

ON LEONARDO p-NUMBERS

Elif Tan

Department of Mathematics, Ankara University, Ankara, Turkey etan@ankara.edu.tr

Ho-Hon Leung

Department of Mathematical Sciences, UAEU, Al-Ain, United Arab Emirates hohon.leung@uaeu.ac.ae

Received: 9/13/22, Accepted: 1/2/23, Published: 1/27/23

Abstract

In this paper, we introduce a new generalization of Leonardo numbers, which are so-called Leonardo p-numbers. We investigate some basic properties of these numbers. We also define incomplete Leonardo p-numbers which generalize the incomplete Leonardo numbers.

1. Introduction

There are several generalizations of Fibonacci numbers, one among them is Fibonacci p-numbers which are defined by Stakhov and Rozin [14]. For any given integer p > 0, the Fibonacci p-numbers are defined by the recurrence relation

$$F_{p,n} = F_{p,n-1} + F_{p,n-p-1}, \ n > p,$$

with initial values $F_{p,0} = 0$, $F_{p,k} = 1$ for k = 1, 2, ..., p. The *Lucas p-numbers* also satisfy the same recurrence relation

$$L_{p,n} = L_{p,n-1} + L_{p,n-p-1}, \ n > p$$

but begin with initial values $L_{p,0} = p+1$, $L_{p,k} = 1$ for k = 1, 2, ..., p. It is clear to see that when p = 1, the Fibonacci p-sequence and the Lucas p-sequence reduce to the Fibonacci sequence $\{F_n\}_{n=0}^{\infty}$ and Lucas sequence $\{L_n\}_{n=0}^{\infty}$, respectively. A connection between Fibonacci p-numbers and Lucas p-numbers is

$$L_{p,n} = F_{p,n+1} + pF_{p,n-p}. (1)$$

For details related to Fibonacci p-numbers and their generalizations, see [1, 10, 14, 15, 16].

DOI: 10.5281/zenodo.7569221

On the other hand, the Leonardo sequence $\{\mathcal{L}_n\}_{n=0}^{\infty}$ is defined by the following non-homogenous recurrence relation:

$$\mathcal{L}_n = \mathcal{L}_{n-1} + \mathcal{L}_{n-2} + 1, \ n \ge 2,$$

with initial values $\mathcal{L}_0 = \mathcal{L}_1 = 1$. In 1981, Dijkstra [7] used these numbers as an integral part of his sorting algorithm. Also the *n*th Leonardo number corresponds to the number of nodes in the Fibonacci tree of order *n*. The properties of Leonardo numbers are studied in papers written by Catarino and Borges [5, 6], Alp and Kocer [2], and Shannon [13]. Several different versions of Leonardo-like sequences were previously studied by various researchers [3, 4, 8, 9, 17]. Some of these are listed in the On-Line Encyclopedia of Integer Sequences (for example, the sequence [A111314] in the On-Line Encyclopedia of Integer Sequences [12]). For the history of the Leonardo sequences, see also [A001595] in the On-Line Encyclopedia of Integer Sequences [12].

Recently, Kuhapatanakul and Chobsorn [11] have introduced a generalization of the Leonardo sequence $\{\mathcal{L}_{k,n}\}_{n=0}^{\infty}$ as:

$$\mathcal{L}_{k,n} = \mathcal{L}_{k,n-1} + \mathcal{L}_{k,n-2} + k, \ n \ge 2,$$

with initial values $\mathcal{L}_{k,0} = \mathcal{L}_{k,1} = 1$. It is clear to see that when k = 1, it reduces to the Leonardo sequence. When k = 2, this sequence reduces to the sequence [A111314] in the On-Line Encyclopedia of Integer Sequences [12].

In this article, we consider a new generalization of Leonardo sequence and investigate some basic properties of this sequence.

2. Main Results

We start by giving the definition of the Leonardo p-sequence.

Definition 1. For any given integer p > 0, the Leonardo p-sequence $\{\mathcal{L}_{p,n}\}_{n=0}^{\infty}$ is defined by the following non-homogenous relation:

$$\mathcal{L}_{p,n} = \mathcal{L}_{p,n-1} + \mathcal{L}_{p,n-p-1} + p, \ n > p,$$

with initial values $\mathcal{L}_{p,0} = \mathcal{L}_{p,1} = \cdots = \mathcal{L}_{p,p} = 1$.

