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Abstract

For various sets of tiles, we count the ways to tile an Aztec diamond of order n
using tiles from that set. The resulting function f(n) often has interesting behavior
when one looks at n and f(n) modulo powers of 2.

– Dedicated to Michael Larsen on the occasion of his 60th birthday

1. Introduction

The main result of [6, 7] was that the number of domino-tilings of an Aztec diamond

of order n is 2n(n+1)/2, where a domino is a rectangle in R2 of the form [i, i + 1]×
[j, j + 2] or [i, i + 2] × [j, j + 1] (with i, j ∈ Z), the Aztec diamond of order n

is the union of the squares [i, i + 1] × [j, j + 1] lying entirely within the region

{(x, y) : |x| + |y| ≤ n + 1}, and a domino-tiling of a region R is a set of dominos

whose interiors are disjoint and whose union is R. Figure 1 shows one of the 2(4)(5)/2

domino tilings of the Aztec diamond of order 4. The sequence of successive values

of 2n(n+1)/2 appears as A006125; throughout this article such codes refer to entries

in the Online Encyclopedia of Integer Sequences.

The main result of [6, 7] was that the number of domino-tilings Mihai Ciucu [2]

proved combinatorially that the number of domino tilings of the 2n-by-2n square

(A004003) can be written in the form 2nf(n)2 where f(n) is the number of domino

tilings of the region exemplified for n = 4 in Figure 2 (A065072).

Henry Cohn [3] proved that the function sending n to f(n) is uniformly continu-

ous under the 2-adic metric and thus extends to a function defined on all of Z and

indeed all of Z2; moreover, he showed that this extension satisfies

f(−1− n) =

{
f(n) when n ≡ 0 or 3 (mod 4),
−f(n) when n ≡ 1 or 2 (mod 4).

(1)
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Figure 1: A domino tiling of the Aztec diamond of order 4.

Figure 2: Ciucu’s way of halving the 8-by-8 square.

Barkley and Liu [1] have recently proved results about 2-divisibility for the num-

ber of perfect matchings of a graph, including as a special case the number of domino

tilings of a rectangle, but there is more refined work still to be done along the lines

of Cohn’s paper. For instance, the modulo 8 residue of the number of domino tilings

of the 2n-by-(2n + 2) rectangle appears to depend only on the modulo 4 residue of

n; the same goes for the number of domino tilings of the 2n-by-4n rectangle.

In this article we extend the discussion to other sorts of tiles, specifically, tetro-

minos. A tetromino is a connected subset of the grid that is a union of four grid-

squares, just as a domino is a union of two grid-squares. Up to symmetry, there

are five kinds of tetrominos: straight tetrominos, skew tetrominos, L-tetrominos,

square tetrominos, and T-tetrominos. They are shown in Figure 3, preceded by

the domino. These six tiles can be placed on a square grid in 2, 2, 4, 8, 1, and 4

translationally-inequivalent ways, respectively (where rotations and reflections are
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permitted). These are the sorts of tiles considered in this article. Trominos – unions

of three grid-squares – will be considered elsewhere.

Figure 3: A domino, a straight tetromino, a skew tetromino, an L-tetromino, a
square tetromino, and a T-tetromino.

2. Skew and Straight Tetrominos

Figure 4: Tiling the Aztec diamond of order 3 with skew and straight tetrominos.

We will start with a warm-up puzzle that is roughly at the level of a math

olympiad: prove that an Aztec diamond of order n can be tiled by skew and straight

tetrominos (as shown in Figure 4 for n = 3) only if n is congruent to 0 or 3

modulo 4. The puzzle can be solved using a valuation argument (sometimes called

a generalized coloring argument): one can construct a mapping from the grid-cells

to an appropriate abelian group (a “weight function”) and show that when n is

congruent to 1 or 2 modulo 4, the sum of the weights of the tiles can not equal

the sum of the weights of the region being tiled, where the weight of a tile or a

region being tiled is the sum of the weights of the constituent cells. Readers who

are already familiar with this technique might enjoy the challenge of attempting to

solve the problem purely mentally.
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3. Dominos and Square Tetrominos

In this section we use dominos and square tetrominos as tiles. Thus an Aztec

diamond of order 1 (better known as the 2-by-2 square) can be tiled in 3 ways:

with two horizontal dominos, two vertical dominos, or a single square tetromino.

