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Abstract

Let f be a normalized primitive holomorphic cusp form of even integral weight k
for the full modular group Γ = SL(2,Z). Denote by λf (n) the nth normalized
Fourier coefficient of f . In this paper, we are interested in an asymptotic formula

for the sum
∑
n≤x

n≡l(mod q)

λ2jf (n), where j ≥ 5 is any positive integer, and q is a prime with

(l, q) = 1.

1. Introduction

The Fourier coefficients of modular forms are important and interesting objects in

number theory. Let H∗k be the set of all normalized primitive holomorphic cusp

forms of even integral weight k ≥ 2 for the full modular group Γ = SL(2,Z). Then
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the Hecke eigenform f(z) ∈ H∗k has the following Fourier expansion at the cusp ∞:

f(z) =

∞∑
n=1

λf (n)n
k−1
2 e2πinz, =(z) > 0,

where λf (n) is the nth normalized Fourier coefficient (Hecke eigenvalue) such that

λf (1) = 1. Then λf (n) is real and satisfies the multiplicative property

λf (m)λf (n) =
∑

d|(m,n)

λf

(
mn

d2

)
,

where m ≥ 1 and n ≥ 1 are positive integers. In 1974, P. Deligne [8] proved the

Ramanujan–Petersson conjecture

|λf (n)| ≤ d(n), (1)

where d(n) is the divisor function. By Inequality (1), Deligne’s bound is equivalent

to the fact that there exist αf (p), βf (p) ∈ C satisfying

αf (p) + βf (p) = λf (p), αf (p)βf (p) = |αf (p)| = |βf (p)| = 1. (2)

More generally, for all positive integers l ≥ 1, one has

λf (pl) = αf (p)l + αf (p)l−1βf (p) + · · ·+ αf (p)βf (p)l−1 + βf (p)l.

In 1927, Hecke [11] proved that∑
n≤x

λf (n)� x
1
2 . (3)

Later, the upper bound in Inequality (3) was improved by several authors (see, for

example, [8, 14, 37]). In particular, Wu [40] has shown that∑
n≤x

λf (n)� x
1
3 logρ x,

where

ρ =
102 + 7

√
21

210

(
6−
√

21

5

) 1
2

+
102− 7

√
21

210

(
6 +
√

21

5

) 1
2

− 33

35
= −0.118 · · · .

In the 1930s, Rankin [36] and Selberg [38] independently proved the following

asymptotic formula: ∑
n≤x

λ2f (n) = cfx+O(x3/5), (4)
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where cf > 0 is a positive constant depending on f , and ε > 0 is an arbitrarily

small positive number. Very recently, the exponent in Equation (4) was improved

to 3
5 − δ in place of 3

5 by Huang [16], where δ ≤ 1/560. This remains the best

possible result.

Later, based on work about symmetric power L-functions, Moreno and Shahidi

[31] were able to prove
∑
n≤x τ

4
0 (n) ∼ c1x log x, as x→∞, where τ0(n) = τ(n)/n

11
2

is the normalized Ramanujan tau-function, and c1 > 0 is a positive constant. Ob-

viously, Moreno and Shahidi’s result also holds true if we replace τ0(n) with the

normalized Fourier coefficient λf (n).

Let f ∈ H∗k be a Hecke eigenform and denote its nth normalized Fourier coeffi-

cient by λf (n). Define

Sj(f ;x) =
∑
n≤x

λjf (n),

where j ∈ Z+ and x ≥ 1.

Based on the work of Moreno and Shahidi concerning the symmetric power L-

functions L(symjf, s) for j = 1, 2, 3, 4, Fomenko [9] established the following esti-

mates

S3(f ;x)�f,ε x
5/6+ε, S4(f ;x) = cfx log x+ dfx+Of,ε(x

9/10+ε),

where cf > 0 and df are suitable constants depending on f , and ε is an arbitrarily

small positive number. Later, Lü (see, for example, [26, 27, 28]) considered higher

moments Sj(f ;x) for 3 ≤ l ≤ 8, which improved and generalized the work of

Fomenko. Later, Lau, Lü and Wu [29] proved that

Sj(f ;x) = xP ∗j (log x) +Of,ε
(
xθj+ε

)
, 3 ≤ j ≤ 8,

where P ∗j (t) ≡ 0 are zero functions for j = 3, 5, 7, and P ∗4 (t), P ∗6 (t), P ∗8 (t) are

polynomials of degree 1, 4, 13, respectively, and

θ3 =
7

10
, θ5 =

40

43
, θ7 =

176

179
,

θ4 =
151

175
, θ6 =

175

181
, θ8 =

2933

2957
.