Some special cases for the Leonardo p-sequence can be given as follows. We note that for p > 1, the Leonardo p-sequences are new in OEIS.

- For p = 1, we get the classical Leonardo sequence.
- For p = 2, the first twenty Leonardo 2-numbers are

1, 1, 1, 4, 7, 10, 16, 25, 37, 55, 82, 121, 178, 262, 385, 565, 829, 1216, 1783, 2614.

- For p = 3, the first twenty Leonardo 3-numbers are 1, 1, 1, 5, 9, 13, 17, 25, 37, 53, 73, 101, 141, 197, 273, 377, 521, 721, 997, 1377.
- For odd p, Leonardo p-numbers are odd for all n.

The non-homogenous recurrence relation of Leonardo p-numbers can be converted to the following homogenous recurrence relation:

$$\mathcal{L}_{p,n} = \mathcal{L}_{p,n-1} + \mathcal{L}_{p,n-p} - \mathcal{L}_{p,n-2p-1}, \ n > 2p.$$

Similar to the relation between the Leonardo numbers and the Fibonacci numbers, now we give a relation between the Leonardo p-numbers and the Fibonacci p-numbers.

Theorem 1. For $n \geq 0$, we have

$$\mathcal{L}_{p,n} = (p+1) F_{p,n+1} - p.$$

Proof. The proof can be done by using induction on n. It is clear to check that the relation is true for $n = 0, 1, \ldots, p$. Suppose that the statement is true for all n > p. From the induction hypothesis, we get

$$\begin{split} \mathcal{L}_{p,n+1} &= \mathcal{L}_{p,n} + \mathcal{L}_{p,n-p} + p \\ &= (p+1) \, F_{p,n+1} - p + (p+1) \, F_{p,n-p+1} - p + p \\ &= (p+1) \, (F_{p,n+1} + F_{p,n-p+1}) - p \\ &= (p+1) \, F_{p,n+2} - p, \end{split}$$

which shows that the relation is true for n+1.

Remark 1. If we take p=1 in Theorem 1, we get the identity

$$\mathcal{L}_n = 2F_{n+1} - 1,$$

which is given in [5, Equation 10].

The following result gives a link between the Leonardo p-numbers, the Fibonacci p-numbers, and the Lucas p-numbers.

Proposition 1. For $n \geq 0$, we have

$$\mathcal{L}_{p,n} = L_{p,n+p+1} - F_{p,n+p+1} - p.$$

Proof. By using the Equation (1), we get

$$\mathcal{L}_{p,n} = (p+1) F_{p,n+1} - p$$

$$= L_{p,n+p+1} - F_{p,n+p+2} + F_{p,n+1} - p$$

$$= L_{p,n+p+1} - F_{p,n+p+1} - p.$$

Now we state a summation formula for the Leonardo p-numbers.

Proposition 2. For $n \geq 0$, we have

$$\sum_{k=0}^{n} \mathcal{L}_{p,k} = \mathcal{L}_{p,n+p+1} - (n+1)p - 1.$$

Proof. By using Theorem 1 and by using the sum formula of Fibonacci p-numbers in [16, Property 6], we get

$$\sum_{k=0}^{n} \mathcal{L}_{p,k} = \sum_{k=0}^{n} ((p+1) F_{p,k+1} - p)$$

$$= (p+1) \sum_{k=0}^{n} F_{p,k+1} - \sum_{k=0}^{n} p$$

$$= (p+1) \sum_{k=1}^{n+1} F_{p,k} - (n+1) p$$

$$= (p+1) (F_{p,n+p+2} - F_{p,p} - F_{p,0}) - (n+1) p$$

$$= (p+1) (F_{p,n+p+2} - 1) - (n+1) p$$

$$= (p+1) F_{p,n+p+2} - p - 1 - (n+1) p$$

$$= \mathcal{L}_{p,n+p+1} - (n+1) p - 1.$$

Remark 2. If we take p = 1 in Proposition 2, we get the identity

$$\sum_{k=0}^{n} \mathcal{L}_k = \mathcal{L}_{n+2} - (n+2),$$

which is given in [5, Proposition 3.1 (1)].

The following summation identity is true.