The Aztec diamond of order 2 can be tiled in 2(2)(3)/2 = 8 ways using dominos, and

can be tiled in an additional 11 ways if one or more square tetrominos are included,

as shown in Figure 5. Thus there are a total of 8 + 11 = 19 ways to tile an Aztec

diamond of order 2 using dominos and square tetrominos.

Figure 5: Tiling the Aztec diamond of order 2 with dominos and at least one square
tetromino.

Define M(n) (with n ≥ 0) as the number of tilings of the Aztec diamond of

order n using dominos and square tetrominos. This is A356512. Trivially we have

M(0) = 1 (since the Aztec diamond of order 0 is empty) and we have already seen

that M(1) = 3 and M(2) = 19. Figure 6 shows the terms of the sequence M(n) for

n ranging from 0 to 12, computed using a program written by David desJardins.

The reader may wish to pause here to consider the problem of showing that M(n)

is always odd; a solution will be given in Section 5.

These numbers grow quadratic-exponentially as a function of n, and we have no

conjectural formula for the nth term, nor a conjectural recurrence relation for the

sequence, nor any efficient method of computing terms. Nonetheless, something

https://oeis.org/A356512
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n M(n)
0 1
1 3
2 19
3 293
4 10917
5 996599
6 222222039
7 121552500713
8 162860556763865
9 535527565429290907

10 4318205059450240425083
11 85475498697714319842817853
12 4151186175463797888945512144221

Figure 6: Enumeration of tilings of Aztec diamonds using dominos and square
tetrominos.

systematic is going on. We have already mentioned that all the terms are odd.

Taking this observation further, one notices that the numbers’ residues modulo 4

are

1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1,

the residues modulo 8 are

1, 3, 3, 5, 5, 7, 7, 1, 1, 3, 3, 5, 5,

and the residues modulo 16 are

1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13.

Conjecture 1. For all k ≥ 1, the modulo 2k residue of M(n) is periodic with

period dividing 2k. That is, 2k divides M(n + 2k)−M(n) for all k, n.

We tried to prove this conjecture by reducing it to an assertion about alternating-

sign matrices but we were unsuccessful. Note that if the conjecture is true then

M(n) ≡ n+ 1 + (1 + (−1)n+1)/2 (mod 8). This congruence might also hold modulo

16 but it certainly cannot hold modulo 2k for all k, since that would require that

M(n) actually equals n + 1 + (1 + (−1)n+1)/2, which is clearly not the case for

n ≥ 2. And indeed M(2) = 19 6≡ 3 (mod 32).

A deeper consequence of Conjecture 1 is that the function sending n to M(n) is

2-adically continuous. Moreover, the function appears to satisfy a kind of symmetry

analogous to the functional Equation (1) mentioned at the end of Section 1.



INTEGERS: 23 (2023) 6

Conjecture 2. For all k ≥ 1, if n + n′ ≡ −3 (mod 2k) then M(n) + M(n′) ≡ 0

(mod 2k).

That is, if one extends M : N → N to the 2-adic function M̂ : Z2 → Z2, one has

M̂(−3− n) = −M̂(n).

Although this article is focused on tilings of Aztec diamonds, we have also looked

at tilings of other regions using dominos and square tetrominos, and the same

phenomenon of 2-adic continuity arises fairly broadly there. For instance, for the

2n-by-2n square, the 2n-by-(2n + 2) rectangle, and the 2n-by-4n rectangle, the

number of tilings with dominos and square tetrominos always seems to be congruent

to 2n + 1 modulo 8.

4. Skew Tetrominos and Square Tetrominos

In [13] we considered tilings of Aztec diamonds by skew tetrominos and square

tetrominos. If we require that all skew tetrominos be horizontal, interesting numer-

ical patterns appear. Of course we would get the same result if we required that

all skew tetrominos be vertical. In this section we allow horizontal skew tetrominos

and square tetrominos as seen in Figure 7, which depicts all six tilings of the Aztec

diamond of order 3 using square tetrominos and horizontal skew tetrominos.

Figure 7: Tiling the Aztec diamond of order 3 with horizontal skew tetrominos and
square tetrominos.
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n L(n)
0 1
1 1
2 2
3 6
4 40
5 364
6 7904
7 226152
8 15835008
9 1439900880

10 324189571584
11 94080051207136
12 68041472016287744
13 63145927127133361600
14 146637148542938673930240
15 435697213021432661980535936

Figure 8: Enumeration of tilings of Aztec diamonds using horizontal skew tetromi-
nos and square tetrominos.

