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Abstract

In this paper, we introduce a new generalization of Leonardo numbers, which are so-
called Leonardo p-numbers. We investigate some basic properties of these numbers.
We also define incomplete Leonardo p-numbers which generalize the incomplete
Leonardo numbers.

1. Introduction

There are several generalizations of Fibonacci numbers, one among them is Fi-

bonacci p-numbers which are defined by Stakhov and Rozin [14]. For any given

integer p > 0, the Fibonacci p-numbers are defined by the recurrence relation

Fp,n = Fp,n−1 + Fp,n−p−1, n > p,

with initial values Fp,0 = 0, Fp,k = 1 for k = 1, 2, . . . , p. The Lucas p-numbers also

satisfy the same recurrence relation

Lp,n = Lp,n−1 + Lp,n−p−1, n > p,

but begin with initial values Lp,0 = p + 1, Lp,k = 1 for k = 1, 2, . . . , p. It is clear

to see that when p = 1, the Fibonacci p-sequence and the Lucas p-sequence reduce

to the Fibonacci sequence {Fn}∞n=0 and Lucas sequence {Ln}∞n=0, respectively. A

connection between Fibonacci p-numbers and Lucas p-numbers is

Lp,n = Fp,n+1 + pFp,n−p. (1)

For details related to Fibonacci p-numbers and their generalizations, see [1, 10, 14,

15, 16].
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On the other hand, the Leonardo sequence {Ln}∞n=0 is defined by the following

non-homogenous recurrence relation:

Ln = Ln−1 + Ln−2 + 1, n ≥ 2,

with initial values L0 = L1 = 1. In 1981, Dijkstra [7] used these numbers as an

integral part of his sorting algorithm. Also the nth Leonardo number corresponds to

the number of nodes in the Fibonacci tree of order n. The properties of Leonardo

numbers are studied in papers written by Catarino and Borges [5, 6], Alp and

Kocer [2], and Shannon [13]. Several different versions of Leonardo-like sequences

were previously studied by various researchers [3, 4, 8, 9, 17]. Some of these are

listed in the On-Line Encyclopedia of Integer Sequences (for example, the sequence

[A111314] in the On-Line Encyclopedia of Integer Sequences [12]). For the history of

the Leonardo sequences, see also [A001595] in the On-Line Encyclopedia of Integer

Sequences [12].

Recently, Kuhapatanakul and Chobsorn [11] have introduced a generalization of

the Leonardo sequence {Lk,n}∞n=0 as:

Lk,n = Lk,n−1 + Lk,n−2 + k, n ≥ 2,

with initial values Lk,0 = Lk,1 = 1. It is clear to see that when k = 1, it reduces

to the Leonardo sequence. When k = 2, this sequence reduces to the sequence

[A111314] in the On-Line Encyclopedia of Integer Sequences [12].

In this article, we consider a new generalization of Leonardo sequence and inves-

tigate some basic properties of this sequence.

2. Main Results

We start by giving the definition of the Leonardo p-sequence.

Definition 1. For any given integer p > 0, the Leonardo p-sequence {Lp,n}∞n=0 is

defined by the following non-homogenous relation:

Lp,n = Lp,n−1 + Lp,n−p−1 + p, n > p,

with initial values Lp,0 = Lp,1 = · · · = Lp,p = 1.

Some special cases for the Leonardo p-sequence can be given as follows. We note

that for p > 1, the Leonardo p-sequences are new in OEIS.

• For p = 1, we get the classical Leonardo sequence.

• For p = 2, the first twenty Leonardo 2-numbers are

1, 1, 1, 4, 7, 10, 16, 25, 37, 55, 82, 121, 178, 262, 385, 565, 829, 1216, 1783, 2614.
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• For p = 3, the first twenty Leonardo 3-numbers are

1, 1, 1, 5, 9, 13, 17, 25, 37, 53, 73, 101, 141, 197, 273, 377, 521, 721, 997, 1377.

• For odd p, Leonardo p-numbers are odd for all n.

The non-homogenous recurrence relation of Leonardo p-numbers can be con-

verted to the following homogenous recurrence relation:

Lp,n = Lp,n−1 + Lp,n−p − Lp,n−2p−1, n > 2p.

Similar to the relation between the Leonardo numbers and the Fibonacci num-

bers, now we give a relation between the Leonardo p-numbers and the Fibonacci

p-numbers.

Theorem 1. For n ≥ 0, we have

Lp,n = (p+ 1)Fp,n+1 − p.

