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Abstract
In this paper, we introduce a new generalization of Leonardo numbers, which are so-
called Leonardo p-numbers. We investigate some basic properties of these numbers.
We also define incomplete Leonardo p-numbers which generalize the incomplete
Leonardo numbers.

1. Introduction

There are several generalizations of Fibonacci numbers, one among them is Fi-
bonacci p-numbers which are defined by Stakhov and Rozin [14]. For any given
integer p > 0, the Fibonacci p-numbers are defined by the recurrence relation

Fp,n = l'pn-1 + Fp,nfpflv n>p,

with initial values F}, o =0, I}, = 1 for £ = 1,2,...,p. The Lucas p-numbers also
satisfy the same recurrence relation

Lp,n = Lp,nfl + Lp,nfpfla n>p,

but begin with initial values L,o =p+ 1, Ly =1 for k =1,2,...,p. It is clear
to see that when p = 1, the Fibonacci p-sequence and the Lucas p-sequence reduce
to the Fibonacci sequence {F,} ° , and Lucas sequence {L,}, -, respectively. A
connection between Fibonacci p-numbers and Lucas p-numbers is

Lyn = Fpnt1+pFppn—p. (1)

For details related to Fibonacci p-numbers and their generalizations, see [1, 10, 14,
15, 16].
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On the other hand, the Leonardo sequence {L£,,}22, is defined by the following
non-homogenous recurrence relation:

‘Cn = Enfl +£n72+17 n > 2,

with initial values Lo = £; = 1. In 1981, Dijkstra [7] used these numbers as an
integral part of his sorting algorithm. Also the nth Leonardo number corresponds to
the number of nodes in the Fibonacci tree of order n. The properties of Leonardo
numbers are studied in papers written by Catarino and Borges [5, 6], Alp and
Kocer [2], and Shannon [13]. Several different versions of Leonardo-like sequences
were previously studied by various researchers [3, 4, 8, 9, 17]. Some of these are
listed in the On-Line Encyclopedia of Integer Sequences (for example, the sequence
[A111314] in the On-Line Encyclopedia of Integer Sequences [12]). For the history of
the Leonardo sequences, see also [A001595] in the On-Line Encyclopedia of Integer
Sequences [12].

Recently, Kuhapatanakul and Chobsorn [11] have introduced a generalization of
the Leonardo sequence {L ,}0e, as:

ﬁk,n = Ek,n—l + £k,n—2 + k7 n > 23

with initial values Lo = L1 = 1. It is clear to see that when k£ = 1, it reduces
to the Leonardo sequence. When k& = 2, this sequence reduces to the sequence
[A111314] in the On-Line Encyclopedia of Integer Sequences [12].

In this article, we consider a new generalization of Leonardo sequence and inves-
tigate some basic properties of this sequence.

2. Main Results

We start by giving the definition of the Leonardo p-sequence.

Definition 1. For any given integer p > 0, the Leonardo p-sequence {Lp,}0% is
defined by the following non-homogenous relation:

Lpn=Lpn-1+Lpn—p-1+p, n>p,
with initial values Lpo=Lp1 == Lpp = 1.

Some special cases for the Leonardo p-sequence can be given as follows. We note
that for p > 1, the Leonardo p-sequences are new in OEIS.

e For p =1, we get the classical Leonardo sequence.
e For p = 2, the first twenty Leonardo 2-numbers are

1,1,1,4,7,10, 16,25, 37, 55,82, 121, 178, 262, 385, 565, 829, 1216, 1783, 2614.
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e For p = 3, the first twenty Leonardo 3-numbers are

1,1,1,5,9,13,17,25, 37,53, 73,101, 141, 197, 273, 377, 521, 721, 997, 1377.

e For odd p, Leonardo p-numbers are odd for all n.

The non-homogenous recurrence relation of Leonardo p-numbers can be con-
verted to the following homogenous recurrence relation:

»Cp,n - Ep,nfl + »Cp.,nfp - »Cp.,n72p71» n> 2p

Similar to the relation between the Leonardo numbers and the Fibonacci num-
bers, now we give a relation between the Leonardo p-numbers and the Fibonacci
p-numbers.

Theorem 1. For n > 0, we have

Lom=(p+1) Fpir —p.

Proof. The proof can be done by using induction on n. It is clear to check that the
relation is true for n = 0,1,...,p. Suppose that the statement is true for all n > p.
From the induction hypothesis, we get

Lpnt1 = Lpn+Lpnp+p
(p+ 1)Fp,n+1 -p+(p+ 1)Fp,n7p+1 —p+p
(P+1) (Fpnt1 + Fpnps1) =P
= (p+1)Fpnt2—p,

which shows that the relation is true for n + 1. O
Remark 1. If we take p = 1 in Theorem 1, we get the identity

Ly, =2F,11 -1,
which is given in [5, Equation 10].

