 + y3 > max{x1, y1} and x1 ≥ y1 + y2 = s, then we can move
to p′ = (0, y1, y2, y

′
3, x
′
3, 0, s) ∈ S4 with s = y1 + y2 = y′3 + x′3. Note

that once more, min{x1, x3 + y3} ≥ y1 + y2 = s, so the move is legal.
Finally, assume that y1 + y2 > x1 = s. Now we have a move to p′ =

(0, y1, y
′
2, y
′
3, x
′
3, 0, x1) ∈ S4∪S1 with y1+y′2 = x′3+y′3 = s. Since y1 ≤ s,

we can make the sum y1+y′2 = s, and we can also adjust the sum x′3+y′3
while keeping x′3 > 0. If y′3 = y′2 = 0, then p′ ∈ S1, otherwise p′ ∈ S4.
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This completes the proof in the case of exactly one zero.

Finally, we deal with the case when the position p does not have a zero. In
this case, we divide the positions according to where the maximum is located in
relation to other maxima (if any). Note that when min(p) > 0, there is a close
relation between positions in S3 and S4. A position p = (m,M,m, p4, p5, p6, p7)

with p4 + p5 = p6 + p7 = M +m and min{p4, p7} > m is in S4 if max{p5, p6} > m

and is in S3 if p5 = p6 = m. Therefore, we will state that there is a move to
S3 ∪ S4 and need only check on the sum conditions and the minimum condition.
This property will be used repeatedly in the Maximum Lemma.

Lemma 4 (Maximum Lemma). Let p ∈ Sc with min(p) > 0. Then there is a move
from p to p′ ∈ S.

Proof. Let M = max(p). We will first look at the antipodal case, where we have
two maxima “opposite” (at distance two) of each other. The generic position is
p = (x1, x2,M, y3, y2, y1,M), shown in Figure 7b.

(a) (b)

Figure 7: Generic positions for antipodal maxima. (a) y3 = M and (b) y3 < M .

Table 2 shows the subcases we will consider for antipodal maxima. Without loss
of generality, we may assume that y3 ≤ y1.

y3 = M (a) p′ ∈ S1 ∪ S3 ∪ S4

y3 < M

y2 + y3 ≤M (b1) p′ ∈ S1

y2 + y3 > M
x1 ≥ x2 (b2) p′ ∈ S3

x1 < x2 (b3) p′ ∈ S3 ∪ S4

Table 2: Subcases for antipodal maxima.
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(a) We start with the case M = y3 shown in Figure 7a. Note that since y3 ≤
y1, we also have y1 = M . In this case, the generic position becomes p =

(x1, x2,M,M, y,M,M), where we have dropped the y subscript for ease of
notation. We may also assume in this case that without loss of generality,
x1 ≤ x2. If x1 + x2 < M , then Mx1x2MM forms a shallow valley and there
is a move to S1. Now assume that M ≤ x1 + x2 ≤M + y. In this case, there
is a move to p′ = (x1, x2, x1,M, x1 + x2 −M,x1 + x2 −M,M) ∈ S3. We
can make the necessary adjustments since x1 ≤ M = max(p), and M ≥ y ≥
x1 +x2−M ≥ 0 by assumption. Finally, when M + y < x1 +x2, then we can
move to p′ = (x′1, x

′
2, y,M, y,M, y) ∈ S4, with x′1 + x′2 = M + y. Note that

M + y < x1 + x2 implies that M > y. We need to show that we can adjust
the x1 and x2 stacks such that x′1 > y and x′2 > y to satisfy the S4 conditions.
This is possible since x1 + x2 > M + y ≥ y + 1 + y = 2y + 1.

We now assume that M > y3 (see Figure 7b) and consider the various subcases
listed in Table 2.

(b1) Since M ≥ y2 + y3, position p is either shallow valley (if y1 + y2 + y3 > M)
or deep valley (if y1 + y2 + y3 ≤M), so there is a move to p′ ∈ S1.

Now let s = min{y2 + y3,M + x1,M + x2}.

(b2) If s = y2 + y3 or s = M + x2, then there is a move to p′ = (s − M, s −
M,M, y3, y

′
2, y3,M) ∈ S3 with y′2 = s− y3. Note that in either case, we only

play on four stacks. If s = y2 + y3, then s ≤ min{M + x1,M + x2}, so
s −M ≤ min{x1, x2}, and y3 ≤ y1 by assumption. Also, y′2 = s − y3 = y2,
so play is on the x2, x1,M, and y3 stacks. If s = M + x1, Since M > y3, we
have that s−M = y2 − (M − y3) < y2 as needed for positions in S3. On the
other hand, if s = M + x2, then s−M = x2, so play is on the x1,M, y1, and
y2 stacks. By assumption, x1 < x2, y1 ≤ y3. Because M + x2 < y2 + y3, we
have that y′2 ≤ y2, and M > y3 implies that y′2 = M + x2 − y3 > x2, so all
conditions of S3 are satiesfied in this case also.

(b3) If s = M + x1, then M + x1 ≤ y2 + y3. We move to p′ = (x1, x2, s −
x2, y

′
3, y
′
2, x1,M) ∈ S3∪S4 with y′2+y′3 = M+x1 = s, playing on the one of the

M stacks and the yi stacks. This move is legal because s−x2 = M+x1−x2 <

M and y1 ≥ y3 ≥ M + x1 − y2 ≥ x1. Left to show is that min{x2, y
′
2} > x1.