Proof. The proof can be done by using induction on n. It is clear to check that the

relation is true for n = 0, 1, . . . , p. Suppose that the statement is true for all n > p.

From the induction hypothesis, we get

Lp,n+1 = Lp,n + Lp,n−p + p

= (p+ 1)Fp,n+1 − p+ (p+ 1)Fp,n−p+1 − p+ p

= (p+ 1) (Fp,n+1 + Fp,n−p+1)− p
= (p+ 1)Fp,n+2 − p,

which shows that the relation is true for n+ 1.

Remark 1. If we take p = 1 in Theorem 1, we get the identity

Ln = 2Fn+1 − 1,

which is given in [5, Equation 10].

The following result gives a link between the Leonardo p-numbers, the Fibonacci

p-numbers, and the Lucas p-numbers.

Proposition 1. For n ≥ 0, we have

Lp,n = Lp,n+p+1 − Fp,n+p+1 − p.

Proof. By using the Equation (1), we get

Lp,n = (p+ 1)Fp,n+1 − p
= Lp,n+p+1 − Fp,n+p+2 + Fp,n+1 − p
= Lp,n+p+1 − Fp,n+p+1 − p.
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Now we state a summation formula for the Leonardo p-numbers.

Proposition 2. For n ≥ 0, we have

n∑
k=0

Lp,k = Lp,n+p+1 − (n+ 1) p− 1.

Proof. By using Theorem 1 and by using the sum formula of Fibonacci p-numbers

in [16, Property 6], we get

n∑
k=0

Lp,k =

n∑
k=0

((p+ 1)Fp,k+1 − p)

= (p+ 1)

n∑
k=0

Fp,k+1 −
n∑

k=0

p

= (p+ 1)

n+1∑
k=1

Fp,k − (n+ 1) p

= (p+ 1) (Fp,n+p+2 − Fp,p − Fp,0)− (n+ 1) p

= (p+ 1) (Fp,n+p+2 − 1)− (n+ 1) p

= (p+ 1)Fp,n+p+2 − p− 1− (n+ 1) p

= Lp,n+p+1 − (n+ 1) p− 1.

Remark 2. If we take p = 1 in Proposition 2, we get the identity

n∑
k=0

Lk = Ln+2 − (n+ 2) ,

which is given in [5, Proposition 3.1 (1)].

The following summation identity is true.

Theorem 2. For n ≥ 0 and m = 0, 1, . . . , p− 1, we have

n∑
k=0

Lp,(p+1)k+m = Lp,(p+1)n+m+1 − pn.

Proof. For n ≥ 0, k ≥ 1, and any nonnegative integer m, we have the following

recurrence relation:

Lp,k(p+1)+m = Lp,k(p+1)+m+1 − Lp,(k−1)(p+1)+m+1 − p.
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Then, we do the following computation:

n∑
k=0

Lp,k(p+1)+m = Lp,m + Lp,(p+1)+m + Lp,2(p+1)+m + · · ·+ Lp,(p+1)n+m

= Lp,m +
(
Lp,(p+1)+m+1 − Lp,m+1 − p

)
+
(
Lp,2(p+1)+m+1 − Lp,(p+1)+m+1 − p

)
+ . . .+

(
Lp,n(p+1)+m+1 − Lp,(n−1)(p+1)+m+1 − p

)
= Lp,n(p+1)+m+1 + Lp,m − Lp,m+1 − np. (2)

We consider the expression Lp,m − Lp,m+1 next.

For m = 0, 1, . . . , p− 1,

Lp,m − Lp,m+1 = 1− 1 = 0. (3)

Corollary 1. For n ≥ 0, we have

n∑
k=0

Lp,(p+1)k+p = Lp,(p+1)(n+1) − p(n+ 1)− 1.

Proof. For m = p in Theorem 2, we have

Lp,m − Lp,m+1 = 1− (p+ 2) = −p− 1. (4)

We get the desired result by substituting (3) and (4) into (2).

Remark 3. If we take p = 1 in Theorem 2 and Corollary 1, we get the identities

n∑
k=0

Lp,2k = Lp,2n+1 − n,

n∑
k=0

Lp,2k+1 = Lp,2n+2 − (n+ 2),

which are given in [5, Proposition 3.1 (2)-(3)].

