THERE IS NO CARMICHAEL NUMBER OF THE FORM $2^n p^2 + 1$
WITH p PRIME

Florian Luca
School of Mathematics, University of the Witwatersrand, Wits, South Africa
and
Centro de Ciencias Matemáticas UNAM, Morelia, Mexico
florian.luca@wits.ac.za

Jean Lucien Randrianantenaina
AIMS Cameroon, South West Region, Crystal Gardens, Cameroon
lucien.randrianantenaina@aims-cameroon.org

Received: 5/13/23, Accepted: 7/11/23, Published: 7/21/23

Abstract
In this paper, we prove that there is no Carmichael number of the form $2^n p^2 + 1$
with some integer $n \geq 0$ and prime p.

1. Introduction

A Carmichael number N is a composite positive integer such that the congruence $a^N \equiv a \pmod N$ for all integers a. A criterion due to Korselt [3] states that N is
Carmichael if and only if N is squarefree, composite and $p - 1 | N - 1$ for all $p | N$.
In particular, $\omega(N) \geq 3$, where $\omega(N)$ is the number of distinct prime factors of N.

Some recent papers investigated Carmichael numbers of the form $2^n k + 1$ for
some fixed odd positive integer k. For example, in [2] it is shown that $k \geq 27$ and

$$n < 2^{2 \times 10^7} \tau(k)^2 (\log k)^2 \omega(k),$$

where $\tau(k)$ is the number of divisors of k. In [1], it is shown that there is no
Carmichael number of the form $2^n p + 1$ for a prime p.

Here we take this one step further and prove the following theorem.

Theorem 1. There is no Carmichael number of the form $2^n p^2 + 1$ with p prime.
2. The Proof

2.1. Bounding p and n

We follow [1] where it was shown that there is no Carmichael number of the form $2^n p + 1$. We may assume that $n \geq 1$; otherwise $N = p^2 + 1$ is odd, therefore $p = 2$, which is false. Next, $p \geq 3$ since there there is no Carmichael number of the form $2^m + 1$ for any positive integer m. Thus $p^2 \geq 27$, so $p \geq 7$. Since N is Carmichael, it is squarefree and all its prime factors are of the form $q = 2^\lambda p^\delta + 1$ for some integer $\lambda \in [1, n]$ and $\delta \in \{0, 1, 2\}$. When $\delta = 0$, q is a Fermat prime so λ is a power of 2.

So, we may write N as

$$2^n p^2 + 1 = \prod_{j=1}^{r} (2^{\ell_j} + 1) \prod_{j=1}^{s} (2^{n_j} p + 1) \prod_{j=1}^{t} (2^{m_j} p^2 + 1).$$

We have $\omega(N) \geq 3$. Thus, $r + s + t = \omega(N) \geq 3$. We write

$$F_j := 2^{\ell_j} + 1, \quad P_j := 2^{n_j} p + 1, \quad \text{and} \quad Q_j := 2^{m_j} p^2 + 1.$$

We also let

$$F := \prod_{j=1}^{r} F_j, \quad P := \prod_{j=1}^{s} P_j, \quad \text{and} \quad Q := \prod_{j=1}^{t} Q_j.$$

We assume $\ell_1 < \cdots < \ell_r$, $n_1 < \cdots < n_s$, $m_1 < \cdots < m_t$. We need bounds for F, P, Q. The following is Lemma 2 in [2].

Lemma 1. The inequality $F_j < p^4$ holds for all $j = 1, \ldots, r$.

In particular, writing $\ell_j = 2^{\alpha_j}$ for $j = 1, \ldots, r$, with $\ell_1 < \cdots < \ell_r$, we have that

$$F = \prod_{j=1}^{r} (2^{2^{\alpha_j}} + 1) \leq (2^{2^{\alpha_r}} + 1)(2^{2^{\alpha_r}} - 1) < F_r^2 < p^8.$$

Lemma 2. The numbers $P_j - 1$ and $N - 1$ are multiplicatively independent for all $j = 1, \ldots, s$. Further, the numbers $Q_j - 1$ and $N - 1$ are multiplicatively independent for all $j = 1, \ldots, t$.

Proof. The statement about $Q_j - 1 = 2^{m_j} p^2$ and $N - 1 = 2^n p^2$ is clear since $m_j < n$ for all $j = 1, \ldots, t$. As for $P_j - 1 = 2^{n_j} p$ and $N - 1 = 2^n p^2$, the only chance of them being multiplicatively dependent is when $2 \mid n$ and $n_j = n/2$. But then

$$P_j = 2^{n/2} p + 1 \mid (2^{n/2} p + 1)(2^{n/2} p - 1) = 2^n p^2 - 1 = N - 2$$

implies that P_j divides both N and $N - 2$, so it divides 2, a contradiction. \[\square\]
Lemma 3. The inequality $n_j < 7\sqrt{2n \log p}$ holds for $j = 1, \ldots, s$. Also the inequality $m_j < 7\sqrt{2n \log p}$ holds for $j = 1, \ldots, t$.

