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Abstract
We present two identities for n complex numbers.

1. Let P(z) = az™+B2™"1 +... be a polynomial of degree m with m < n, and

let a1, -- ,a, be pairwise distinct complex numbers. Then,
n n 1 0, ifm<n-— 1,
P(ay) H =<{ q, ifm=n-1,
k=1 il Ak — dj alay +--+ap)+ 8, fm=n.
J

2. For all pairwise distinct complex numbers z1, -+ , z,, (n > 2),
n n n n
zi(zj — D)(zx — 1)
1 - = 14 225 :
+> a-[[a=> H < + S
k=1 k=1 k=121

Applications lead to formulas involving special sequences and functions like, for
example,

Fo=n= 3T (1 P

“1n-1 . . )
— 2(2cos L + i) cos LT cos EX
y )
Pt cos 2% — cos °T
g

where F,, denotes the n-th Fibonacci number.
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I Technical Editor’s Note: On 6/10/24 an error in the originally published Received and Ac-
cepted dates was discovered; the dates have been corrected as of 6/11/24 by the Technical Editor.
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1. Introduction and Statement of the Main Results

The work on this paper has been inspired by an interesting article published by
J.L. Diaz-Barrero [1] in 2003. He applied methods from complex analysis to obtain
identities involving the classical Fibonacci and Lucas numbers. One of his results
states that for n > 0,

LnLn+1 Ln+1Ln+2
+
(Ln - Ln+2)(Ln+1 - Ln+2) (Ln+1 - Ln)(Ln—i-Z - Ln)
LyioL
+ 2 n =1 (1.1)

(Ln+2 - Ln+l)(Ln - Ln+1) ’

where Ly, denotes the k-th Lucas number. The following companion to (1.1) is valid,

(LnLn+1)71 + (LTL-HLTH-?)?I
(Ln - Ln+2)(Ln+1 - Ln+2) (LnJrl - Ln)(Ln+2 - Ln)
—1
+ (Lnszln) =0. (12

(Ln+2 - Ln+1)(Ln - Ln+1)

However, formulas (1.1) and (1.2) do not characterize the Lucas numbers. Indeed,
both are, respectively, special cases of

ab n be n ca -1
(a=b—0)  G-alc—a)  (c=bla—b)

and
(ab)~ (be) L ()t _ (1.3)

@-b-0o G-ac—a C-ba_b
which hold for all pairwise distinct complex numbers a, b, c. In (1.3), additionally,
abc # 0.

The aim of this paper is to present related identities with n complex numbers.
Our first theorem offers an extension of (1.3).

Theorem 1. Let P(z) = az™ + 2™71 + ... be a polynomial of degree m with
m <mn, and let ay,--- ,a, be pairwise distinct complex numbers. Then,

n 0, fm<n-—1,

Z P(ag) H L _ «, ifm=mn-—1, (1.4)
k=1

.Ji;’lcak_aj ala +---+a,) + 58, ifm=n.

Remark 1. Let aq,- - ,a, be pairwise distinct complex numbers. From Theorem
1 with P(z) = z, we obtain for n > 3,

n n 1
> an ] P 0. (1.5)

X
—
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If we set n = 3 and multiply by (ajazas)~!, then (1.5) leads to (1.3).

Remark 2. Let aq, -, a, be pairwise distinct complex numbers which are different
from 0. We apply (1.4) with P(z) = 1 and n+1 instead of n. Then, we set a1 =0
and multiply both sides by (—1)"a; - - a,. This yields for n > 2,

> H p—— (1.6)

k=1 i=1
i#k

Remark 3. An application of (1.6) leads to the following counterpart of (1.5). Let

n
[[a=0+#o,
j=1
where a4, - -+ ,a, are pairwise distinct complex numbers. Then,
n n
1 1
> =11 = . (1.7)
k=1 ak j=1 aj = Gk Q
J#k

Our second theorem presents an identity which involves the sum and the product
of n complex numbers.