Lau and Lü [30] derived the general results for Sj(f ;x) for all j ≥ 2 under the

assumption that L(symrf, s) is automorphic cuspidal for some positive r. Later,

Zhai [42] investigated the higher power moments over the sum of two squares for

S∗j (f ;x) =
∑

a2+b2≤x

λf (a2 + b2)l

for 2 ≤ l ≤ 8. Very recently, Xu [41] improved and extended the above work that

the author established on general asymptotics for Sj(f ;x) and S∗j (f ;x) for all large



INTEGERS: 23 (2023) 4

j by utilizing the recent progress that L(symjf, s) is automorphic for all j ≥ 1.

This is due to the recent celebrated work of Newton and Thorne [33, 34] and some

nice analytic properties of these automorphic L-functions.

Andrianov and Fomenko [1] first considered the second power moment of λf (n)

over arithmetic progressions for holomorphic cusp forms. Later, Andrianov [2] im-

proved the error term. Ichihara [18, 19] investigated λ2f (n) over arithmetic progres-

sions for holomorphic cusp forms for x� q2:∑
n≤x

n≡l(mod q)

λ2f (n) =
c

ϕ(q)

∏
p|q

(1− αf (p)2p−1)(1− p−1)(1− βf (p)2)(1 + p−1)−1x

+Of,ε(x
3
5 q

4
5+ε),

where c is some suitable constant depending on f , and αf (p), βf (p) are the Satake

parameters given by Equation (2). Later, Jiang and Lü [21] considered the sum of

λ2jf (n) over arithmetic progressions for j = 2, 3, 4, respectively. In a similar manner,

they also established the corresponding results for the normalized Hecke-Maass cusp

form with respect to SL(2,Z) for j = 2, 3, 4, respectively.

Very recently, Zou et al. [43] by using the existence of automorphic cuspidal

self-dual representation symjπf for all j ≥ 1 due to Newton and Thorne [33, 34],

in combination with some nice properties of the corresponding automorphic L-

functions, established the following result.

Theorem 1.1 ([43, Theorem 1]). Let f ∈ H∗k be a Hecke eigenform and let q be a

prime with (q, l) = 1. For j ≥ 2 and q ≤ x 3
4 δj , one has∑

n≤x
n≡l( mod q)

λ2f (nj) =
cjx

ϕ(q)
+Of,ε

(
qx1−

3
2 δj+ε

)
for any ε > 0, where cj > 0 are some suitable constants, and δ2 = 92

597 and δj =
92

69(j−1)(j+3)+247 for j ≥ 3.

By adopting a similar approach to that given by Theorem 1.1, in this paper we

consider the higher moments of cusp form coefficients over arithmetic progressions

by adopting the similar approach given by Zou et al. [43]. More precisely, we

establish the following result.

Theorem 1.2. Let f ∈ H∗k be a Hecke eigenform and let q be a prime with (q, l) = 1.

For j ≥ 5 and q � xϑj , one has∑
n≤x

n≡l( mod q)

λ2jf (n) =
xP2j(log x)

ϕ(q)
+Of,ε

(
qx1−

3
2ϑj+ε

)

for any ε > 0, and P2j(t) denotes a polynomial of t with degree (2j)!
j!(j+1)! − 1, and

ϑj = 92
69·22j−23Aj−6Cj(1)+4 for j ≥ 5.
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Throughout the paper, we always assume that f ∈ H∗k is a Hecke eigenform. Let

ε > 0 be an arbitrarily small positive constant that may vary in different contexts.

The symbol p always denote a prime number.

2. Preliminaries

In this section, we introduce some background on the analytic properties of auto-

morphic L-functions and give some useful lemmas which play an important role in

the proof of the main result in this paper.