Define L(n) (with n ≥ 0) as the number of tilings of the Aztec diamond of order n

using horizontal skew tetrominos and square tetrominos. This is A356513. Trivially

we have L(0) = 1 and L(1) = 1. Figure 8 shows the terms of the sequence L(n)

for n ranging from 0 to 15, again computed using the program written by David

desJardins.

The sequence grows quadratic-exponentially, and once again, we have no con-

jectural formula, but as before there are patterns that call out for explanation.

Noticing that all but the first two terms are even, one might naturally think to look

at the multiplicity of 2 in the prime factorization of L(n), obtaining the sequence

0, 0, 1, 1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 6, 13, 7, . . . , which (once we throw out the initial

0) we recognize as an interspersal of the arithmetic progressions 0, 1, 2, 3, 4, 5, 6,

7, . . . and 1, 3, 5, 7, 9, 11, 13, . . . .

Conjecture 3. For n ≥ 1, the multiplicity of 2 in the prime factorization of L(n)

is n− 1 if n is even and (n− 1)/2 if n is odd.

Going further, let L0(m) = L(2m)/22m−1 and L1(m) = L(2m−1)/2m−1, so that

(if Conjecture 3 holds) L0(m) and L1(m) are odd integers for all m. These two new

sequences are shown in Figure 9.

The modulo 4 residues of the L0 sequence go 1, 1, 3, 3, 1, 1, 3 while those of the

L1 sequence go 1, 3, 3, 1, 1, 3, 3, 1. That is not much evidence to go on, so perhaps

https://oeis.org/A356513
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m L0(m)
1 1
2 5
3 247
4 123711
5 633182757
6 33223375007953
7 17900042546745443595

m L1(m)
1 1
2 3
3 91
4 28269
5 89993805
6 2940001600223
7 986655111361458775
8 3403884476729942671722937

Figure 9: Values of L0(m) and L1(m).

it would be prudent not to make a conjecture, but we choose to be hopeful.

Conjecture 4. For all k ≥ 0, the modulo 2k residue of L0(m) is periodic with

period dividing 2k. Likewise for L1(m).

One does not observe such patterns in the numbers of tilings when both horizontal

and vertical skew tetrominos are allowed along with square tetrominos as in [13].

More specifically, if one counts tilings of Aztec diamonds in which one is permitted

to use all four kinds of skew tetrominos as well as square tetrominos, the resulting

sequence, taken modulo 4, goes 1, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, . . . ; if there is a

period here, and it is a power of 2, it must be at least 16.

The prime p = 2 appears to be special for the enumerative problems we described

above; looking at the M and L sequences modulo 3 or modulo 5 yields no discernible

patterns.

5. Assorted Congruential Problems

For each of the sixty-three nonempty subsets of the set of six tiles shown in Figure 3,

we can ask in how many ways it is possible to tile the Aztec diamond of order n

using only tiles from that set, allowing translations, rotations, and reflections of

tiles. These are the enumerative problems considered in this section.

One could expand the set of tiling problems by distinguishing between different

orientations of the tiles, as was done in the preceding section where we permitted

horizontal skew tetrominos but forbade vertical skew tetrominos; since there are

2 + 2 + 4 + 8 + 1 + 4 = 21 different tiles up to translation, we would obtain over

two million different problems, and even if we mod out the 221 − 1 problems by a

dihedral action of order 8, that is still too many problems to consider exhaustively.

One that appears to be interesting is discussed at the end of this section.
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In each of the sixty-three cases, we used the aforementioned program to count

the tilings of the Aztec diamond of order n, with n going from 1 to 8, using the

allowed tiles. Although no 2-adic continuity phenomena arose from these exper-

iments, there were definite patterns in the parity, and in a few cases there were

congruence patterns modulo higher powers of 2. Here we will adopt a six-bit code

to represent the sixty-three tiling problems, in which the six successive bits (from

left to right) equal 1 or 0 according to whether or not dominos, straight tetrominos,

skew tetrominos, L-tetrominos, square tetrominos, and T-tetrominos are allowed.

For instance, the case treated in Section 2, in which only straight tetrominos and

skew tetrominos are allowed (see Figure 4), would be assigned the code 011000; the

case treated in Section 3, in which only dominos and square tetrominos are allowed

(see Figure 5), would be assigned the code 100010; and the case of unconstrained

skew and square tetrominos (briefly discussed in Section 4) would be assigned the

code 001010.

