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Abstract

An impartial combinatorial game based on Young diagrams is introduced which we
refer to as “A multiple hook removing game”. Examples are discussed and Sprague-
Grundy values are found for games whose starting positions are rectangular Young
diagrams with unimodal numbering. Some isomorphisms are established between
certain starting positions, and some results are given for shifted diagrams.

1. Introduction and Summary

A Hook Removing Game (HRG) is an impartial game whose game positions are

Young diagrams. This game is played by two players, A and B, where each player

alternately removes one hook from the Young diagram. It was invented in 1970

by Mikio Sato (see [9] and [10]), who also found a formula for the G-values. In

the following, we introduce a “multiple hook removing game”, MHRG(m,n), whose

starting position is a rectangular Young diagram of size m × n. The diagram is

complete with “unimodal numbering”, a scheme that originates from Tada’s paper

[12]. In the following, we prove that MHRG(m,n) is isomorphic to MHRG(m,n+1)

if m ≤ n and m+ n is even. Also, we relate MHRG(n, n+ 1) to both MHRG(n, n)

and HRG(Sn) where the latter is described in terms of shifted Young diagrams.

A brief history of the connection between groups/representation theory and

combinatorial games is in order. It is well-known that Young diagrams are used

in combinatorial representation theory. For example, there exists a one-to-one

correspondence between the (isomorphism classes of) irreducible representation for
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the symmetric group Sn and the Young diagrams having n boxes. Under this

correspondence, the dimension of an irreducible representation for Sn is equal to

the number of standard Young tableaux of the corresponding shape.

Following Sato’s work ([9], [10]), Irie [4] gave an interesting relation between

the G-values of HRG and representation theory of Sn. Then, in 1999, Proctor [8]

introduced the notion of d-complete posets which are combinatorial generalizations

of Young diagrams. In this connection, Kawanaka [5] introduced the notion of a

Plain Game which generalizes HRG. In Kawanaka’s game, d-complete posets are

used instead of Young diagrams, moreover, he gave a closed formula for the G-values

of the positions. Finally, following Tada [12], Motegi [6] characterized the game

positions that occur in the present paper.

The rules of MHRG are motivated by Tada [12]. In this paper, he described

the elements of a minimal parabolic quotient of Weyl groups of types B, C, F, and

G in terms of d-complete posets that have “unimodal numbering”. Importantly,

rectangular Young diagrams with “unimodal numbering” contain diagrams that

correspond to the elements of Weyl groups of types B and C; and it happens that

MHRG corresponds to the latter types. Table 1 is a list of several combinatorial

games along with the corresponding group structure for each.

Game Diagram
Corresponding

Weyl group

Sato-Welter Game Young diagram type A
Turning Turtles shifted Young diagram type D

Plain Game d-complete poset type A,D,E
Multiple Hook

Removing Game
Young diagram with the

unimodal numbering
type B,C

Table 1: Correspondence of Game, Diagram, and Weyl group.

2. Preliminaries, The Rules of MHRG(m,n), and Some Examples.

2.1. Impartial Combinatorial Games

Combinatorial games satisfy the requirements stated below. One should consult

with Berlekamp, Conway, and Guy [2] for the classical introduction to such games.

See Conway [3] and Siegel [11] for more advanced treatments.

• A combinatorial game is played by two players (we will call them “A” and

“B”).

• Two players alternate in making a move.
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• There are no chance elements (no moves are determined by rolling dice, etc.).

• There is no hidden information (both players will have complete knowledge

of the game state at all times).

• No position can appear more than once during a game. And, in particular,

combinatorial games are short games — they always end following a finite

number of moves.

In addition, if both players have the same set of options in each position, then the

game is an impartial combinatorial game. As previously mentioned, MHRG(m,n)

is such a game.

Given an impartial game G, a game position is called an N -position (resp. P-

position) if the next (resp. previous) player has a winning strategy, and each game

position is either an N -position or a P-position. Additionally, if G is an N -position,

then there exists a move from G to a P-position. If G is a P-position, then there

exists no move from G to a P-position (see [2], [11]).

Denote by N the set of all positive integers and N0 the set of all non-negative

integers.

Let G be an impartial game and set

C(G) = {G′ | G′ is a game position of G} (of course G ∈ C(G)).

If G′ is an option of G, then we write G→ G′, and we set

O(G) = {G′ | G→ G′} (O(G) ⊂ C(G)).

A transition from G to G′ is, by definition, a sequence G = G0, G1, . . . , Gk = G′, k ∈
N0, of game positions in C(G) such that

G = G0 −→ G1 −→ · · · −→ Gk = G′.