Let f ∈ H∗k be a Hecke eigenform, and let λf (n) denotes its nth normalized

Fourier coefficient. It is natural to define the Hecke L-function L(f, s) associated

with f by

L(f, s) =

∞∑
n=1

λf (n)

ns
=
∏
p

(1− λf (p)p−s + p−2s)−1

=
∏
p

(
1− αf (p)

ps

)−1(
1− βf (p)

ps

)−1
, <(s) > 1,

where αf (p) and βf (p) are the local parameters satisfying Equations (2). The jth

symmetric power L-function associated with f is defined by

L(symjf, s) =
∏
p

j∏
m=0

(1− αf (p)j−mβf (p)mp−s)−1, <(s) > 1.

We may expand it into a Dirichlet series

L(symjf, s) =

∞∑
n=1

λsymjf (n)

ns
,

=
∏
p

(
1 +

λsymjf (p)

ps
+ · · ·+

λsymjf (pk)

pks
+ · · ·

)
, <(s) > 1.

We know that the coefficients λsymjf (n) are real, multiplicative functions. For j = 1,

we have L(sym1f, s) = L(f, s).

It is standard to find that

λf (pj) = λsymjf (p) =
αf (p)j+1 − βf (p)j+1

αf (p)− βf (p)
=

j∑
m=0

αf (p)j−mβf (p)m,

which can be written as λf (pj) = λsymjf (p) = Uj(λf (p)/2), where Uj(x) is the jth

Chebyshev polynomial of the second kind.
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Let χ be a Dirichlet character modulo q. Then we can define the twisted jth

symmetric power L-function by the Euler product representation with degree j+ 1,

L(symjf ⊗ χ, s) :=
∏
p

j∏
m=0

(1− αf (p)j−mβf (p)mχ(p)p−s)−1

:=

∞∑
n=1

λsymjf (n)χ(n)

ns

for <(s) > 1.

It is well known that a primitive form f is associated with an automorphic cusp-

idal representation πf of GL2(AQ), and hence an automorphic L-function L(πf , s)

which coincides with L(f, s). It is predicted that πf gives rise to a symmetric

power lift, an automorphic representation whose L-function is the symmetric power

L-function attached to f .

For 1 ≤ j ≤ 8, the special Langlands functoriality conjecture states that symjf is

automorphic cuspidal, as has been shown by a series of important work of Gelbart

and Jacquet [10], Kim [25], Kim and Shahidi [24, 23], Shahidi [39], and Clozel and

Thorne [5, 6, 7]. Very recently, Newton and Thorne [33, 34] proved that symjf

corresponds with a cuspidal automorphic representation of GLj+1(AQ) for all j ≥ 1

(with f being a holomorphic cusp form). Then we know that L(symjf, s), where

j ≥ 1, has analytic continuation to the whole complex plane as an entire function

and satisfies certain Riemann-type functional equation. We refer the interested

readers to [20, Chapter 5] for a more comprehensive treatment.

First, we give the functional equations of the L-functions L(symjf⊗χ, s) for any

j ≥ 1, which is a special case due to [43, Lemma 3].

Lemma 2.1. Let f ∈ H∗k be a Hecke eigenform, and let χ be a primitive character

modulo a prime q. Then the complete L-function

Λ(symjf ⊗ χ, s) := q(j+1)s/2γ(s)L(symjf ⊗ χ, s)

can be extended to the whole complex plane as an entire function and satisfies the

functional equation

Λ(symjf ⊗ χ, s) = ε(f, χ)Λ(symjf ⊗ χ̄, 1− s),

where j ≥ 1 and |ε(f, χ)| = 1, and γ(s) denotes the product of some gamma func-

tions Γ((s+ κn))/2, n = 1, 2, . . . , (j + 1), with κn depending on the weight of f and

the parity of the character χ and <(κn) ≥ 0.

Lemma 2.2. For any ε > 0, we have

∫ T

1

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣12dt � T 2+ε, uniformly for

T ≥ 1, and

ζ(σ + it)�
(
1 + |t|

)max{ 13
42 (1−σ),0}+ε (5)
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uniformly for 1
2 ≤ σ ≤ 1 + ε and |t| ≥ 1.