Theorem 2. For $n \ge 0$ and $m = 0, 1, \ldots, p-1$, we have

$$\sum_{k=0}^{n} \mathcal{L}_{p,(p+1)k+m} = \mathcal{L}_{p,(p+1)n+m+1} - pn.$$

Proof. For $n \geq 0$, $k \geq 1$, and any nonnegative integer m, we have the following recurrence relation:

$$\mathcal{L}_{p,k(p+1)+m} = \mathcal{L}_{p,k(p+1)+m+1} - \mathcal{L}_{p,(k-1)(p+1)+m+1} - p.$$

Then, we do the following computation:

$$\sum_{k=0}^{n} \mathcal{L}_{p,k(p+1)+m} = \mathcal{L}_{p,m} + \mathcal{L}_{p,(p+1)+m} + \mathcal{L}_{p,2(p+1)+m} + \dots + \mathcal{L}_{p,(p+1)n+m}$$

$$= \mathcal{L}_{p,m} + (\mathcal{L}_{p,(p+1)+m+1} - \mathcal{L}_{p,m+1} - p)$$

$$+ (\mathcal{L}_{p,2(p+1)+m+1} - \mathcal{L}_{p,(p+1)+m+1} - p)$$

$$+ \dots + (\mathcal{L}_{p,n(p+1)+m+1} - \mathcal{L}_{p,(n-1)(p+1)+m+1} - p)$$

$$= \mathcal{L}_{p,n(p+1)+m+1} + \mathcal{L}_{p,m} - \mathcal{L}_{p,m+1} - np. \tag{2}$$

We consider the expression $\mathcal{L}_{p,m} - \mathcal{L}_{p,m+1}$ next.

For $m = 0, 1, \dots, p - 1$,

$$\mathcal{L}_{p,m} - \mathcal{L}_{p,m+1} = 1 - 1 = 0. \tag{3}$$

Corollary 1. For $n \geq 0$, we have

$$\sum_{k=0}^{n} \mathcal{L}_{p,(p+1)k+p} = \mathcal{L}_{p,(p+1)(n+1)} - p(n+1) - 1.$$

Proof. For m = p in Theorem 2, we have

$$\mathcal{L}_{p,m} - \mathcal{L}_{p,m+1} = 1 - (p+2) = -p - 1. \tag{4}$$

We get the desired result by substituting (3) and (4) into (2).

Remark 3. If we take p=1 in Theorem 2 and Corollary 1, we get the identities

$$\sum_{k=0}^{n} \mathcal{L}_{p,2k} = \mathcal{L}_{p,2n+1} - n,$$

$$\sum_{k=0}^{n} \mathcal{L}_{p,2k+1} = \mathcal{L}_{p,2n+2} - (n+2),$$

which are given in [5, Proposition 3.1 (2)-(3)].

To obtain the Binet formula of the Leonardo p-sequence, we use the Binet formula of the Fibonacci p-sequence (see [1])

$$F_{p,n} = \sum_{k=1}^{p+1} \frac{\alpha_k^n}{(p+1)\alpha_k - p},$$

where α_k are the distincts roots of the polynomial $x^{p+1} - x^p - 1$.

Theorem 3. The Binet formula of the Leonardo p-sequence is

$$\mathcal{L}_{p,n} = (p+1) \left(\sum_{k=1}^{p+1} \frac{\alpha_k^{n+1}}{(p+1)\alpha_k - p} \right) - p.$$

Proof. From Theorem 1 and the Binet formula of Fibonacci p-sequence, we get the desired result.

In the following theorem, we give the Honsberger formula for the Leonardo p-numbers. We need the following identity which is the Honsberger-like identity for Fibonacci p-numbers [16]:

$$F_{p,m+n} = F_{p,m}F_{p,n+1} + \sum_{j=1}^{p} F_{p,m-j}F_{p,n-p+j}$$

where m and n are nonnegative integers such that $m, n \geq p$.