The following result gives a link between the Leonardo p-numbers, the Fibonacci
p-numbers, and the Lucas p-numbers.

Proposition 1. For n > 0, we have

Lpn=Lpnipt1 = Fpnipt1 — .

Proof. By using the Equation (1), we get
Lpn = @P+1)Fpnt1—p

Lpnipr1 = Fpnipra + Fpnyr —p

= Lpntpr1 — Fpngpt1 — D
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Now we state a summation formula for the Leonardo p-numbers.

Proposition 2. Forn > 0, we have
n
Zﬁp,k =Lpnipt1— (n+1)p—1
k=0

Proof. By using Theorem 1 and by using the sum formula of Fibonacci p-numbers
in [16, Property 6], we get

n

S Lk = D ((p+1) Fprs1—p)
k=0

k=0
n n
= (p+1) ZFp,kH - ZP
k=0 k=0
n+1
= (p+1)Y) _Fpe—(n+1)p
k=1

= (p+1)(Fpnipte — Fpp — Fpo) —(n+1)p
(P+1) (Fpniprz—1) —(n+1)p
(p+1) Fpniprz—p—1—(n+1)p

= Lpntpr1—(n+1)p—1

Remark 2. If we take p = 1 in Proposition 2, we get the identity
n
> Li=Lpya—(n+2),
k=0
which is given in [5, Proposition 3.1 (1)].
The following summation identity is true.
Theorem 2. Forn >0 and m=0,1,...,p— 1, we have
n
Y Lopriktm = Lo, ptvntmsr = P
k=0

Proof. For n > 0, k > 1, and any nonnegative integer m, we have the following
recurrence relation:

Ly kp+1)+m = Lpkp+1)+m+1 — Lp,(k—1)(p+1)+m+1 — P-
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Then, we do the following computation:

D Lokrtm = Lom+ Lppryam + Lo2pantm + o+ Lo prDntm
k=0

= Lym+ (Lppaysmer — Lomi1 — D)
+ (£P,2(p+1)+m+1 - ﬂp,(p+1)+m+1 - p)
+ooot (Lpnaytmtr = Lo (n1)pt1)tmt1 = D)
= Ep,n(p+1)+m+1 + Lpm — Lpmt1 — np. (2)

We consider the expression L, ,, — Ly m+1 Dext.
Form=0,1,...,p—1,

Lym —Lpmi1=1—1=0. (3)

Corollary 1. Forn > 0, we have

Zcpy(m—l)kﬂw =Ly (p+1)(n+1) —P(n+1) — 1.
k=0

Proof. For m = p in Theorem 2, we have
Lpm—Lpmi1=1—(p+2)=-p—1 (4)
We get the desired result by substituting (3) and (4) into (2). O

Remark 3. If we take p = 1 in Theorem 2 and Corollary 1, we get the identities
n
Z Ep,Qk: = Ep,?n-‘rl —-n,
k=0
D Logen = Lpontz—(n+2),
k=0

which are given in [5, Proposition 3.1 (2)-(3)].

To obtain the Binet formula of the Leonardo p-sequence, we use the Binet formula
of the Fibonacci p-sequence (see [1])

p+1 an
Fpn=Y — b
- ,; (p+1)ar —p

where a4, are the distincts roots of the polynomial zP+! — 2P — 1.
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Theorem 3. The Binet formula of the Leonardo p-sequence is

p+1 an-‘,—l
Lyn=((p+1 —k )
pn = )<,€Z_‘: (p+1)ak—p> P

Proof. From Theorem 1 and the Binet formula of Fibonacci p-sequence, we get the
desired result. O

In the following theorem, we give the Honsberger formula for the Leonardo p-
numbers. We need the following identity which is the Honsberger-like identity for
Fibonacci p-numbers [16]:

P

Fpmin = FpmFpni1 + Z Fpom—jFpn—p+j
j=1

where m and n are nonnegative integers such that m,n > p.

Theorem 4. For nonnegative integers m,n > p, we have

p
'Cp,m'cp,n-i-l + E ﬁp,m—jﬁpm—p-i-j
j=1

= (p+1) | Lopmtnt1 — PZ (Fpm—j+1 + Fpn—prjt2) +p(p+1)
j=0

Proof. By using Theorem 1 and the Honsberger identity for Fibonacci p-numbers,
we get

p
'Cp,m/:pm-&-l"' E Ep,m—j£p7n—p+j
j=1

=(p+ 1)2 Fym+1Fpnt2 -p(p+1) (Fpﬂn-i-l + F 7n+2) +p2
p

+(p+1) ZFpm i+1Fpmtj—pr1i—p(p+1) Z pom—j+1 + Fpntj— p+1)+zp2
=1 =1 =1

p
2
=+ 1| Bpmt1Fpntz+ Y Fom— i1 Fpnprjt
i=1

P
P+ 1) | Fpomir + Fpnsz+ > (Fpm—jt1 + Fpnprinn) | +0° (0+1)
i=1
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P p+1
= P+ Fpmintz =20+ 1) [ D Fpmji1 + Y Fpnprjnr | +0° (0 +1)
§=0 j=1

p
= (p+ D) |+ D) Fpmint2—p+P =2 Y (Fpm—jr1 + Fpnprjra) +9°
=0

P
= P+ 1) | Lominir =0 (Fpm—jr1 + Fonprir2) +p(p+1)
5=0
L]