Proof. This first result is given by Heath-Brown [12], and the second result is the

recent breakthrough due to Bourgain [4, Theorem 5].

Lemma 2.3. For any ε > 0, we have

L(sym2f, σ + it)�
(
1 + |t|

)max{ 27
20 (1−σ),0}+ε (6)

uniformly for 1
2 ≤ σ ≤ 1 + ε and |t| ≥ 1.

Proof. From the result given by Aggarwal [3, Theorem 1.1], we can easily deduce

that

L

(
sym2f,

1

2
+ it

)
�
(
1 + |t|

) 27
40+ε. (7)

We can obtain the required result from the Phragmén–Lindelöf principle for a strip

[20, Theorem 5.53] and the Inequality (7).

Lemma 2.4. Let χ be a primitive character modulo q. For T ≥ 1 and q � T 2,

L(σ + iT, χ)�ε (q(1 + |T |))max{ 1
3 (1−σ),0}+ε (8)

L(σ + iT, sym2f ⊗ χ)�ε (q(1 + |T |))max{ 67
46 (1−σ),0}+ε, (9)

and if q is a prime,

∫ T

0

|L(σ + it, χ)|12dt�ε q
4(1−σ)T 3−2σ+ε.

Proof. The results follows from work of Heath-Brown [13], Huang [15] and Mo-

tohashi [32], together with the Phragmén-Lindelöf principle for a strip, respec-

tively.

From above, we note that the L-functions L(symjf, s) and L(symjf ⊗ χ, s) are

the general L-functions in the sense of Perelli [35]. For these general L-functions,

we have the following individual or averaged convexity bounds.

Lemma 2.5. Let χ be a primitive character modulo q. For the general L-functions

L(s, χ) of degree 2A indicated above, we have∫ 2T

T

|L(σ + it, χ)|2dt� (qT )2A(1−σ)+ε (10)

uniformly for 1
2 ≤ σ ≤ 1 and T ≥ 1. Furthermore,

L(σ + it, χ)� (q(|t|+ 1))max{A(1−σ),0}+ε (11)

uniformly for −ε ≤ σ ≤ 1 + ε.
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Proof. This result can be derived by following the similar argument to that used in

Zou et al. [43], which was originally deduced from Jiang and Lü [21].

Remark 2.6. For the automorphic L-functions L(symjf, s), where j ≥ 1, we can

regard the modulus q to be 1.

Let f ∈ H∗k be a Hecke eigenform. For j ≥ 2, define

Rj(s) :=

∞∑
n=1

λjf (n)

ns
, <(s) > 1. (12)

Lemma 2.7. Let Rj(s) be defined by Equation (12). For j = 2n with n ≥ 5, we

have

Rj(s) = ζ(s)AnL(sym2nf, s)
∏

1≤r≤n−1

L(sym2rf, s)Cn(r)Hj(s),

where An, Cn(r), (1 ≤ r ≤ n− 1) are given by

An =
(2n)!

n!(n+ 1)!
and Cn(1) =

3 · (2n)!

(n− 1)!(n+ 2)!
. (13)

The L-function Rj(s) is of degree 2j, all coefficients of Rj(s) are nonnegative, the

function Hj(s) admits the Dirichlet series which converges absolutely and uniformly

in the half-plane <(s) ≥ 1
2 + ε, and Hj(s) 6= 0 for <(s) = 1.

Proof. This result is given by Lau and Lü [30, Lemma 7.1].

Let f ∈ H∗k be a Hecke eigenform and let χ be a Dirichlet character modulo q.

For j ≥ 2, define

Fj(s, χ) :=

∞∑
n=1

λjf (n)χ(n)

ns
, <(s) > 1. (14)

Lemma 2.8. Let Fj(s, χ) be defined by Equation (14). And let χ be a primitive

character modulo a prime q. For j = 2n with n ≥ 5, we have

Fj(s, χ) = L(s, χ)AnL(sym2nf ⊗ χ, s)
∏

1≤r≤n−1

L(sym2rf ⊗ χ, s)Cn(r)Uj(s, χ),

where An, Cn(r), (1 ≤ r ≤ n − 1) are suitable constants, and An, Cn(1) are the

same as in Equation (13). The L-function Fj(s, χ) is of degree 2j, the function

Uj(s, χ) admits the Dirichlet series which converges absolutely and uniformly in the

half-plane <(s) ≥ 1
2 + ε, and Uj(s, χ) 6= 0 for <(s) = 1.