Definition 1. Let G and H be impartial games. If there exists a bijection f :

C(G) → C(H) such that f(O(G′)) = O(f(G′)) for all G′ ∈ C(G), then we say that

G is isomorphic to H, and we call f an isomorphism from G to H. In other words,

G is isomorphic to H if G and H have identical game trees [1].

Definition 2. For any proper subset T of N0, we define the minimal excluded

number mex(T ) as follows:

mex(T ) = min(N0 \ T ).

We recall the G-value (or Sprague-Grundy value) of a position in an impartial

game.
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Definition 3. Let G be a game position. We define G(G) ∈ N0, called the G-value

(or Sprague-Grundy value) of G, by

G(G) := mex{G(G′) | G→ G′}.

The following proposition is well-known.

Proposition 1 ([11, Chapter IV]). For a game position G, G(G) = 0 if and only

if G is a P-position.

The following proposition can be easily shown.

Proposition 2. Let G and H be impartial games. If there exists a bijection f :

C(G)→ C(H), then G(G′) = G(f(G′)) for all G′ ∈ C(G).

2.2. Young Diagrams and Numbering

A Young diagram is a finite collection of boxes arranged in left-adjusted rows where

the row lengths are in non-increasing order. Let m ∈ N, and let λ1, . . . , λm ∈ N0 be

such that λ1 ≥ · · · ≥ λm ≥ 0. Then, the set

Y = (λ1, . . . , λm) := {(i, j) ∈ N2 | 1 ≤ i ≤ m, 1 ≤ j ≤ λi}

is called the Young diagram corresponding to (λ1, . . . , λm).

An element of a Young diagram is called a box and each box is located by a pair

(i, j). For example, the Young diagram (6, 6, 5, 3, 3) is given as follows:

Y =

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5)

(4, 1) (4, 2) (4, 3)

(5, 1) (5, 2) (5, 3)

Figure 1: Young diagram (6, 6, 5, 3, 3)

For i ∈ N, the subset {(i, j) | j ∈ N}∩Y of Y is called the i-th row of Y . Similarly,

for j ∈ N, the subset {(i, j) | i ∈ N} ∩ Y of Y is called the j-th column of Y . For

a Young diagram Y , let F(Y ) denote the set of all Young diagrams contained in

Y . Also, let #(Y ) denote the number of boxes contained in Y . It is obvious that if

Y ′ ⊆ Y , then #(Y ′) ≤ #(Y ).
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For a Young diagram Y , a map α : Y → N is called a numbering of Y . For

a box (i, j) ∈ Y , if α(i, j) = x, then we say that the box (i, j) has the number

x. Let Y be a Young diagram with a numbering α. For a subset X of Y , we set

Aα(X) = [α(i, j) | (i, j) ∈ X], where [x1, . . . , xN ] denotes the multiset consisting of

x1, . . . , xN .

For fixed m,n ∈ N, we denote by

Ym,n := {(i, j) ∈ N2 | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

the rectangular Young diagram. For Y ∈ F(Ym,n), we define a special numbering

αm,n : Y → N, called the unimodal numbering of Y , as follows: For (i, j) ∈ Y , we

set αm,n(i, j) := min{j−i+m, i−j+n} ∈ N. In what follows, boxes in Y ∈ F(Ym,n)

are always numbered by the unimodal numbering αm,n.

3 3 2 1

2 3 3 2

1 2 3 3

3 4 3 2 1

2 3 4 3

1 2 3

Figure 2: unimodal numberings

Remark 1. Let Y ∈ F(Ym,n). By the definition of unimodal numbering αm,n, we

can easily check the following.

(1) If Y contains the box (m, 1), then it has the number 1. If Y contains the box

(1, n), then it has the number 1.

(2) The boxes (i, j) and (i+ 1, j + 1) have the same number (if they exist in Y ).

(3) The maximum value of αm,n : Ym,n → N is equal to α̂m,n := b(n + m)/2c,
where bxc := max{y ∈ Z | y ≤ x} for x ∈ R.

2.3. Rules of the Multiple Hook Removing Game

In this subsection, we explain the rules of MHRG (in a general setting).

Definition 4. For a box (i, j) of a Young diagram Y ,

h(i, j) = hY (i, j) := {(i, j)} t {(i′, j) ∈ Y | i′ > i} t {(i, j′) ∈ Y | j′ > j}

is called the hook (in Y ) corresponding to the box (i, j).

Definition 5. For a box (i, j) of a Young diagram Y , we remove the hook hY (i, j)

corresponding to the box (i, j) as follows:
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1. Remove each box in the hook hY (i, j).