Proof. Both inequalities follow from Lemma 4 in [2] except that in that lemma, one needed $n > 6 \log p$. So, assume that $m_j \geq 7\sqrt{2n \log p}$ holds for some $j = 1, \ldots, s$. This entails $n \leq 6 \log p$. Since

$$2^{m_j} p^2 + 1 \mid 2^n p^2 + 1$$

entails $n > m_j$, we get

$$n > m_j \geq 7\sqrt{2n \log p} \quad \text{so} \quad n > 98 \log p,$$

contradicting $n < 6 \log p$. A similar argument takes care of $n_j < 7\sqrt{2n \log p}$ for $j = 1, \ldots, s$. Indeed, assume that $n_j \geq 7\sqrt{2n \log p}$ for some $j = 1, \ldots, s$. In particular, $n < 6 \log p$. If $t \geq 1$, then

$$2^n p^2 + 1 > (2^{n_j} p + 1)(2p^2 + 1) > 2^{n_j + 1} p^3,$$

so

$$n > n_j \geq 7\sqrt{2n \log p} \quad \text{so} \quad n > 98 \log p,$$

contradicting $n < 6 \log p$. So, we may assume that $t = 0$ so $Q = 1$. If $s \geq 2$, then

$$2^n p^2 + 1 \geq (2^{n_j} p + 1)(2p + 1) > 2^{n_j} p^2 + 1,$$

showing that $n > n_j$. Thus, $n > n_j \geq 7\sqrt{2n \log p}$, so again $n > 98 \log p$, contradicting the fact that $n < 6 \log p$. So, it remains to consider the case when $s = 1$ so $P = P_1 = 2^{n_j} p + 1$. It then follows that $\ell_1 = n_1 \geq 7\sqrt{2n \log p}$. Further,

$$2^n p^2 + 1 = (2^{\ell_1} + 1) \cdots (2^{\ell_r} + 1)(2^{\ell_1} p + 1).$$

Expanding we get that $2^{\min\{\ell_1, \ell_2 - \ell_1\}} \mid p + 1$. In addition, $\lambda(N) = 2^{\ell_r} p$. Here, $\lambda(N)$ is the Carmichael λ-function of N. Recall that for a squarefree positive integer M we have $\lambda(M) = \text{lcm}\{p - 1 : p \mid M\}$. By Wright’s result [4], $p \in \{3, 5, 7, 127\}$ or p is an unknown Fermat prime. In all these cases, $\min\{\ell_1, \ell_2 - \ell_1\} \leq 7$. But $\ell_1 = n_1 \geq 7\sqrt{2n \log p} \geq 7\sqrt{2 \log 7} > 13$ is a power of 2 and then ℓ_2 is at least the next power of 2, so $\ell_2 - \ell_1 \geq \ell_1 \geq 13$, a contradiction. \hfill \Box

The next lemmas deal with spacings between the n_js and m_js. For an odd prime P let $O_P := \text{ord}_P(2)$ be the multiplicative order of 2 modulo P.

Lemma 4. We have $n - 2n_j \equiv 0 \pmod{\text{ord}_P(2)}$, with

$$\text{ord}_P(2) = \text{gcd}(2, \text{ord}_P(2)).$$
Proof. Well, we have $2^n p \equiv -1 \pmod{P_j}$ and $2^n p^2 \equiv -1 \pmod{P_j}$. Thus, $2^{n-2n_j} \equiv -1 \pmod{P_j}$. This implies that $O_{P_j} \mid 2(n - 2n_j)$, which in turn implies $n - 2n_j \equiv 0 \pmod{o_j}$. \hfill \qed

Lemma 5. We have $n - m_j \equiv 0 \pmod{O_j}$, where $O_j := \text{ord}_{Q_j}(2)$.

Proof. Well, we have $2^n p^2 \equiv -1 \pmod{Q_j}$ and $2^n p^2 \equiv -1 \pmod{Q_j}$. Thus, $2^{n-m_j} \equiv 1 \pmod{P_j}$. This implies that $n - m_j \equiv 0 \pmod{O_j}$. \hfill \qed

We next bound o_j and O_j from below.

Lemma 6. We have $o_j > 3n_j$ for $1 \leq j \leq s$ and $O_j > 3m_j$ for $1 \leq j \leq t$.

Proof. We start with o_j. Since $o_j = \text{ord}_{P_j}(2)/\gcd(2, \text{ord}_{P_j}(2))$, we have that there is $\varepsilon \in \{\pm 1\}$ such that

$$2^{o_j} \equiv \varepsilon \pmod{P_j},$$

Thus,

$$2^{o_j} - \varepsilon = (2^{n_j} p + 1)(2^{o_j} - \varepsilon). \quad (1)$$

Here, $n_j' \geq 1$ and λ_j is odd. We treat the case $\varepsilon = 1$, and $(n_j', \lambda_j) = (1, 1)$. In this peculiar case we get

$$2^{o_j} - 1 = 2^{n_j} p + 1,$$

which gives $2^{o_j-1} = 2^{n_j-1} p + 1$. This implies $n_j = 1$, and $2^{o_j-1} = p + 1 \geq 8$, so $o_j \geq 4 > 3n_j = 3$.

From now on, we assume that $(n_j', \lambda_j) \neq (1, 1)$ when $\varepsilon = 1$. Expanding in (1), we get

$$2^{o_j} = 2^{n_j+n_j'} p \lambda_j + 2^{n_j} \lambda_j - \varepsilon 2^{n_j} p,$$

and we see that $n_j = n_j'$. Thus,

$$2^{o_j-n_j} = 2^{n_j} p \lambda_j + (\lambda_j - \varepsilon p).$$

Hence, $2^{n_j} \mid \lambda_j - \varepsilon p$. Note that $\lambda_j - \varepsilon p \neq 0$, otherwise $\varepsilon = 1$, $\lambda_j = p$ and $2^{o_j} = 2^{n_j} p^2$, which is false. In particular, $p + \lambda_j \geq 2^{n_j}$. If $\lambda_j \geq 3$, then $p\lambda_j \geq p + \lambda_j \geq 2^{n_j}$. If $\lambda_j = 1$, then $p\lambda_j = p \geq 2^{n_j} - 1 > 2^{n_j-0.5}$. The above inequality is true for $n_j \geq 2$. For $n_j = 1$, the inequality $p\lambda_j = p > 2^{n_j-0.5}$ is also true. Hence,

$$2^{o_j} = (2^{n_j} p + 1)(2^{n_j} \lambda_j - \varepsilon) + \varepsilon > (2^{n_j} p)(2^{n_j-0.5} \lambda_j) = 2^{2n_j-0.5} p\lambda_j > 2^{3n_j-1}.$$