Proof. This follows from an argument similar to that of Lau and Lü [30, Lemma

7.1].
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3. Proof of Theorem 1.2

In this section, we give the proof of the main result. Firstly, we need the following

two important propositions which play an essential role in the proof of the main

theorem in this paper.

Let f ∈ H∗k be a Hecke eigenform, and let χ be a primitive character modulo a

prime q. Define

Sj(χ;x) =
∑
n≤x

λ2jf (n)χ(n), (16)

where j ≥ 5 is any given positive integer.

Proposition 3.1. Let Sj(χ;x) be defined as in Equation (16). Then, for q � xϑj ,

we have

Sj(χ;x) = Of,ε
(
qx1−

3
2ϑj+ε

)
, (17)

where ϑj = 92
69·22j−23Aj−6Cj(1)+4 for j ≥ 5, where Aj is given by (13).

Proof. Applying Perron’s formula [20, Proposition 5.54] and Deligne’s bound (2),

we obtain

Sj(χ;x) =
1

2πi

∫ 1+ε+iT

1+ε−iT
F2j(s, χ)

xs

s
ds+Of,ε

(
x1+ε

T

)
,

where s = σ + it and 1 ≤ T ≤ x is some parameter to be specified later.

By shifting line of integration to the parallel line with <(s) = 1
2 +ε and applying

Cauchy’s residue theorem, we obtain

Sj(χ;x) =
1

2πi

(∫ 1
2+ε+iT

1
2+ε−iT

+

∫ 1
2+ε−iT

1+ε−iT
+

∫ 1+ε+iT

1
2+ε+iT

)
F2j(s, χ)

xs

s
ds

+Of,ε

(
x1+ε

T

)
= Ij,1 + Ij,2 + Ij,3 +Of,ε

(
x1+ε

T

)
, (18)

where we have used the fact that F2j(s, χ) has no poles in <(s) > 1
2 and Uj(s, χ)

converges absolutely and uniformly in q for the same region.

For the integrals over the horizontal segments Ij,2 and Ij,3, by Inequalities (8), (9)
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and (11), along with Lemma 2.8, for j ≥ 5 and q � T 2, it follows that

Ij,2 + Ij,3 �
∫ 1+ε

1
2+ε

xσ|F2j(s, χ)|T−1dσ

�
∫ 1+ε

1
2+ε

xσ
∣∣∣∣L(s, χ)AjL(sym2f ⊗ χ, s)Cj(1)L(sym2jf ⊗ χ, s)

×
∏

2≤r≤j−1

L(sym2rf ⊗ χ, s)Cj(r)

∣∣∣∣T−1dσ
� max

1
2+ε≤σ≤1+ε

xσ(qT )(2
2j−1− 1

6Aj− 1
23Cj(1))(1−σ)+εT−1

� x1+ε

T
+ x

1
2+εq2

2j−2− 1
12Aj− 1

46Cj(1)+εT 22j−2− 1
12Aj− 1

46Cj(1)−1+ε,

(19)

where Aj , Cj(1) are defined as in Equation (13).

For the integral over a vertical segment Ij,1, by Lemma 2.4, Lemma 2.8 and

Inequality (10), we have

Ij,1 � x
1
2+ε log T sup

1≤T1≤T/2

{
1

T1

∫ 2T1

T1

∣∣∣∣F2j

(
1

2
+ ε+ it, χ

)∣∣∣∣dt}

� x
1
2+ε log T sup

1≤T1≤T/2

{
1

T1

(∫ 2T1

T1

∣∣∣∣L(1

2
+ ε+ it, χ

)Aj
∣∣∣∣6dt) 1

6

×
(∫ 2T1

T1

∣∣∣∣L(sym2f ⊗ χ, 1

2
+ ε+ it

)Cj(1)∣∣∣∣3dt) 1
3

×
(∫ 2T1

T1

∣∣∣∣ ∏
2≤r≤j−1

L

(
sym2rf ⊗ χ, 1

2
+ ε+ it

)Cj(r)