2. Move each box (i′, j′) satisfying i′ > i and j′ > j to (i′ − 1, j′ − 1).

We denote by Y \hY (i, j) the Young diagram obtained by removing the hook hY (i, j)

corresponding to the box (i, j) from Y .

Example 1. If we remove the hook corresponding to the box (2, 2) from the

Young diagram Y = (6, 6, 5, 3, 3), then we get Y ′ = Y \ hY (2, 2) = (6, 4, 2, 2, 1).

→
↖ ↖

↖

→

Definition 6. A MHRG is an impartial game. The rules of MHRG are as follows:

(M1) The starting position is a Young diagram Y s with a numbering α : Y s → N.

All game positions are Young diagrams Y contained in Y with a numbering

α|Y .

(M2) Given a Young diagram Y with the numbering α|Y , each player chooses a box

in Y and removes the hook h corresponding to the box on his/her turn. Let

Aα(h) be the multiset of the numbers (in boxes) in the hook h, and let Y ′

be the Young diagram obtained by removing h from Y , with the numbering

α|Y ′ .

(M2a) If there does not exist any box in Y ′ whose corresponding hook h′ satisfies

Aα(h′) = Aα(h) as multisets, then the player’s turn is over, and the next

player is given Y ′.

(M2b) If there exists a box in Y ′ whose corresponding hook h′ satisfies Aα(h′) =

Aα(h), then the player must choose one such boxes, and remove the hook

h′ corresponding to the box. Let Y ′′ be the Young diagram obtained by

removing h′ from Y ′, with the numbering α|Y ′′ .
(M2c) Do the same operation as (M2a) and (M2b), with Y ′ replaced by Y ′′. As

long as such a box exists, repeat this operation.

(M3) The winner is the player who removes the last remaining hook in the diagram.

In this paper, we mainly treat MHRG(m,n) for m,n ∈ N which is MHRG whose

starting position Y s is the rectangular Young diagram Ym,n of size m× n with the

unimodal numbering αm,n.
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Example 2. At the beginning of MHRG(3, 5) played by A and B, the following

Young diagram Y = Y3,5 with the numbering α3,5 is given to the player, say A,

having the first move, as the starting position.

Y =

3 4 3 2 1

2 3 4 3 2

1 2 3 4 3

If the player A removes the hook h corresponding to the box (2, 4) from Y , then A

obtains Y ′ (with α3,5|Y ′) below:

Y =

3 4 3 2 1

2 3 4 3 2

1 2 3 4 3

−→ Y ′ =

3 4 3 2 1

2 3 4 3

1 2 3

Note that Aα3,5(h) = [2, 3, 4]. Since there does not exist a box in Y ′ whose

corresponding hook h′ satisfies Aα3,5(h′) = Aα3,5(h) = [2, 3, 4], the player A’s turn

is over. If the player B removes the hook h′ corresponding to the box (2, 1) from

Y ′, then B obtains Y ′′ (with α3,5|Y ′′) below:

Y ′ =

3 4 3 2 1

2 3 4 3

1 2 3

−→ Y ′′ =
3 4 3 2 1

2 3

Note that Aα3,5
(h′) = [3, 4, 3, 2, 1]. Notice that the box (1, 2) in Y ′′ is a unique box

in Y ′′ whose corresponding hook h′′ satisfies Aα3,5
(h′′) = Aα3,5

(h′) = [3, 4, 3, 2, 1].

Because of (M4b), B must remove the hook h′′ from Y ′′, and obtains Y ′′′ (with

α3,5|Y ′′′) below:

Y ′′ =
3 4 3 2 1

2 3
−→ Y ′′′ =

3

2

If the player A removes the hook h′′′ corresponding to the box (1, 1) from Y ′′′, then

A obtains empty Young diagram ∅:

Y ′′′ =
3

2
−→ ∅

In this case, the winner is player A. We remark that there exists no transition

from the starting position Y3,5 to Y ′′ above. In general, not every Young diagram

contained in Ym,n is a position of MHRG(m,n). Following this paper, Motegi [6]

gave a characterization of the set of all game positions in MHRG(m,n).
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3. Sprague-Grundy Values

From computer computation, we obtained the G-value of the starting position in

MHRG(m,n) for 1 ≤ m,n ≤ 9 as seen in Table 2.

m\n 1 2 3 4 5 6 7 8 9

1 1 1 3 3 5 5 7 7 9
2 1 3 3 1 1 1 1 1 1
3 3 3 0 0 0 0 3 3 10
4 3 1 0 4 4 2 2 5 5
5 5 1 0 4 1 1 14 14 18
6 5 1 0 2 1 7 7 0 0
7 7 1 3 2 14 7 0 0 10
8 7 1 3 5 14 0 0 8 8
9 9 1 10 5 18 0 10 8 1

Table 2: G-value of the starting position Ym,n in MHRG(m,n) for 1 ≤ m,n ≤ 9.