Theorem 2. Let z1,--+ ,2, (n > 2) be pairwise distinct complex numbers. Then,
- 2 T zj(z —1)(z — 1)
14> o= [[z=> I (1+ : : (1.8)
k=1 k=1 k=1 f;i Rk — Zj

Remark 4. An application of the arithmetic mean - geometric mean inequality
and Theorem 2 shows that the inequality

is valid for all positive real numbers z1,--- , z, (n > 2) which are pairwise distinct
and satisfy []_, zx = Q. Let € > 0. If we use (1. 8) with

ze = (14 ke)QY/™ for k=1,---,[n/2],

Ql/n for k 2 1 2in/2
FTIE e =2t 202,
2 = QY™ if n is odd,

and let € — 0, then we conclude that the constant lower bound 1+ nQ'Y" — Q is
sharp.
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The proofs of the two theorems are given in the next section. In Section 3, we
apply Theorem 1, Theorem 2 and Remark 3 to obtain various identities involving
Lucas and Fibonacci numbers, harmonic numbers, the central binomial coefficient,

Chebyshev polynomials of the second kind and an n-th root of unity.

2. Proofs

Proof of Theorem 1. We consider two cases.

Case 1. m <n — 1. Using the partial fraction decomposition yields

P(Z) Al An
= + .. ,
(z—a1) - (z—an) z—m zZ—an
where
o1
A, =P
g (ak)Hak_a’J

This leads to

P() = a4+ 52 4= [[(r =) Y =2 = ey

. Z — aj

Jj=1 j=1
with

n
Cph—1 = E Ak
k=1

(2.1)

Comparing the coefficients gives that if m < n — 1, then (2.1) leads to ¢,—; = 0. If

m =n — 1, then we obtain from (2.1) that ¢,_1 = a.

Case 2. m =n. We have P(z) = az™ + P;(z), where P; is a polynomial of degree

<n —1. It follows that

ZP(ak) H akia‘ :Ot51+S2
J

k=1 j=1
J#k
with
S1 = E ay H and Sy = E Pi(ay) H
b1 =1 A — aj 1 =1 ag 7]
J#k J#k
From .
n— * *
z A7 A
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with
n
1
* _ n—1
Ay = a, p——
j=1 k J
Gk
we obtain
n n *
akA
=1](z—q; A + ] (z —aj —k
i) k i)
5 z — ak
j=1 = k=1
Since
n
Hz—a] "—g ap - 2"
j=1 k=1
we get

( S )ZAk+ZakAk g

Next, we compare the coefficients. This gives

zn:A =1 and Zak ZAk—ZakA*
k=1 k=1
It follows that . N
> ar =) axA; = 5. (2.3)
k=1 k=1

Since deg P; < n — 1, we obtain (as in Case 1 with P instead of P) 8 = S5. From
(2.2) and (2.3) we conclude that

The proof of Theorem 1 is complete. O

Proof of Theorem 2. We use induction on n. Let

Fo(z1,- y2n :1+izk ﬁzk

k=1 k=1

n

s

<1 4 2iE = D — 1)> .

2k — %5

bl
H
wo.
W

Eo
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We have for z; # zs,

F2(21722) =1+ 21+ 29 — 2129 — <1 +

- (1+ (2 — 1)(20 — 1))

2a(zn — 1)(21 — 1))

21 — 22

zZ9 — 21
=0.
Now, we assume that F, (w1, - ,w,) = 0 for all pairwise distinct complex numbers
Wi, -, Wy. Let 21, -+, 2,41 be complex numbers which are pairwise distinct. We

consider two cases.

Case 1. There exists a number z,. (1 <r <n+1) such that z. =0 or z. = 1. Since

Fn-‘,—l(zlv"' ;ZT'—laOaZT'-‘rl)"' azn-‘rl) :Fn(Zl,"' aZT'—1727'+17”' 7ZTL+1)

and

FnJrl(Zlv"' 727“71)172?”4'17." ;Z’n,Jrl) - Fn(2'1,"' ;Z’r‘flv'z’r+17”' 7Zn+1);

we conclude from the induction hypothesis that

Fn+1(Z1,"' s Rpy azn-i-l) :O

Case 2. Let 2z # 0 and 2z, # 1 for k = 1,--- ,n+ 1. We obtain for z € C\

{Zla"' azn}a

Foii(z, - ,zn,z):lJrszJrzf <H2k> z

k=1 k=1
g (1 + z(2 Zi)ﬁzz 1)> Jf[l <1 2 (2 %1_)(;1@ _ 1))]
ik
(e D)