×L
(

sym2jf ⊗ χ, 1

2
+ ε+ it

)∣∣∣∣2dt) 1
2
}

� x
1
2+ε log T sup

1≤T1≤T/2

{
1

T1

(∣∣∣∣L(1

2
+ ε+ iT1, χ

)∣∣∣∣6Aj−12

×
∫ 2T1

T1

∣∣∣∣L(1

2
+ ε+ it, χ

)∣∣∣∣12dt) 1
6

×
(∣∣∣∣L(sym2f ⊗ χ, 1

2
+ ε+ it

)∣∣∣∣3Cj(1)−2

×
∫ 2T1

T1

∣∣∣∣L(sym2f ⊗ χ, 1

2
+ ε+ it

)∣∣∣∣2dt) 1
3
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×
(∫ 2T1

T1

∣∣∣∣ ∏
2≤r≤j−1

L

(
sym2rf ⊗ χ, 1

2
+ ε+ it

)Cj(r)

×L
(

sym2jf ⊗ χ, 1

2
+ ε+ it

)∣∣∣∣2dt) 1
2
}

� x
1
2+εq2

2j−2− 1
12Aj− 1

46Cj(1)+
1
69+εT 22j−2− 1

12Aj− 1
46Cj(1)− 68

69+ε. (20)

By inserting the Equations (19) and (20) into Equation (18), we obtain Equation

(17) by taking

T = x
138

69·22j−23Aj−6Cj(1)+4 /q.

Since q � T 2, we have the required restriction that

q � x
92

69·22j−23Aj−6Cj(1)+4 .

This completes the proof of the proposition.

Let χ0 be a principal character modulo a prime q. Define

Sj(χ0;x) =
∑
n≤x

λ2jf (n)χ0(n), (21)

where j ≥ 5 is any given positive integer.

Proposition 3.2. Let Sj(χ0;x) be defined as in Equation (21). Then for q � x,

Sj(χ0;x) = xP2j(log x) +O
(
xκj+ε

)
,

where P2j(t) denotes a polynomial of t with degree (2j)!
j!(j+1)! − 1, and κj = 1 −

420
22j+1·105−80Aj−63Cj(1)+62 .

Proof. Define

Rj(s, χ0) =

∞∑
n=1

λ2jf (n)χ0(n)

ns
= R2j(s)H(s, χ0), (22)

where R2j(s) is given by Lemma 2.7, and H(s, χ0) is a finite Euler product which

does not equal 0 for <(s) > 1
2 .

Applying Perron’s formula [20, Proposition 5.54] and Deligne’s bound (2), we

obtain

Sj(χ0;x) =
1

2πi

∫ 1+ε+iT

1+ε−iT
Rj(s, χ0)

xs

s
ds+Of,ε

(
x1+ε

T

)
,
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where s = σ + it and 1 ≤ T ≤ x is some parameter to be specified later.

By shifting the line of integration to the parallel line with <(s) = 1
2 + ε and

applying Cauchy’s residue theorem, we obtain

Sj(χ0;x) =
1

2πi

(∫ 1
2+ε+iT

1
2+ε−iT

+

∫ 1
2+ε−iT

1+ε−iT
+

∫ 1+ε+iT

1
2+ε+iT

)
Rj(s, χ0)

xs

s
ds

+Ress=1

{
Rj(s, χ0)

xs

s

}
+Of,ε

(
x1+ε

T

)
:= Jj,1 + Jj,2 + Jj,3 + xP2j(log x) +Of,ε

(
x1+ε

T

)
, (23)

where P2j(t) denotes a polynomial of t with degree Aj − 1, and Aj is given by (13).