In one-third of the 63 cases, we observed that for all n between 1 and 8, the

number of tilings of the Aztec diamond of order n is even. These were the cases

associated with the six-bit codes 001001, 001100, 001101, 011001, 011100, 011101,

100001, 100100, 100101, 101000, 101001, 101100, 101101, 110000, 110001, 110100,

110101, 111000, 111001, 111100, and 111101. Presumably some (perhaps all) of

these examples can be resolved by showing that there are no tilings that are invariant

under the full dihedral group, since in that case all orbits would contain an even

number of tilings.

Three of the 21 cases were especially interesting. In case 011100, all terms were

divisible by 8; in case 100001, all terms after the first were divisible by 8; and in

case 110001, all terms were congruent to 2 modulo 4. There were also four cases in

which we observed that the number of tilings of the Aztec diamond of order n is

even for all n between 2 and 8 (with the number of tilings being the odd number 1

in the case n = 1). These were the cases associated with the six-bit codes 001010,

001110, 011010, and 011110. In the cases 001101, 100001, 100011, and 111000 it

appears that the exponent of 2 in the number of tilings may be going to infinity

with n, though with such scant evidence it would be rash to place too much faith

in this guess.

Additionally, there is one case in which the number of tilings of the Aztec di-

amond of order n is always odd, namely, tilings using only dominos and square

tetrominos. Indeed, if we assign each tiling weight (−1)s where s is the number

of square tetrominos, we claim that the sum of the weights is 1. The proof uses a

partition of the tilings into equivalence classes, as depicted in Figure 10 for the 19

tilings of the Aztec diamond of order 2. There is a unique tiling T0 that uses only

horizontal dominos, shown at the top left of the Figure; the middle two rows of T0

consist of 2-by-2 squares. Identify the vertices in the tiling as alternately even or

odd so that the aforementioned squares in T0 have even vertices at their corners.
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Figure 10: An equivalence relation on the 19 tilings of the Aztec diamond of order
3 by dominos and square tetrominos.

Call a square in the Aztec diamond even or odd according to whether its corners

are even or odd. Given a tiling T of the Aztec diamond using dominos and square

tetrominos, we say a 2-by-2 square S in the Aztec diamond is hot if one of three

conditions holds: T contains S as a tile; S is even and T contains two vertical

dominos that tile S; or S is odd and T contains two horizontal dominos that tile S.

Note that for any T , the hot squares of T must be disjoint. The outlines of the hot

squares are shown in bold in the Figure. We say two tilings T , T ′ are equivalent

if they determine the same hot squares and if they agree outside of those squares.

If the tiles in an equivalence class have k > 0 hot squares, then the class contains

2k tilings, obtainable from one another by moves that switch an even hot square

from being tiled by a square tetromino to being tiled by two vertical dominos and

by moves that switch an odd hot square from being tiled by a square tetromino

to being tiled by two horizontal dominos. It is clear that half of the tilings in the
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class have an odd number of square tetrominos and half have an even number of

square tetrominos, so the sum of (−1)s over such a class is 0. It remains to consider

tilings that are free of hot squares. Let T be such a tiling. T cannot contain any

square tetrominos, since squares are automatically hot, so T must use only domi-

nos. Moreover, T cannot have pairs of vertical dominos that tile an even square or

pairs of horizontal dominos that tile an odd square. But Thurston’s height-function

theory [15] shows that such a tiling would be minimal in the lattice of tilings, and

T0 is the only minimal element.

Finally, leaving the small world of the 26 − 1 problems and dipping our toe into

the big world of the 221 − 1 problems, we consider tilings of the Aztec diamond

of order n by dominos and horizontal straight tetrominos. This is A356523, and

begins 1, 2, 11, 209, 12748, 2432209, 1473519065, . . . . It appears that the number

of tilings is even when n ≡ 1 (mod 3) and odd otherwise; this has been verified for

1 ≤ n ≤ 16.

6. Reduction to Perfect Matchings

The L sequence from Section 4 has an interpretation in terms of perfect matchings.

To see why, suppose we have a tiling of the Aztec diamond of order n using horizontal

skew tetrominos and square tetrominos. Dividing each tetromino into two horizontal

dominos gives us a tiling of the Aztec diamond by horizontal dominos, but it is

easy to see that there is exactly one such tiling (call it T ). Hence each tetromino

is obtained by gluing together two dominos in T . That is, the tetromino tilings

correspond to perfect matchings in the graph whose vertices correspond to the

dominos in T with an edge joining two vertices if the corresponding dominos form

a horizontal skew tetromino or square tetromino. It is not hard to see that this

graph is similar to the n-by-n square except that the diagonal has been “doubled”;

for instance, the right panel of Figure 11 shows the graph for n = 4.