To obtain the Binet formula of the Leonardo p-sequence, we use the Binet formula

of the Fibonacci p-sequence (see [1])

Fp,n =

p+1∑
k=1

αn
k

(p+ 1)αk − p
,

where αk are the distincts roots of the polynomial xp+1 − xp − 1.
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Theorem 3. The Binet formula of the Leonardo p-sequence is

Lp,n = (p+ 1)

(
p+1∑
k=1

αn+1
k

(p+ 1)αk − p

)
− p.

Proof. From Theorem 1 and the Binet formula of Fibonacci p-sequence, we get the

desired result.

In the following theorem, we give the Honsberger formula for the Leonardo p-

numbers. We need the following identity which is the Honsberger-like identity for

Fibonacci p-numbers [16]:

Fp,m+n = Fp,mFp,n+1 +

p∑
j=1

Fp,m−jFp,n−p+j

where m and n are nonnegative integers such that m,n ≥ p.

Theorem 4. For nonnegative integers m,n ≥ p, we have

Lp,mLp,n+1 +

p∑
j=1

Lp,m−jLp,n−p+j

= (p+ 1)

Lp,m+n+1 − p
p∑

j=0

(Fp,m−j+1 + Fp,n−p+j+2) + p (p+ 1)

 .

Proof. By using Theorem 1 and the Honsberger identity for Fibonacci p-numbers,

we get

Lp,mLp,n+1+

p∑
j=1

Lp,m−jLp,n−p+j

= (p+ 1)
2
Fp,m+1Fp,n+2 − p (p+ 1) (Fp,m+1 + Fp,n+2) + p2

+ (p+ 1)
2

p∑
j=1

Fp,m−j+1Fp,n+j−p+1−p (p+ 1)

p∑
j=1

(Fp,m−j+1 + Fp,n+j−p+1)+

p∑
j=1

p2

= (p+ 1)
2

Fp,m+1Fp,n+2 +

p∑
j=1

Fp,m−j+1Fp,n−p+j+1


−p (p+ 1)

Fp,m+1 + Fp,n+2 +

p∑
j=1

(Fp,m−j+1 + Fp,n−p+j+1)

+ p2 (p+ 1)
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= (p+ 1)
2
Fp,m+n+2 − p (p+ 1)

 p∑
j=0

Fp,m−j+1 +

p+1∑
j=1

Fp,n−p+j+1

+ p2 (p+ 1)

= (p+ 1)

(p+ 1)Fp,m+n+2 − p+ p− p
p∑

j=0

(Fp,m−j+1 + Fp,n−p+j+2) + p2


= (p+ 1)

Lp,m+n+1 − p
p∑

j=0

(Fp,m−j+1 + Fp,n−p+j+2) + p (p+ 1)

 .

Remark 4. For p = 1 in Theorem 4, we get the following identity for the Leonardo

numbers:

LmLn+1 + Lm−1Ln = 2Lm+n+1 − Lm+1 − Ln+2 + 2.

3. Incomplete Leonardo p-numbers

In this section, we define incomplete Leonardo p-numbers and state some properties

of these numbers. For this purpose, first we consider the Theorem 1, then we need

to use the definition of incomplete Fibonacci p-numbers [15]:

Fp,n (k) =

k∑
i=0

(
n− pi− 1

i

)
, 0 ≤ k ≤

⌊
n− 1

p+ 1

⌋
.

Definition 2. Let n be a positive integer and k be an integer. For 0 ≤ k ≤
⌊

n
p+1

⌋
,

the incomplete Leonardo p-numbers are defined as

Lp,n (k) = (p+ 1)

k∑
i=0

(
n− pi
i

)
− p.

It is clear to see the following special cases:

• Lp,n (0) = 1,

• Lp,n (1) = (p+ 1) (n− p) + 1,

• Lp,n

(⌊
n

p+1

⌋)
= Lp,n.

Proposition 3. For 0 ≤ k ≤ n−p−2
p+1 , the non-linear recurrence relation of the

incomplete Leonardo p-numbers Lp,n (k) is

Lp,n (k + 1) = Lp,n−1 (k + 1) + Lp,n−p−1 (k) + p.
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Proof. By using the definition of incomplete Leonardo p-numbers, we have

Lp,n−1 (k + 1)+Lp,n−p−1 (k)+p

= (p+ 1)

k+1∑
i=0

(
n− pi− 1

i

)
−p+(p+ 1)

k∑
i=0

(
n− p (i+ 1)− 1

i

)
−p+p

= (p+ 1)

k+1∑
i=0

(
n− pi− 1

i

)
−p+(p+ 1)

k+1∑
i=1

(
n− pi− 1

i− 1

)

= (p+ 1)

k+1∑
i=0

((
n− pi− 1

i

)
+

(
n− pi− 1

i− 1

))
−p

= (p+ 1)

k+1∑
i=0

(
n− pi
i

)
−p = Lp,n (k + 1) .