To see the above inequality, note that it is clear when $\varepsilon = -1$, while for $\varepsilon = 1$ we used $2^{n_j} \lambda_j - 1 > 2^{n_j-0.5} \lambda_j$, which holds since $(n_j, \lambda_j) \neq (1, 1)$. We thus get that $o_j > 3n_j - 1$, so $o_j \geq 3n_j$. Since $o_j \mid P_j - 1 \mid 2^n p^2$ is coprime to 3, we get that $o_j > 3n_j$.

A similar argument works with O_j. In this case, $n \equiv m_j \pmod{O_j}$. Further $2^{O_j} \equiv 1 \pmod{2^{m_j}p^2 + 1}$. We write

$$2^{O_j} - 1 = (2^{m_j}p^2 + 1)(2^{m_j'}\lambda_j - 1),$$

with an odd value of λ_j. Expanding, we get

$$2^{O_j} = 2^{m_j + m_j'}p^2\lambda_j - 2^{m_j}p^2 + 2^{m_j'}\lambda_j.$$

Identifying powers of 2 we get

$$m \equiv m_j \pmod{2^{m_j}p^2}.$$

Thus, either $p^2 > 2^{m_j}$ or $\lambda_j > 2^{m_j}$. Hence, we get

$$2^{O_j} = (2^{m_j}p^2 + 1)(2^{m_j'}\lambda_j - 1) \geq 2^{m_j} - 1p^2\lambda_j > 2^{3m_j}.$$

In the above, we used that $2^{m_j}p^2 + 1 > 2^{m_j}p^2$ and $2^{m_j}\lambda_j - 1 \geq 2^{m_j} - 1\lambda_j$. Thus, $O_j \geq 3m_j$, and since O_j is coprime to 3 (as a divisor of $2^n p^2$), the inequality is in fact strict. Hence, $O_j > 3m_j$.

Lemma 7. We have $n > 2n_j$ for $j = 1, \ldots, s$ and $n > m_j$ for $j = 1, \ldots, t$.

Proof. The second one is clear since $2^{m_j}p^2 + 1 \mid 2^n p^2 + 1$. For the first one, note that $n - 2n_j$ is nonzero, otherwise

$$2^{n_j}p + 1 \mid 2^{2n_j}p^2 + 1,$$

which is not possible. If $2n_j - n > 0$, then since $2n_j - n \equiv 0 \pmod{o_j}$, we get that o_j is a divisor of $2n_j - n$. In particular, $o_j < 2n_j$ contradicting the fact that $o_j > 3n_j$. Thus, it must be the case that $n > 2n_j$.

We next bound s, t.

Lemma 8. We have

$$s < 3 \left(1 + \frac{\log(7\sqrt{2n\log p})}{\log 2.5}\right) \quad \text{and} \quad t < 3 \left(1 + \frac{\log(7\sqrt{2n\log p})}{\log 2.5}\right).$$

Proof. We show that if X is any number smaller than or equal to $7\sqrt{2n\log p}$, then the interval $[2X/5, X)$ contains at most three numbers of the form n_j for some $j = 1, \ldots, s$. Indeed, assume there are four such. Their o_j’s are of the form $2^u p^{\delta_j}$, where $\delta_j \in \{0, 1, 2\}$. Since we have four numbers, there are two of them say o_j and o_j' having $\delta_j = \delta_j'$. In particular, one of o_j, o_j' divides the other and therefore $o := \min\{o_j, o_j'\} = \gcd(o_j, o_j')$ is one of o_j or o_j'. Since $n_j, n_j' \in [2X/5, X)$, we get that $o > 3\min\{n_j, n_j'\} \geq 6X/5$. Now

$$n \equiv 2n_j \equiv 2n_j' \pmod{o},$$
so that \(n_j - n_{j'} \equiv 0 \pmod{o'} \), where \(o' := o' / \gcd(o, 2) \). But
\[
|n_j - n_{j'}| < 3X/5 \leq o'/2 \leq o',
\]
which shows that \(n_j = n_{j'} \), a contradiction.

A similar argument shows that for any positive real number \(X \) the interval \([2X/5, X)\) contains at most three of the numbers \(m_j \) for \(j = 1, \ldots, t \).