Theorem 4. For nonnegative integers $m, n \geq p$, we have

$$\mathcal{L}_{p,m}\mathcal{L}_{p,n+1} + \sum_{j=1}^{p} \mathcal{L}_{p,m-j}\mathcal{L}_{p,n-p+j}$$

$$= (p+1) \left(\mathcal{L}_{p,m+n+1} - p \sum_{j=0}^{p} (F_{p,m-j+1} + F_{p,n-p+j+2}) + p(p+1) \right).$$

Proof. By using Theorem 1 and the Honsberger identity for Fibonacci p-numbers, we get

$$\mathcal{L}_{p,m}\mathcal{L}_{p,n+1} + \sum_{j=1}^{p} \mathcal{L}_{p,m-j}\mathcal{L}_{p,n-p+j}$$

$$= (p+1)^{2} F_{p,m+1} F_{p,n+2} - p (p+1) (F_{p,m+1} + F_{p,n+2}) + p^{2}$$

$$+ (p+1)^{2} \sum_{j=1}^{p} F_{p,m-j+1} F_{p,n+j-p+1} - p (p+1) \sum_{j=1}^{p} (F_{p,m-j+1} + F_{p,n+j-p+1}) + \sum_{j=1}^{p} p^{2}$$

$$= (p+1)^{2} \left(F_{p,m+1} F_{p,n+2} + \sum_{j=1}^{p} F_{p,m-j+1} F_{p,n-p+j+1} \right)$$

$$-p (p+1) \left(F_{p,m+1} + F_{p,n+2} + \sum_{j=1}^{p} (F_{p,m-j+1} + F_{p,n-p+j+1}) \right) + p^{2} (p+1)$$

$$= (p+1)^{2} F_{p,m+n+2} - p(p+1) \left(\sum_{j=0}^{p} F_{p,m-j+1} + \sum_{j=1}^{p+1} F_{p,n-p+j+1} \right) + p^{2} (p+1)$$

$$= (p+1) \left((p+1) F_{p,m+n+2} - p + p - p \sum_{j=0}^{p} (F_{p,m-j+1} + F_{p,n-p+j+2}) + p^{2} \right)$$

$$= (p+1) \left(\mathcal{L}_{p,m+n+1} - p \sum_{j=0}^{p} (F_{p,m-j+1} + F_{p,n-p+j+2}) + p(p+1) \right).$$

Remark 4. For p = 1 in Theorem 4, we get the following identity for the Leonardo numbers:

$$\mathcal{L}_m \mathcal{L}_{n+1} + \mathcal{L}_{m-1} \mathcal{L}_n = 2\mathcal{L}_{m+n+1} - \mathcal{L}_{m+1} - \mathcal{L}_{n+2} + 2.$$

3. Incomplete Leonardo p-numbers

In this section, we define incomplete Leonardo p-numbers and state some properties of these numbers. For this purpose, first we consider the Theorem 1, then we need to use the definition of incomplete Fibonacci p-numbers [15]:

$$F_{p,n}(k) = \sum_{i=0}^{k} \binom{n-pi-1}{i}, \ 0 \le k \le \left\lfloor \frac{n-1}{p+1} \right\rfloor.$$

Definition 2. Let n be a positive integer and k be an integer. For $0 \le k \le \left\lfloor \frac{n}{p+1} \right\rfloor$, the incomplete Leonardo p-numbers are defined as

$$\mathcal{L}_{p,n}(k) = (p+1) \sum_{i=0}^{k} {n-pi \choose i} - p.$$

It is clear to see the following special cases:

- $\mathcal{L}_{p,n}(0) = 1$,
- $\mathcal{L}_{p,n}(1) = (p+1)(n-p) + 1$,
- $\mathcal{L}_{p,n}\left(\left|\frac{n}{p+1}\right|\right) = \mathcal{L}_{p,n}$.

Proposition 3. For $0 \le k \le \frac{n-p-2}{p+1}$, the non-linear recurrence relation of the incomplete Leonardo p-numbers $\mathcal{L}_{p,n}(k)$ is

$$\mathcal{L}_{p,n}(k+1) = \mathcal{L}_{p,n-1}(k+1) + \mathcal{L}_{p,n-p-1}(k) + p.$$