Let .
G(z):Fn+1(zl7"' 7Zn7z) H(Z—Zj)-
j=1

Here, G is a polynomial of degree at most n + 1. Since

G(0) = Fu(z1,--- o 2a) [[(—2) amd G(1) = Fuler, -, z0) [J (1= 25),

j=1 j=1
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we conclude from the induction hypothesis that G(0) = G(1) = 0. Next, we prove
that G has additional zeros. Let r € {1,--- ,n}. Then,

Jlim (2~ 2,) <1+sz+z— <sz> ) =0,
fm (=~ 2) 3 l(H R ((ECELE 1>>]

—Z —Z
=1 k k J

J#k

R ((FRECEICE

J#T

and

e [T (1+ "Zf’if‘”)

j=1

ﬁ —1)(z — 1)

ey Zr — Zj '

J#T
This leads to

Zligl?(z - Zr)Fn—&-l(zl, Tty Rny Z) = 0.
Thus,
G(z1)=--=G(z,) =0.
It follows that G has n+ 2 distinct zeros. This can only happen if G(z) = 0. Hence,
Foi1(z1,+ s 2n41) = G(2n41) H =0.
j=1 n—i—l - ZJ

This completes the proof of (1.8). O

3. Applications

We apply both theorems and Remark 3 to provide various identities involving special
sequences and functions.

I. Let L,, and F;, be the n-th Lucas and Fibonacci numbers, respectively.
(i) Using the representation

Lot =1+ L
k=0
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we conclude from (1.8) with z; = Li_; and n + 1 instead of n that

Lyyo= HLk- +Z H (1+ Lj(LjL—k 1_)(L[;k — 1)) '

(ii) We have the product formula

n—1
k
= H (1 — 2icos7r> ,
n
k=1
see Rudolph-Lilith [2]. Applying (1.8) gives
1:[ 2COST+Z')COS]:COS]ZF)
j km

cos & — cos EX
n n

||
ﬁml

(SN
e

j

and (1.7) yields

1 i n—2n—1 1 n—1 1
Fn:(2> kZl—chosk“H T km

L1 cos 2T — cos
1 j=1 n n
J#k

II. Let H, =1+1/2+ ---+1/n be the n-th harmonic number.
(i) From (1.8) with 2 = 1 + 1/k we conclude that

m= I35

(ii) Let By, be the Bernoulli polynomial of degree n > 2. Then,

Bn(z) =2" — gz"_l +---

We use (1.4) with P = B,, and a; = 1/k. This leads to

_n - Y= -1 1)
-5 (e (3,
k=1
(iii) We set 2z = (—1)**1/k and apply (1.8) with 2n instead of n. Since

2n 1 k41

~H, Z

we get

11 u —(~1)7FFk
J#k

R 2n 2n ( )j ) (1-‘%(—)1)]”@)).
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III. We have
n—1 2 n—1 n—1 2
n\  (-1) 2n ney n2
klzll (1k2) 2(n> and kél <1]§2) =n-—1 Hn 15

where H\Y =1+ 1/2%2 +--- + 1/n? denotes the n-th harmonic number of second
order. Then, (1.8) with 2, = 1 — n?/k? yields the following representation for the
central binomial coefficient,
In—1
(=)™ 2n n? 2) o« .72)
H; 1 .
> S DI i
Ji#k

IV. Let U, be the Chebyshev polynomial of the second kind of degree n. Applying
(1.8) and

leads to

2z —1— cos 2T cos kT

1 - ( n 1)( n 1)(2_1 n 1)
Q—HUn(z) = 1+nz—ZH <1+ + I as - as )

COS el COS ntl

Provided that U, (z) # 0, we conclude from (1.7) that

oy L T :
= _ km H km gm -
U.(z) £z —cos 5 e cos 77 — cos 715
J

In particular, since U, (1) = n + 1, we obtain

— cos n”l)COb nﬁrl cos KT
e (i-4) - ZH( el ek

T eog kT
PRt cos ;L5 — cos 7
J#k
and
n n

2 11 :
o _ kw g °
n+1 i1 cosnﬂjlcos S —cos

J#k

V. Let w,, = exp(27i/n) be an n-th root of unity. An application of

n—1

1-2"= H(lfzwﬁ)

k=0

gives
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