Staring with \(X := 7\sqrt{2n \log p} \), then each of the intervals
\[
[X/2.5, X), [X/(2.5)^2, X/2.5), \ldots, [X/(2.5)^k+1, X/(2.5)^k),
\]
contains at most three values of \(n_j \). Also, each of the above intervals contains at most three values of \(m_j \). If
\[
k \geq 1 + \left\lfloor \frac{\log X}{\log 2.5} \right\rfloor > \frac{\log X}{\log 2.5},
\]
then \(X/(2.5)^k < 1 \), so the last interval is contained in \((0, 1)\) so it cannot contain any \(n_j \) or \(m_j \). This shows that
\[
k \leq \left\lfloor \frac{\log X}{\log 2.5} \right\rfloor.
\]
Thus,
\[
s \leq 3(k + 1) \leq 3 \left(\left\lfloor \frac{\log(7\sqrt{2n \log p})}{\log 2.5} \right\rfloor + 1 \right) < 3 \left(1 + \frac{\log(7\sqrt{2n \log p})}{\log 2.5} \right),
\]
and also
\[
t < 3 \left(1 + \frac{\log(7\sqrt{2n \log p})}{\log 2.5} \right).
\]

Now
\[
P = \prod_{j=1}^{s} (2^{n_j} p + 1) < 2^3 X \sum_{j=1}^{(2/5)^{-j}} p^s \prod_{j \geq 1} \left(1 + \frac{1}{2j p} \right)^3 < 1.3^{1} \cdot 2^{3n \log p + 3(1+\log(7\sqrt{2n \log p})/(\log 2.5)(\log p / \log 2)}.
\]
In the above we used that
\[
3X \sum_{j \geq 0} (2.5)^{-j} = \frac{3X}{1-1/2.5} = 5X = 35\sqrt{2n \log p}.
\]
as well as
$$\prod_{j \geq 1} \left(1 + \frac{1}{2^j p}\right) < \exp \left(\sum_{j \geq 1} \frac{1}{2^j p}\right) < \exp(1/p) < \exp(1/5) < 1.3.$$

Similarly,
$$Q = \prod_{j=1}^{t} (2^{m_j} p^2 + 1) < 1.3^3 \cdot 2^{35 \sqrt{2n \log p} + 3(1 + \log(7 \sqrt{2n \log p})/\log 2.5)(2 \log p/\log 2)}.$$

We record this as the following lemma.

Lemma 9. We have
\[P < 1.3^3 \cdot 2^{35 \sqrt{2n \log p} + 3(1 + \log(7 \sqrt{2n \log p})/\log 2.5)(\log p)/\log 2};\]
\[Q < 1.3^3 \cdot 2^{35 \sqrt{2n \log p} + 3(1 + \log(7 \sqrt{2n \log p})/\log 2.5)(2 \log p)/\log 2}.\]

Now we put everything together and use that
\[n \log 2 = \log(2^n) < \log N < \log F + \log P + \log Q\]
to get the following result.

Lemma 10. The inequality
\[n \log 2 < 8 \log p + 6 \log(1.3) + (70 \log 2) \sqrt{2n \log p} + \left(1 + \frac{\log(7 \sqrt{2n \log p})}{\log 2.5}\right)(9 \log p).\]

holds.

Lemma 11. It is not possible that all \(o_j\) (for \(1 \leq j \leq s\)) and \(O_j\) (for \(1 \leq j \leq t\)) are coprime to \(p\).

Proof. Assume all \(o_j\) (for \(1 \leq j \leq s\)) and \(O_j\) (for \(1 \leq j \leq t\)) are powers of 2. Let \(b\) be maximal such that \(2^b \leq n/2\). We show:

(i) \(O_j/2 \leq 2^b\) for \(j = 1, \ldots, t\);

(ii) \(e_r \leq 2^b\) for \(j = 1, \ldots, r\);

(iii) \(o_j \leq 2^b\) for \(j = 1, \ldots, s\) with at most one exception \(j\) which then is unique, has \(o_j = 2^{b+1}\) and \(n = 2n_j + o_j\).
We start with (i). We have
\[n - m \equiv 0 \pmod{O_j}. \]
Clearly, \(2^np^2 + 1 > 2^mp^2 + 1\) so \(n > m_j\). Thus, \(O_j < n\), and so \(O_j/2 < n/2 \leq 2^h\).

We next deal with (ii). We have \(2^{\ell_r} + 1 \mid N\), so \(2^{\ell_r} = F_r - 1 \mid N - 1 = 2^np^2\) showing that \(\ell_r \leq n\). We need to show that \(\ell_r \leq n/2\). Write
\[2^n p^2 + 1 = (2^{\ell_r} + 1)(2^\lambda + 1), \]
for some integers \(a \geq 1\) and \(\lambda\) odd. Thus,
\[2^n p^2 = 2^{\ell_r + a} + 2^{\ell_r} + 2^a, \]
and by inspecting the power of 2 we get \(a = \ell_r\). Thus,
\[2^n p^2 = 2^{2\ell_r + \lambda} + 2^{\ell_r}(\lambda + 1). \]
Since \(2\ell_r > n\), we get that \(\ell_r = n\). Next, if \(t \geq 1\), then
\[(2^n p^2 + 1) > (2^{\ell_r} + 1)(2p^2 + 1) = (2^n + 1)(2p^2 + 1) > 2^n p^2 + 1, \]
a contradiction. Thus, \(t = 0\) so \(Q = 1\). It follows that \(s \geq 1\). If \(s \geq 2\), then
\[2^n p^2 + 1 \geq (2^{\ell_r} + 1)(2p + 1)(4p + 1) = (2^n + 1)(2p + 1)(4p + 1) > 2^n p^2 + 1 \]
a contradiction. Thus, \(s = 1\) and
\[2^n p^2 + 1 = (2^{\ell_1} + 1) \cdots (2^n + 1)(2^{n_1} p + 1). \]
We get \(2^{n-2n_1} \equiv -1 \pmod{2^{n_1} p + 1}\). So, \(n - 2n_1 \equiv a_1 \pmod{2a_1}\), and \(a_1 \leq n\) is a power of 2. Since \(n\) is a power of 2 which is at least \(a_1\), we get that \(a_1 \mid n\) and since \(a_1 \mid n - 2n_1\), we get that \(a_1 \mid 2n_1\), contradicting the fact that \(a_1 > 3n_1\). This shows that \(\ell_r \leq n/2\).