Proof. By using the definition of incomplete Leonardo p-numbers, we have

$$\mathcal{L}_{p,n-1}(k+1) + \mathcal{L}_{p,n-p-1}(k) + p$$

$$= (p+1) \sum_{i=0}^{k+1} {n-pi-1 \choose i} - p + (p+1) \sum_{i=0}^{k} {n-p(i+1)-1 \choose i} - p + p$$

$$= (p+1) \sum_{i=0}^{k+1} {n-pi-1 \choose i} - p + (p+1) \sum_{i=1}^{k+1} {n-pi-1 \choose i-1}$$

$$= (p+1) \sum_{i=0}^{k+1} {n-pi-1 \choose i} + {n-pi-1 \choose i-1} - p$$

$$= (p+1) \sum_{i=0}^{k+1} {n-pi \choose i} - p = \mathcal{L}_{p,n}(k+1).$$

Proposition 3 can be transformed into the following non-homogeneous recurrence relation:

$$\mathcal{L}_{p,n}(k) = \mathcal{L}_{p,n-1}(k) + \mathcal{L}_{p,n-p-1}(k-1) + p$$

$$= \mathcal{L}_{p,n-1}(k) + \mathcal{L}_{p,n-p-1}(k) + p + (\mathcal{L}_{p,n-p-1}(k-1) - \mathcal{L}_{p,n-p-1}(k))$$

$$= \mathcal{L}_{p,n-1}(k) + \mathcal{L}_{p,n-p-1}(k) + p - (p+1) \binom{n-p(k+1)-1}{k}.$$
(5)

Proposition 4. For $0 \le k \le \frac{n-p-s}{p+1}$, we have

$$\sum_{i=0}^{s} {s \choose i} \mathcal{L}_{p,n+pi}(k+i) + (2^{s}-1) p = \mathcal{L}_{p,n+(p+1)s}(k+s).$$

Proof. The proof will be done by using induction on s. From Proposition 3, the relation is true for s = 0 and s = 1. Assume that the relation is true for all j < s + 1. Now we show that it is true for s + 1.

$$\sum_{i=0}^{s+1} {s+1 \choose i} \mathcal{L}_{p,n+pi} (k+i)$$

$$= \sum_{i=0}^{s+1} \left[{s \choose i} + {s \choose i-1} \right] \mathcal{L}_{p,n+pi} (k+i)$$

$$= \sum_{i=0}^{s} {s \choose i} \mathcal{L}_{p,n+pi} (k+i) + \sum_{i=0}^{s+1} {s \choose i-1} \mathcal{L}_{p,n+pi} (k+i)$$

$$= \sum_{i=0}^{s} {s \choose i} \mathcal{L}_{p,n+pi} (k+i) + \sum_{i=0}^{s} {s \choose i} \mathcal{L}_{p,n+p(i+1)} (k+i+1)$$

$$= \mathcal{L}_{p,n+(p+1)s} (k+s) - (2^{s}-1) p + \mathcal{L}_{p,n+(p+1)s+p} (k+s+1) - (2^{s}-1) p$$

$$= \mathcal{L}_{p,n+(p+1)(s+1)} (k+s+1) - (2^{s+1}-1) p.$$

Note that when p = 1 in Proposition 4, we obtain

$$\sum_{i=0}^{s} {s \choose i} \mathcal{L}_{n+i} (k+i) + 2^{s} - 1 = \mathcal{L}_{n+2s} (k+s),$$

which is given in [11, Equation (3.4)].

Proposition 5. For $n \ge (p+1)(k+1)$ we have

$$\sum_{i=0}^{s-1} \mathcal{L}_{p,n-p+i}(k) + sp = \mathcal{L}_{p,n+s}(k+1) - \mathcal{L}_{p,n}(k+1).$$

Proof. We prove it by using induction on s. It is clear to see that the equality holds for s = 1. Suppose that it is true for all i < s. Now we prove it for s. From Proposition 3, we have

$$\mathcal{L}_{p,n+s+1}(k+1) - \mathcal{L}_{p,n}(k+1)$$

$$= (\mathcal{L}_{p,n+s}(k+1) + \mathcal{L}_{p,n+s-p}(k) + p) - \mathcal{L}_{p,n}(k+1)$$

$$= (\mathcal{L}_{p,n+s}(k+1) - \mathcal{L}_{p,n}(k+1)) + \mathcal{L}_{p,n+s-p}(k) + p$$

$$= \sum_{i=0}^{s-1} \mathcal{L}_{p,n-p+i}(k) + sp + \mathcal{L}_{p,n+s-p}(k) + p$$

$$= \sum_{i=0}^{s} \mathcal{L}_{p,n-p+i}(k) + p(s+1),$$

which completes the proof.