Remark 4. For p = 1 in Theorem 4, we get the following identity for the Leonardo
numbers:
['m»CnJrl + ‘Cmfl»cn = 2['m+n+1 - ['erl - £n+2 + 2.

3. Incomplete Leonardo p-numbers

In this section, we define incomplete Leonardo p-numbers and state some properties
of these numbers. For this purpose, first we consider the Theorem 1, then we need
to use the definition of incomplete Fibonacci p-numbers [15]:

k .
n—pi—1 n—1
e < < .
Fon (R) Z( i >7O_k_{p+1J

=0

Definition 2. Let n be a positive integer and k be an integer. For 0 < k < {#J ,

the incomplete Leonardo p-numbers are defined as
k n—pi
L=+ (")
i=0
It is clear to see the following special cases:
i ﬁpﬂl (O) =1,

¢ Lyn(1)=(p+1)(n—p) +1,

+ on (1))~ o

Proposition 3. For 0 < k < ";ﬁ;z? the non-linear recurrence relation of the

incomplete Leonardo p-numbers L, ,, (k) is

Lypnk+1)=Lyn1(k+1)+Lynp-1(k)+p
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Proof. By using the definition of incomplete Leonardo p-numbers, we have

Lypn-1(k+ 1)+£p,nfp71 (k)+p

O

Proposition 3 can be transformed into the following non-homogeneous recurrence
relation:

£p7n (k) = 'Cp,n—l (k)+£p,n—p—1 (k - 1)+p

=Lpn-1 (k) + Lyn-p-1 (k) +p+ (Lp,n—p—l (k—1)— Lpn—p-1 (k))

n—p(k:—i—l)—l).

=Lpn-1 (k) +Lpn—p-1 (k’) +p—(p+1) < K

Proposition 4. For 0 <k <2 fl , we have

S

S . s
5 (5) Lot 04 04 €20 = Dp = Lygorny b +5).

=0

Proof. The proof will be done by using induction on s. From Proposition 3, the
relation is true for s = 0 and s = 1. Assume that the relation is true for all j < s+1.
Now we show that it is true for s + 1.

s+1

> <S j 1) Lpntpi (k+1)

[0+ )i
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_Z(> ponpi (k+1 +§< 1>Ep,n+pi(k+i)
_Z<> pnipi (k+1) +Z() Ly nip(it) (k+1i+1)

=0
=Lpntpn)s (k+8) = (2° = 1)p+Lpnipinstp (b +s+1) = (2°=1)p
=Lpnipr)s+1) (k+s+1)— (2°T = 1) p.

Note that when p = 1 in Proposition 4, we obtain

S s i
> (i)&m (k+d)+2° =1 = Lo (k+5),
i=0
which is given in [11, Equation (3.4)].

Proposition 5. Forn > (p+ 1) (k+ 1) we have

> Lpmpri (k) +5p=Lpnys(k+1) =Ly (k+1).

Proof. We prove it by using induction on s. It is clear to see that the equality
holds for s = 1. Suppose that it is true for all © < s. Now we prove it for s. From
Proposition 3, we have

Lpntsi1 (k+1)—Lyn (k+1)
= (‘Cpm-i-s (k + 1) + [-"p,n+s—p (k) + p) - ['p,n (k? + 1)

= (Lpnts (k1) = Lypp (k+ 1) + Lpnts—p (k) +p

= Z Lypn—p+i (k) +5p+ Lypnys—p (k) +p

= Lpmpri (B)+p(s+1),

which completes the proof. O

Remark 5. If we take p = 1 in Proposition 3, Proposition 4, Equation (5), and
Proposition 5, then we get the results in [6, Proposition 1-4], respectively.



INTEGERS: 23 (2023) 10

Finally, we note that the generating function of incomplete Leonardo p-numbers
can be obtained by using the generating function of incomplete Fibonacci p-numbers
which is given in [15, Theorem 16] as:

> th(p+1)+1
k A n __
RE(t) = > Fpn(k)t"= Ty

n=0

p
i t;DJrl

Fpipany+t + 3 (Fokpry+idr — Fprpeny4i) t — 1ot

i=1 -

Since L, (k) = (p+ 1) Fpny1 (k) — p, we get the desired result.
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