We now deal with (iii). We have \(n - 2n_j \equiv 0 \pmod{m_j}\). If \(o_j \leq n/2\), we have what we want. Assume \(o_j > n/2\). Then \(n - 2n_j = mo_j\) with some positive integer \(m\) together with the fact that \(o_j > n/2\) implies that \(m = 1\). Thus, \(o_j = 2^{h+1}\) is the only power of 2 in \([n/2, n]\) and \(n_j = (n - o_j)/2\). Hence, \(o_j\) and \(j\) are unique.

To finish, assume first that \(O_j/2\) \((1 \leq j \leq t)\), \(\ell_r\) and \(o_j\) \((1 \leq j \leq s)\) are all powers of 2 of exponent at most \(b\). Then since
\[2^{o_j} + 1 \equiv 0 \pmod{P_j} \quad (1 \leq j \leq s) \quad 2^{O_j/2} + 1 \equiv 0 \pmod{Q_j} \quad (1 \leq j \leq t), \]
we get
\[2^n p^2 + 1 \mid \prod_{0 \leq a \leq b} (2^a + 1) = 2^{2h+1} - 1 < 2^n, \]
a contradiction. Assume next that there is one \(j \) in \(\{1, \ldots, s\} \) such that \(o_j = 2^{b+1} \) and \(n = 2n_j + o_j \). Then

\[
2^{2n_j + o_j}p^2 + 1 = 2np^2 + 1 | \prod_{0 \leq a \leq b} (2^{a} + 1) \\
= (2np + 1)(2^{b+1} - 1) < (2np + 1)2^{o_j},
\]

which gives

\[
2^{2n_j}p^2 \leq 2^{o_j}p,
\]

a contradiction. This finishes the proof of this lemma.

Lemma 11 is good news since it shows that one of \(o_j \), \(O_j \) is a multiple of \(p \) and since \(n - 2n_j \) and \(n - m_j \) are positive integers which are multiples of \(o_j \) (for \(1 \leq j \leq s \)) and \(O_j \) respectively (for \(1 \leq j \leq t \)), we conclude that \(n > p \). Inequality (2) now gives

\[
\log 2 < \frac{8 \log p}{p} + \frac{6 (1.3)}{p^2} + (70 \log 2) \sqrt{\frac{2 \log p}{p}} \\
+ \left(\frac{1}{\sqrt{p}} + \frac{\log(7 \sqrt{2p \log p})}{\sqrt{p} \log 2.5} \right) \left(\frac{9 \log p}{\sqrt{p}} \right).
\]

The above gives \(p < 120000 \). But we can do a bit better. That is, assume first that \(n \geq p^2 \). Then inequality (2) gives

\[
\log 2 < \frac{8 \log p}{p^2} + \frac{6 (1.3)}{p^2} + (70 \log 2) \sqrt{\frac{2 \log p}{p^2}} \\
+ \left(\frac{1}{p} + \frac{\log(7 \sqrt{2p \log p})}{p \log 2.5} \right) \left(\frac{9 \log p}{p} \right),
\]

which implies \(p \leq 233 \). With this value of \(p \), inequality (2) gives

\[
n < 55010.
\]

Assume next that \(n < p^2 \). We now revisit Lemma 8 but keep in mind that since \(n < p^2 \), we must have that \(o_j \), \(O_j \) are of the form \(2^{\lambda_j}p^{\delta_j} \), where \(\delta_j \in \{0, 1\} \). That argument shows that in fact the inequalities of Lemma 8 hold with the factor of 2 on the right–hand side instead of 3 and in fact even (2) holds with the right–hand side scaled by a factor of 2/3. This can be rewritten as

\[
\frac{3n \log 2}{2} < 8 \log p + 6 \log (1.3) + (70 \log 2) \sqrt{2n \log p} \\
+ \left(1 + \frac{\log(7 \sqrt{2n \log p})}{\log 2.5} \right) (9 \log p).
\]
Since $n > p$, we get

\[
\frac{3\log 2}{2} < \frac{8\log p}{p} + \frac{6\log(1.3)}{p} + (70\log 2)\sqrt{\frac{2\log p}{p}}
+ \left(\frac{1}{\sqrt{p}} + \frac{\log(7\sqrt{2p \log p})}{\sqrt{p} \log 2.5}\right) \left(\frac{9\log p}{\sqrt{p}}\right),
\]

which gives $p < 50000$. With this value of p, inequality (3) gives

\[n < 50000.\]

Let us summarize our numerical conclusions.

Lemma 12. We have $p < 50000$ and $n < 55010$.

It remains to do the numerics. Since $p < 50000$, we get that

\[F_j < p^2 < 10^{10},\]

so $F_j \in \{3, 5, 17, 257, 65537\}$.

2.2. The Case $F > 1$

Assume $F > 1$. Then $p \mid F - 1$. Since $p < 50000$, the only possibilities are

\[p \in \{7, 11, 13, 19, 29, 31, 41, 43, 47, 83, 107, 113, 127, 131, 151, 241, 331, 467, 2579, 6553, 10631, 13159, 19661, 45083\}.

We start with the large primes.

The case $p = 45083$. The only possibility is $F = F_1F_2F_4 = 5 \cdot 257 \cdot 65537$. This is not convenient since none of $2p + 1, 2p^2 + 1, 4p + 1, 4p^2 + 1$ is prime.