Remark 5. If we take p = 1 in Proposition 3, Proposition 4, Equation (5), and Proposition 5, then we get the results in [6, Proposition 1-4], respectively.

Finally, we note that the generating function of incomplete Leonardo p-numbers can be obtained by using the generating function of incomplete Fibonacci p-numbers which is given in [15, Theorem 16] as:

$$R_{p}^{k}(t) := \sum_{n=0}^{\infty} F_{p,n}(k) t^{n} = \frac{t^{k(p+1)+1}}{(1-t-t^{p+1})} \times \left[F_{p,k(p+1)+1} + \sum_{i=1}^{p} \left(F_{p,k(p+1)+i+1} - F_{p,k(p+1)+i} \right) t^{i} - \frac{t^{p+1}}{(1-t)^{k+1}} \right].$$

Since $\mathcal{L}_{p,n}(k) = (p+1) F_{p,n+1}(k) - p$, we get the desired result.

References

- S. Abbad, H. Belbachir, and B. Benzaghou, Companion sequences associated to the r-Fibonacci sequence: algebraic and combinatorial properties. Turkish J. Math. 43(3) (2019), 1095-1114.
- [2] Y. Alp and E.G. Kocer, Some properties of Leonardo numbers, Konuralp J. Math. 9(1) (2021), 183-189
- [3] M. Bicknell-Johnson, Divisibility properties of the Fibonacci numbers minus one, generalized to $C_n = C_{n-1} + C_{n-2} + k$, Fibonacci Quart. **28**(2) (1990), 107-112.
- [4] M. Bicknell-Johnson and G.E. Bergum, The generalized Fibonacci numbers $\{C_n\}$, $C_n = C_{n-1} + C_{n-2} + k$, in *Applications of Fibonacci numbers*, Vol. 2 (San Jose, California; 1986), A. N. Philippou, A. F. Horadam, and G. E. Bergum (Eds.), Kluwer Academic Publishers, Dordrecht, 1988, pp. 193-205.
- [5] P. Catarino and A. Borges, On Leonardo numbers, Acta Math. Univ. Comenianae89(1) (2019), 75-86.
- [6] P. Catarino and A. Borges, A note on incomplete Leonardo numbers, Integers 20 (2020), #A43.
- [7] E.W. Dijkstra, Archive: Fibonacci numbers and Leonardo numbers, (EWD 797). www.cs.utexas.edu, July 1981.
- [8] G.B. Djordjević, Some properties of the sequences $C_{n,3} = C_{n-1,3} + C_{n-3,3} + r$, Fibonacci Quart. **43**(3) (2005), 202-207.
- [9] G.B. Djordjević and H.M. Srivastava, Some generalizations of certain sequences associated with the Fibonacci numbers, *J. Indones. Math. Soc.* **12**(1) (2006), 99-112.
- [10] E.G. Kocer, N. Tuglu, and A. Stakhov, On the m-extension of the Fibonacci and Lucas p-numbers, Chaos Solitons Fractals 40 (2009), 1890-1906.
- [11] K. Kuhapatanakul and J. Chobsorn, On the generalized Leonardo numbers, Integers (2022), #A48
- [12] N. J. A. Sloane, The On-line Encyclopedia of Integers Sequences, The OEIS Foundation Inc., http.//oeis.org.

INTEGERS: 23 (2023) 11

[13] A.G. Shannon, A note on generalized Leonardo numbers, Notes Number Theory Discrete Math. 25(3) (2019), 97-101.

- [14] A. Stakhov and B. Rozin, Theory of Binet formulas for Fibonacci and Lucas p-numbers, Chaos Solitons Fractals 27(5) (2006), 1162-1177.
- [15] D. Tasci and M.C. Firengiz, Incomplete Fibonacci and Lucas p-numbers, Math. Comput. Modelling 52 (2010), 1763-1770.
- [16] N. Tuğlu, E.G. Koçer, and A. Stakhov, Bivariate Fibonacci like p-polynomials, Appl. Math. Comput. 217 (2011), 10239-10249.
- [17] Z. Zhang, Some properties of the generalized Fibonacci sequences $C_n=C_{n-1}+C_{n-2}+r$, Fibonacci Quart. 35(2) (1997), 169-171.