For the integrals over the horizontal segments Jj,2 and Jj,3, by Equations (5), (6),

and (11), (22), together with Lemma 2.7, for j ≥ 5 and q � T 2, it follows that

Jj,2 + Jj,3 �
∫ 1+ε

1
2+ε

xσ|R2j(s, χ0)|T−1dσ

�
∫ 1+ε

1
2+ε

xσ
∣∣∣∣ζ(s)AjL(sym2f, s)Cj(1)L(sym2jf, s)

×
∏

2≤r≤j−1

L(sym2rf, s)Cj(r)

∣∣∣∣T−1dσ
� max

1
2+ε≤σ≤1+ε

xσT (22j−1− 4
21Aj− 3

20Cj(1))(1−σ)+εT−1

� x1+ε

T
+ x

1
2+εT 22j−2− 2

21Aj− 3
40Cj(1)−1+ε, (24)

where Aj , Cj(1) are defined as in Equation (13).

For the integral over a vertical segment Jj,1, by Lemma 2.2, Lemma 2.3 and

Inequality (10), we have

Jj,1 � x
1
2+ε log T sup

1≤T1≤T/2

{
1

T1

∫ 2T1

T1

∣∣∣∣Rj

(
1

2
+ ε+ it

)∣∣∣∣dt}

� x
1
2+ε log T sup

1≤T1≤T/2

{
1

T1

(∫ 2T1

T1

∣∣∣∣ζ(1

2
+ ε+ it

)Aj
∣∣∣∣6dt) 1

6

×
(∫ 2T1

T1

∣∣∣∣L(sym2f,
1

2
+ ε+ it

)Cj(1)∣∣∣∣3dt) 1
3

×
(∫ 2T1

T1

∣∣∣∣ ∏
2≤r≤j−1

L

(
sym2rf,

1

2
+ ε+ it

)Cj(r)

×L
(

sym2jf,
1

2
+ ε+ it

)∣∣∣∣2dt) 1
2
}
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� x
1
2+ε log T sup

1≤T1≤T/2

{
1

T1

(∣∣∣∣ζ(1

2
+ ε+ iT1

)∣∣∣∣6Aj−12

×
∫ 2T1

T1

∣∣∣∣ζ(1

2
+ ε+ it

)∣∣∣∣12dt) 1
6

×
(∣∣∣∣L(sym2f,

1

2
+ ε+ it

)∣∣∣∣3Cj(1)−2 ∫ 2T1

T1

∣∣∣∣L(sym2f,
1

2
+ ε+ it

)∣∣∣∣2dt) 1
3

×
(∫ 2T1

T1

∣∣∣∣ ∏
2≤r≤j−1

L

(
sym2rf,

1

2
+ ε+ it

)Cj(r)

×L
(

sym2jf,
1

2
+ ε+ it

)∣∣∣∣2dt) 1
2
}

� x
1
2+εT 22j−2− 2

21Aj− 3
40Cj(1)− 389

420+ε. (25)

By inserting the Equations (24), (25) into Equation (23), we obtain

Sj(χ0;x) = xP2j(log x) +O

(
x1+ε

T

)
+O

(
x

1
2+εT 22j−2− 2

21Aj− 3
40Cj(1)− 389

420+ε
)
. (26)

On taking

T = x
420

22j+1·105−80Aj−63Cj(1)+62

in Equation (26), we obtain the desired result.

Proof of Theorem 1.2 We are now able to prove Theorem 1.2. Let q be a Dirichlet

character modulo a prime q. By the orthogonality relation of Dirichlet characters,

we have ∑
n≤x

n≡l( mod q)

λ2jf (n) =
1

ϕ(q)

∑
χ( mod q)

χ̄(l)
∑
n≤x

λ2jf (n)χ(n)

=
1

ϕ(q)

∑
n≤x

λ2jf (n)χ0(n) +O

(∑
n≤x

λ2jf (n)χ(n)

)
.

It is obvious that ϕ(q) = q − 1 since q is a prime.

From Propositions 3.1 and 3.2 and noting that 1− 3
2ϑj > κj for j ≥ 5, we have

∑
n≤x

n≡l( mod q)

λ2jf (n) =
xP2j(log x)

ϕ(q)
+Of,ε

(
qx1−

3
2ϑj+ε

)
.

This completes the proof of Theorem 1.2. 2
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