The case $p = 19661$. The only possibility is $F = F_0 \cdot F_3 = 3 \cdot 65537$. Since $2p^2 + 1$ is not prime, it follows that $F_1 = 2p + 1$, $F_1 = 3$. Then $2^i p^2 + 1 \equiv 0 \pmod{65537}$. The order of 2 modulo 65537 is 32 and a short calculation shows that $2^i p^2 + 1 \neq 0 \pmod{65537}$ for all $i = 0, \ldots, 31$.

The case $p = 13159$. The only possibility is $F = F_0F_2F_4 = 3 \cdot 17 \cdot 65537$. This is not convenient since neither $2p + 1$ nor $2p^2 + 1$ is prime.

The case $p = 10631$. The only possibility is $F = F_1F_2F_4 = 5 \cdot 17 \cdot 65537$. This is not convenient since neither of $2p + 1, 2p^2 + 1, 4p + 1, 4p^2 + 1$ is prime.

The case $p = 6553$. In this case $F = F_0F_2F_3 = 3 \cdot 17 \cdot 257$. This is not convenient since both $2p + 1$, $2p^2 + 1$ are composite.
The case $p = 2579$. In this case $F = F_2F_4 = 17 \cdot 65537$. This is not convenient since neither one of $2p + 1, 2p^2 + 1, 4p + 1, 4p^2 + 1, 8p + 1, 8p^2 + 1, 16p + 1, 16p^2 + 1$ is prime.

The case $p = 467$. In this case, $F = F_1F_3F_4 = 5 \cdot 257 \cdot 65537$. This is not convenient since neither of $2p + 1, 2p^2 + 1, 4p + 1, 4p^2 + 1$ is prime.

The case $p = 331$. In this case $F = F_1F_2F_3F_4 = 5 \cdot 17 \cdot 257 \cdot 65537$. This is not convenient since neither of $2p + 1, 2p^2 + 1, 4p + 1, 4p^2 + 1$ is prime.

The case $p = 241$. In this case $F = F_3F_4 = 257 \cdot 65537$. This is not convenient since neither of

$$2p + 1, 2p^2 + 1, 4p + 1, 4p^2 + 1, 8p + 1, 8p^2 + 1, 16p + 1, 16p^2 + 1,$$

$$32p + 1, 32p^2 + 1, 64p + 1, 64p^2 + 1, 128p + 1, 128p^2 + 1, 256p + 1, 256p^2 + 1$$

is prime.

The case $p = 151$. Here, $F = F_0F_1F_2F_3 = 3 \cdot 5 \cdot 17 \cdot 257$ or $F = F_1F_2F_3F_4 = 5 \cdot 17 \cdot 257 \cdot 65537$. However, this is not convenient since none of $2p + 1, 2p^2 + 1, 4p + 1, 4p^2 + 1$ is prime.

The case $p = 131$. In this case, $F = F_1F_2F_4 = 5 \cdot 17 \cdot 65537$. Now $2p + 1$ is prime but $2p^2 + 1$ is not. So, n_1 cannot be 1. Also, neither of $4p + 1, 4p^2 + 1$ is prime so n_1 cannot be 2, which is a contradiction since $\ell_1 = 2$.

The case $p = 127$. In this case, we have $F = F_0F_1F_2 = 3 \cdot 5 \cdot 17$ or $F = F_0F_2F_4 = 3 \cdot 17 \cdot 65537$ or $F = F_1F_2F_3 = 5 \cdot 17 \cdot 257$ or $F = F_2F_3F_4 = 17 \cdot 257 \cdot 65537$. None of $2p + 1, 2p^2 + 1$ is prime, so the Fermat prime 3 cannot be involved. Also, $8p + 1, 8p^2 + 1, 16p + 1, 16p^2 + 1$ are all composite so we cannot have $n_1 \in \{3, 4\}$. However, $4p + 1$ is prime and $4p^2 + 1$ is composite. So the only possibility is $F_1 = 4p + 1$ and $F_1 = 5$ are both involved in N and 5 is the smallest Fermat prime in N. Then $257 \mid 2^n p^2 + 1$. Since the order of 2 modulo 257 is 16, we check whether $2^i p^2 + 1$ is a multiple of 257 for $i = 0, \ldots, 15$ and find no solution.

The case $p = 113$. The only possibility is $F = F_2F_3F_4 = 17 \cdot 257 \cdot 65537$. We have that $2p + 1$ is prime but $2p^2 + 1$ is not, so $n_1 > 1$. Since also none of

$$4p + 1, 4p^2 + 1, 8p + 1, 8p^2 + 1, 16p + 1, 16p^2 + 1$$

is prime, we get a contradiction.

The case $p = 107$. We then have $F = F_1F_3 = 5 \cdot 257$. This is not convenient since none of $2p + 1, 2p^2 + 1, 4p + 1, 4p^2 + 1$ is prime.

The case $p = 83$. We have $F = F_1F_4 = 5 \cdot 65537$. We have $2p + 1$ is prime but $2p^2 + 1$ is not. Further, none of $4p + 1, 4p^2 + 1$ is prime, which is a contradiction.
The case $p = 47$. In this case, we have $F = F_1 F_4 = 5 \cdot 65537$, or $F = F_0 F_1 F_3 = 3 \cdot 5 \cdot 257$. We have $2p+1, 2p^2+1, 4p+1$ are all composite but $4p^2+1$ is prime. Thus, the only possibility is $n_1 = 2$ and $F = F_1 F_4$ is involved in N. Thus, $65537 \mid 2^n p^2 + 1$. The order of 2 modulo 65537 is 32 and we check that $2^p p^2 + 1 \not\equiv 0 \pmod{65537}$ for any $i = 0, \ldots, 31$.