A similar analysis can be applied to tilings of Aztec diamonds using horizontal

skew tetrominos and horizontal straight tetrominos. In this case the Aztec diamond

splits into two non-interacting halves (top half and bottom half), each of which can

be tiled independently of the other, and the tilings of either half correspond to

perfect matchings of a triangle graph as shown in Figure 12. Thus the number of

such tetromino tilings of the Aztec diamond of order n is equal to the square of

the nth term of sequence A071093. Studying the first 25 terms, we find that the

sequence seems to have 2-adic properties of its own. The largest power of 2 dividing

the nth term of the sequence A071093 appears to be bn/2c, and the 2-free part

appears to satisfy 2-adic continuity: for instance, its value modulo 16 seems to be

determined by n modulo 16.

What if we superimpose the two graphs, obtaining the graph shown at the right

https://oeis.org/A356523
https://oeis.org/A071093
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Figure 11: Deriving the square graph with doubled diagonal.

half of Figure 13? This is equivalent to tiling an Aztec diamond using horizon-

tal skew tetrominos, horizontal straight tetrominos, and square tetrominos. Then,

counting the tilings, we obtain the integer sequence 1, 2, 10, 116, 3212, 209152,

32133552,11631456480,9922509270288, 19946786274879008,94492874103638971552,

1054865198752147761744448, . . . . This is A356514. It appears that the number of

tilings is divisible by 2bn/2c.

7. Some Thoughts

The articles of Lovász [11], Ciucu [2], Pachter [12], and Barkley and Liu [1] give

ways to find the largest power of 2 that divides the number of perfect matchings of

a graph. This should provide traction for Conjecture 3, since we saw in Section 6

that the L sequence has an interpretation in terms of perfect matchings of certain

graphs. Graphs of this kind appear in the paper of Ciucu [2]; in particular, his

Lemma 1.1 shows that the number of perfect matchings is divisible by 2bn/2c. By

bringing ideas from Pachter [12], one might be able to prove Conjecture 3, as well

as some of the other 2-divisibility conjectures from this article.

The only work we know of that provides detailed 2-adic information about the

2-free part of numbers that count tilings is the work of Cohn [3]. Cohn’s approach

presupposes the existence of an exact formula (in Cohn’s case, an explicit product

of algebraic integers); perhaps something similar can be done for perfect matchings

of the square graph with doubled diagonal, yielding a proof of Conjecture 4.

Conjectures 1 and 2 seem harder. The product formula exploited by Cohn was

discovered by Temperley and Fischer [14] and independently by Kasteleyn [9] at

about the same time; those researchers made use of the fact that, just as deter-

https://oeis.org/A356514
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Figure 12: Deriving the double triangle graph.

minants and Pfaffians of matrices can be expressed as sums of terms associated

with perfect matchings of the set of rows and columns, one can conversely express

the number of perfect matchings of a planar graph in terms of the determinant or

Pfaffian of an associated matrix. We know of no way to recast the M sequence

as enumerating perfect matchings of graphs. However, it is easy to recast the M

sequence as enumerating perfect matchings of certain hypergraphs. Can any of the

existing notions of hyperdeterminants be brought to bear? Perhaps a reading of [8]

would suggest possible approaches.

Kuperberg’s elegant solution [10] to the alternating sign matrix conjecture ex-

ploits the power of the Yang-Baxter equation in statistical mechanics. It is possible

that tools for analyzing the new problems described in this article will be found in

the existing literature at the interface between algebra and statistical mechanics.

In any case, inasmuch as Conjectures 1 and 2 are reminiscent of Cohn’s work,

and inasmuch as Cohn’s argument hinges on an exact product formula, one might

hope that an exact formula of some kind can be found for the M sequence. Such

an exact formula would have other uses. In [4] and [5], exact enumeration results

are used to prove concentration theorems for random tilings. One might hope

that the curious 2-adic phenomena discussed in this article hint at the existence of

algebraic machinery that could be applied to the task of showing us what random

tilings associated with Conjecture 1 look like in the limit as size goes to infinity.

Preliminary experiments suggest that there is a “frozen region” near the boundary,

but we have no idea how far into the interior it extends.
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Figure 13: Superimposing Figures 11 and 12.
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