Proposition 3 can be transformed into the following non-homogeneous recurrence

relation:

Lp,n (k) = Lp,n−1 (k)+Lp,n−p−1 (k − 1)+p

= Lp,n−1 (k) + Lp,n−p−1 (k) + p+ (Lp,n−p−1 (k − 1)− Lp,n−p−1 (k))

= Lp,n−1 (k)+Lp,n−p−1 (k)+p−(p+ 1)

(
n− p (k + 1)− 1

k

)
. (5)

Proposition 4. For 0 ≤ k ≤ n−p−s
p+1 , we have

s∑
i=0

(
s

i

)
Lp,n+pi (k + i) + (2s − 1) p = Lp,n+(p+1)s (k + s) .

Proof. The proof will be done by using induction on s. From Proposition 3, the

relation is true for s = 0 and s = 1. Assume that the relation is true for all j < s+1.

Now we show that it is true for s+ 1.

s+1∑
i=0

(
s+ 1

i

)
Lp,n+pi (k + i)

=

s+1∑
i=0

[(
s

i

)
+

(
s

i− 1

)]
Lp,n+pi (k + i)
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=

s∑
i=0

(
s

i

)
Lp,n+pi (k + i) +

s+1∑
i=0

(
s

i− 1

)
Lp,n+pi (k + i)

=

s∑
i=0

(
s

i

)
Lp,n+pi (k + i) +

s∑
i=0

(
s

i

)
Lp,n+p(i+1) (k + i+ 1)

= Lp,n+(p+1)s (k + s)− (2s − 1) p+ Lp,n+(p+1)s+p (k + s+ 1)− (2s − 1) p

= Lp,n+(p+1)(s+1) (k + s+ 1)−
(
2s+1 − 1

)
p.

Note that when p = 1 in Proposition 4, we obtain

s∑
i=0

(
s

i

)
Ln+i (k + i) + 2s − 1 = Ln+2s (k + s) ,

which is given in [11, Equation (3.4)].

Proposition 5. For n ≥ (p+ 1) (k + 1) we have

s−1∑
i=0

Lp,n−p+i (k) + sp = Lp,n+s (k + 1)− Lp,n (k + 1) .

Proof. We prove it by using induction on s. It is clear to see that the equality

holds for s = 1. Suppose that it is true for all i < s. Now we prove it for s. From

Proposition 3, we have

Lp,n+s+1 (k + 1)− Lp,n (k + 1)

= (Lp,n+s (k + 1) + Lp,n+s−p (k) + p)− Lp,n (k + 1)

= (Lp,n+s (k + 1)− Lp,n (k + 1)) + Lp,n+s−p (k) + p

=

s−1∑
i=0

Lp,n−p+i (k) + sp+ Lp,n+s−p (k) + p

=

s∑
i=0

Lp,n−p+i (k) + p (s+ 1) ,

which completes the proof.

Remark 5. If we take p = 1 in Proposition 3, Proposition 4, Equation (5), and

Proposition 5, then we get the results in [6, Proposition 1-4], respectively.
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Finally, we note that the generating function of incomplete Leonardo p-numbers

can be obtained by using the generating function of incomplete Fibonacci p-numbers

which is given in [15, Theorem 16] as:

Rk
p (t) :=

∞∑
n=0

Fp,n (k) tn =
tk(p+1)+1

(1− t− tp+1)
×[

Fp,k(p+1)+1 +

p∑
i=1

(
Fp,k(p+1)+i+1 − Fp,k(p+1)+i

)
ti − tp+1

(1− t)k+1

]
.

Since Lp,n (k) = (p+ 1)Fp,n+1 (k)− p, we get the desired result.
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[16] N. Tuğlu, E.G. Koçer, and A. Stakhov, Bivariate Fibonacci like p-polynomials, Appl. Math.
Comput. 217 (2011), 10239-10249.

[17] Z. Zhang, Some properties of the generalized Fibonacci sequences Cn = Cn−1 + Cn−2 + r,
Fibonacci Quart. 35(2) (1997), 169-171.