The case $p = 43$. In this case $F = F_1 F_2 F_3 = 5 \cdot 17 \cdot 257$, or $F = F_2 F_3 F_4 = 17 \cdot 257 \cdot 65537$. None of $2p+1, 2p^2+1$ is prime so $n_1 > 1$. None of $8p+1, 8p^2+1, 16p+1, 16p^2+1$

is prime so we cannot have $n_2 \in \{3, 4\}$. However, $4p+1$ is prime (and $4p^2+1$ is not), so $n_1 = 2, F_1 = 4p+1$ and $F = 5 \cdot 17 \cdot 257$. Thus, $257 \mid 2^n p^2 + 1$. This is false as it can be checked that $2^p p^2 + 1$ is not a multiple of 257 for any $i = 0, 1, \ldots, 15$.

The case $p = 41$. In this case $F = F_0 F_1 F_3 = 3 \cdot 5 \cdot 257$. We have $2p+1$ is prime but $2p^2+1$ is not. So, $n_1 = 1$ and $257 \mid 2^n p^2 + 1$. Again we check that this is false by checking that $2^p p^2 + 1$ is not a multiple of 257 for any $i = 0, \ldots, 15$.

The case $p = 31$. Here, $F = F_0 F_1 F_2 F_3 = 3 \cdot 5 \cdot 17 \cdot 257$ or $F = F_1 F_2 F_3 F_4 = 5 \cdot 17 \cdot 257 \cdot 65537$, but none of $2p+1, 2p^2+1, 4p+1, 4p^2+1$ is prime.

The case $p = 29$. In this case $F = F_2 F_3 F_4 = 17 \cdot 257 \cdot 65537$. None of $2p+1, 2p^2+1, 4p+1, 4p^2+1$

is prime so $n_1 \geq 3$. We have that $8p+1$ is prime but $8p^2+1$ is not so $n_1 > 3$. Finally, $16p+1$ is not prime but $16p^2+1$ is, so $n_1 = 4$ and $F = 17 \cdot 257 \cdot 65537$. We check that $65537 \mid 2^n p^2 + 1$ is impossible by checking that $2^p p^2 + 1$ is not a multiple of 65537 for any $i = 0, \ldots, 31$.

The case $p = 19$. In this case $F = F_0 F_2 F_3 F_4 = 3 \cdot 17 \cdot 257 \cdot 65537$. However, this is not possible as none of $2p+1, 2p^2+1$ is prime.

The case $p = 13$. In this case $F = F_2 F_3 = 17 \cdot 257$, or $F = F_2 F_4 = 257 \cdot 65537$. We have $2p+1$ and $2p^2+1$ are composite. However, both $4p+1, 4p^2+1$ are primes. If $n_1 = 2$, then $P_1 = 4p+1, Q_1 = 4p^2+1$. Then $P_1 Q_1 = (1 + 4p(p+1) + 16p^2)$ and $2 \parallel p + 1$. So, we must have that one of $8p+1, 8p^2+1$ is involved in N, but none is a prime. Hence, $n_1 > 2$. None of $16p+1, 16p^2+1, 32p+1, 32p^2+1, 64p+1, 64p^2+1, 128p+1, 128p^2+1$

is prime. Also, $256p^2+1$ is not prime but $256p+1$ is prime. So, we may have $n_1 = 8, P_1 = 256p+1$ and $F = 257 \cdot 65537$ is involved in N. Again we check that $65537 \mid 2^n p^2 + 1$ by checking that $2^p p^2 + 1$ is never a multiple of 65537 for $i = 0, \ldots, 31$.

The case $p = 11$. Then $F = F_0 F_3 = 3 \cdot 257$, or $F = F_1 F_3 F_4 = 5 \cdot 17 \cdot 257 \cdot 65537$. We have that $2p + 1$ is prime but $2p^2 + 1$ is not. So, we may have $n_1 = 1$ and then $3 \cdot 257$ is involved in N. In this case, $F = 3 \cdot 257$ is involved in N. Further, it follows that $F_1 F_1 = (2 + 1)(2p + 1) = (1 + 4p + 2(p + 1))$. Since $8 \parallel 2(p + 1)$, it follows that one of $4p + 1$ or $4p^2 + 1$ must be a prime involved in N, but none of these is prime. Thus, $n_1 > 1$ and since none of $4p + 1$, $4p^2 + 1$ is prime, the number 5 cannot be involved in N, a contradiction.