By assumption of this case, x2 > x1, and 0 < M − y3 ≤ y2 − x1 shows that
we can satisfy the sum condition with y′2 > x1.

This completes the case of antipodal maxima. We now consider the case when
M > max{x3, y3}, so the stacks that are opposite of M have strictly smaller height.
Our generic position is shown in Figure 8. Without loss of generality, we may
assume that x1 ≤ y1. Once more we move to either p′ ∈ S1 or p′ ∈ S3 ∪ S4. Now
let s = min{M + x1, x2 + x3, y2 + y3}.
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Figure 8: Generic position when M > max{x3, y3}.

• If s = M + x1, then we can move to p′ = (M,x1, y2, y
′
3, x
′
3, x2, x1) ∈ S3 ∪ S4,

with x2 + x′3 = y2 + y′3 = M + x1. Play is on the yi stacks and x3; the move
is legal because x1 ≤ y1 by assumption, x′3 = M + x1 − x2 ≤ x3, and x′3 > 0

since M = max(p) and all stack heights are positive. Likewise, 0 < y′3 ≤ y3.
Left to show is that min{x2, y2} > x1. By assumption, M > max{x3, y3}
which implies both 0 < M − x3 ≤ x2 − x1 and 0 < M − y3 ≤ y2 − x1, so the
move is legal.

• If s = x2 + x3 and y3 ≥ s = x2 + x3, then M > y3 implies that p is either
shallow valley (if y3 < x1 + x2 + x3) or deep valley (if y3 ≥ x1 + x2 + x3)
and there is a move to S1. If y3 < s = x2 + x3 < M + x1, then we move to
p′ = (M ′,m′, y′2, y3, x3, x2,m

′) ∈ S4 with M ′ = min{s,M}, m′ = s −M ′ =

max{0, s −M} ≥ 0, and y′2 + y3 = s. Let us check that this move is legal.
If M ≥ s, then we can clearly create the M ′ and m′ stacks. If M < s, then
m′ = s−M > 0 and s−M < x1 ≤ y1, so the adjustment on the M ′ and m′

stacks is legal. Next we consider the y2 stack. Because y3 < s and y3 < M ,
we have y′2 = s− y3 > max{0, s−M} = m′ ≥ 0. Finally, we have that x2 > 0

(by assumption of no zero stacks) and also x2 > x2 + x3 −M = s−M since
x3 < M , so in either case, x2 > m′ and the conditions of S4 are satisfied.

• If s = y2+y3, then the same arguments apply as in the case s = x2+x3, with
the roles of x and y interchanged except for the inequality that s < M + x1.

This completes the proof of the Maximum Lemma.

These three lemmas together prove Proposition 2, because each position either
has multiple zeros, a unique zero, or no zero. Together with Proposition 1 and
Theorem 1, we have shown that the set S of Theorem 2 is the set of P-positions of
CN(7, 4).
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3. Discussion

Our goal in the investigations of CN(n, k) has always been to find a general structure
of the P-positions for families of games. So far we have found such results for
CN(n, 1), CN(n, n), and CN(n, n− 1) (see [4]). In addition, in all previous results
for CN(n, k), we have been able to find a single description of the P-positions. The
case of CN(7, 4) is seemingly an anomaly in that four different sets make up the
P-positions. However, a careful look at the P-positions of CN(3, 2), CN(5, 3), and
CN(7, 4), which are all examples of CN(2`+1, `+1), reveals a common structure.
Recall that the P-positions of CN(3, 2) are given by {a, a, a} for a ≥ 0, and the
P-positions of CN(5, 3) are given by {(x, 0, x, a, b)|x = a + b}. This leads to the
following result.

Lemma 5. In the game CN(2` + 1, `+ 1), the set of P-positions contains the set
S1, where

S1 = {p = (x, 0, . . . , 0︸ ︷︷ ︸
`−1

, x, a1, . . . , a`)|
∑̀
i=1

ai = x}.

Proof. Note that all positions in CN(2`+1, `+1) that have `−1 consecutive zeros are
CN(3, 2)-equivalent with sets {p1},{p`+1} and {p`+2, . . . , p2`+1}. Those in S1 are
precisely the CN(3, 2)-equivalent P-positions. Therefore, we cannot make a move
from S1 to S1 because this would amount to a move from a P-position in CN(3, 2)

to another P-position in CN(3, 2). On the other hand, we can make a CN(3, 2)

winning move into S1 from any position in CN(2`+1, `+1) that has `−1 consecutive
zeros. Therefore, S1 must be a subset of the P-positions of CN(2`+ 1, `+ 1).

While Lemma 5 does not settle the question regarding the set of P-positions
of the family of games CN(2` + 1, ` + 1), the result shows that the set S1 for
CN(7, 4), which has the requirement of the zero minima, is not an anomaly, but a
fixture among the P-positions of this family of games. Note that for CN(3, 2) and
CN(5, 3), the set of P-positions equals S1. These two games are too small to show
the more general structure of the P-positions of this family. The question arises
whether there are generalizations of the other components of the P-positions of
CN(7, 4) that play a part of the P-positions in this family. The obvious candidate
would be S2, with all equal stack heights. Interestingly enough, this set is NOT a
part of the P-positions (except for the terminal position) of CN(9, 5). For example,
the position (2, 2, 2, 2, 2, 2, 2, 2, 2) is an N -position of CN(9, 5).
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