The case $p = 7$. In this case $F = F_0 F_1 = 3 \cdot 5$, or $F = F_0 F_3 = 3 \cdot 257$, or $F = F_1 F_2 = 5 \cdot 17$, or $F = F_1 F_4 = 5 \cdot 65537$, or $F = F_2 F_3 = 17 \cdot 257$, or $F = F_3 F_4 = 257 \cdot 65537$, or $F = F_0 F_1 F_2 F_3 = 3 \cdot 5 \cdot 17 \cdot 257$, or $F = F_0 F_1 F_2 F_4 = 3 \cdot 5 \cdot 257 \cdot 65537$, or $F = F_1 F_2 F_3 F_4 = 5 \cdot 17 \cdot 257 \cdot 65537$. At any rate, none of $2p + 1$, $2p^2 + 1$ is prime so 3 is not involved in N. Now 65537 does not divide $2^n p^2 + 1$ for any n as it can be checked that $2^p + 1$ is not a multiple of 65537 for $i = 0, \ldots, 31$. Thus, 65537 is not involved in N. Similarly, 257 is not involved in N. So, the only Fermat numbers that can be involved in N are 5 and 17 and there must be at least two of them so $F = 5 \cdot 17$. It thus follows that one of $4p + 1$, $4p^2 + 1$ is involved in N but not both (they are both prime). Assume the one involved is $4p^2 + 1$. Then $(4 + 1)(4p^2 + 1) = (16p^2 + 4(p^2 + 1))$ and $2 \parallel p^2 + 1$. So, we need one of $8p + 1$, $8p^2 + 1$ to be involved in N but none is prime. Assume next that the one involved is $4p + 1$. Then $(4 + 1)(4p + 1) = (16p + 4(p + 1))$ and $2 \parallel 4(p + 1)$. Since 17 is already involved in N, it follows that either both $16p + 1$, $16p^2 + 1$ is involved in N (false since $16p^2 + 1$ is not prime), or none of them is. So, none of them is. Then $5 \cdot 17 \cdot (4p + 1) = (1 + 2^b m)$ for some odd m, so one of $32p + 1$, $32p^2 + 1$ is involved in N and this is false since they are both composite.

2.3. The Case $F = 1$

Here, $n_1 = m_1$. Let $P_1 = 2^n p + 1$, $Q_1 = 2^n p^2 + 1$. Note that $2^m p^2 + 1$ is a multiple of 3 if m is odd, so all m_j are even. In particular, a is even, so $p \equiv 1 \pmod{3}$. This shows that all n_j are even otherwise $2^n p + 1$ is a multiple of 3 for n_j odd.

We can even do a bit better. Note that $p^2 \pmod{5} \in \{1, 4\}$ and $a = 2a_1$ is even. So, if $p^2 \equiv 1 \pmod{4}$, we cannot have a_1 odd since then $2^n \equiv 2^{2a_1} \equiv 4 \pmod{5}$ so $5 \mid 2^np^2 + 1$. Thus, if $p^2 \equiv 1 \pmod{5}$, then $a_1 \equiv 0 \pmod{2}$ and if $p^2 \equiv 4 \pmod{5}$, then $a_1 \equiv 1 \pmod{2}$. This also shows that $p \equiv 4 \pmod{5}$.

Then

$$P_1 Q_1 = 2^{2n} p^3 + 2^n p(p + 1) + 1.$$

Assume that $\min\{n_2, m_2\} > a + \nu_2(p + 1)$. Recall that $\nu_2(p + 1)$ is the exponent of 2 in the factorization of $p + 1$. It then follows that $a = \nu_2(p + 1)$ and for this value of a both $2^n p + 1$, $2^n p^2 + 1$ are primes. Mathematica revealed that there are only 24 such primes p in $[7, 50000]$, namely

$$\{67, 163, 883, 3067, 3307, 6991, 7951, 13267, 14683, 16603, 17551, 18523, 22147,$$
Now we follow the proof. We need \(2^n p^2 + 1\) to be a multiple of both \(2^n p + 1\) and \(2^a p^2 + 1\). Thus,

\[
 n - 2a \equiv 0 \pmod{o_1} \quad \text{and} \quad n - a \equiv 0 \pmod{O_1},
\]

where \(o_1 = \text{ord}_{P_1}(2)/\gcd(2, \text{ord}_{P_1}(2))\), and \(O_1 = \text{ord}_{Q_1}(2)\). Thus, we want that \(n - 2a \equiv n - a \pmod{d}\), where \(d := \gcd(o_1, O_1)\). This means \(d | a\). A computer program ran for a few seconds and found no instance for which \(d | a\).

Next we assume that \(b = \min\{n_2, m_2\} \leq a + \nu_2(p + 1)\). Since \(b > a\) must be even, it follows that \(p \equiv 3 \pmod{4}\), so \(p \equiv 7 \pmod{12}\). There are 969 primes

\[
p \in [7, 50000]
\]

such that \(p \equiv 7 \pmod{12}\) and \(p \not\equiv 4 \pmod{5}\). For each one of them, we have

\[
 n - 2a \equiv 0 \pmod{o_1} \quad \text{and} \quad n - a \equiv 0 \pmod{o_2}.
\]

Since \(o_1 > 3a\), we get that \(5a < n < 55010\) and since \(a = 2a_1\), we get

\[
a_1 < n/10 \quad \text{so} \quad a_1 \leq 5000.
\]

Further, \(a_1 = 2a_2 + w_p\), where \(w_p = 0\) if \(p^2 \equiv 1 \pmod{5}\) and \(w_p = 1\) if \(p^2 \equiv 4 \pmod{5}\).

So, we wrote a code which goes through the 969 primes \(p \in [7, 50000]\) satisfying \(p \equiv 7 \pmod{12}\) and \(p \not\equiv 4 \pmod{5}\), and through all integers

\[
 0 \leq a_2 \leq 2500
\]

and calculates whether with \(a_1 = 2a_2 + w_p\), both numbers

\[
P_1 = 2^{2a_1} p + 1 \quad \text{and} \quad 2^{2a_1} p^2 + 1
\]

are primes. If they are, the code computes \(o_1 = \text{ord}_{P_1}(2)/\gcd(2, \text{ord}_{P_1}(2))\) and \(O_1 = \text{ord}_{Q_1}(2)\), and checks whether \(d = \gcd(o_1, O_1)\) divides \(a = 2a_1\).

The Mathematica code ran for less than 24 hours and produced no examples. This finishes the proof.

Acknowledgement. We thank the anonymous referee for a careful reading of our paper and for suggestions that helped improve the final version of this manuscript.

References