Motivated by Table 2, we made conjectures on the G-value of the starting position

Ym,n of MHRG(m,n) for some m,n as follows:

(1) If m ≤ n and m + n is even, then the G-value of the starting position in

MHRG(m,n) is equal to the G-value of the starting position in MHRG(m,n+

1).

(2) The sequence {G(Y1,n)}n≥1 of the G-values of the starting positions in

MHRG(1, n) for n ≥ 1 is arithmetic periodic.

(3) The sequence {G(Y2,n)}n≥2 of the G-values of the starting positions in

MHRG(2, n) for n ≥ 2 is periodic.

(4) The G-value of the starting position in MHRG(n, n) and MHRG(n, n + 1)

is equal to
⊕

1≤k≤n k, where
⊕

i ai denotes the nim-sum (the addition of

numbers in binary form without carrying) of all ai.

In Section 5, we will prove Theorem 1 which imply that (1) above is true. In Section

6, we will prove Theorems 2, 3 which imply that (2),(3) above are true. In Section

7, we will prove Theorem 4 which imply that (4) above is true.

4. Diagonal Expressions for Young Diagrams and Hooks

4.1. The Diagonal Expression

Recall from Section 2.2 that F(Ym,n) denotes the set of all Young diagrams

contained in Ym,n. The diagonal expression for Y ∈ F(Ym,n) is now defined in
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terms of the following elements.

Let a ∈ Nm+n+1
0 be given by a = (a−m, a−m+1, . . . , an), where we call ak the

k-th component of a for −m ≤ k ≤ n. For −m < i ≤ 0 (resp. 0 < i ≤ n), we say

that the pair (ai−1, ai) satisfies the adjacency requirement if 0 ≤ ai−ai−1 ≤ 1 (resp.

0 ≤ ai−1 − ai ≤ 1). Additionally, we say that a satisfies the adjacency requirement

if (ai−1, ai) satisfies the adjacency requirement for all −m < i ≤ n.

For m,n ∈ N, let Dm,n ⊂ Nm+n+1
0 denote the set of all elements a =

(a−m, . . . , an) ∈ Nm+n+1
0 with a−m = an = 0 satisfying the adjacency requirement.

Finally, set dk(Y ) := #{(i, j) ∈ Y | j − i = k} for k ∈ Z. Note that if k ≤ −m or

k ≥ n, then dk(Y ) = 0.

Remark 2. For i, j ≥ 2, if (i, j) ∈ Y , then (i − 1, j − 1) ∈ Y . Also, if (i, j) /∈ Y ,

then (i + a, j + a) /∈ Y for a ∈ N. Hence we see that dk(Y ) = max{min{i, j} |
(i, j) ∈ Y, j − i = k} for k ∈ Z.

Given the above setting, the following lemma is easily verified.

Lemma 1. The following statements hold.

(1) Let k ≥ 0. Then, (dk(Y ) + 1, dk(Y ) + k + 1) /∈ Y . Moreover, if dk(Y ) > 0,

then (dk(Y ), dk(Y ) + k) ∈ Y .

(2) Let k < 0. Then (dk(Y ) − k + 1, dk(Y ) + 1) /∈ Y . Moreover, if dk(Y ) > 0,

then (dk(Y )− k, dk(Y )) ∈ Y .

Lemma 2. The following statements hold.

(1) If k > 0, then 0 ≤ dk−1(Y )− dk(Y ) ≤ 1.

(2) If k ≤ 0, then 0 ≤ dk(Y )− dk−1(Y ) ≤ 1.

Proof. (1) Assume that dk(Y ) = 0. Then, (1, k+1) /∈ Y by Lemma 1, which implies

that (2, k + 1) /∈ Y . Hence, dk−1(Y ) = max{min{i, j} | (i, j) ∈ Y, j − i = k − 1} is

equal to 0 or 1 (see Remark 2). Thus we obtain

0 ≤ dk−1(Y )− dk(Y ) = dk−1(Y ) ≤ 1.

Assume that dk(Y ) > 0. By Lemma 1, it follows that

(dk(Y ), dk(Y ) + k) ∈ Y and (dk(Y ) + 1, dk(Y ) + k + 1) /∈ Y.

Then we have

(dk(Y ), dk(Y ) + k − 1) ∈ Y and (dk(Y ) + 2, dk(Y ) + k + 1) /∈ Y.

Therefore dk−1(Y ) = max{min{i, j} | (i, j) ∈ Y, j− i = k−1} is dk(Y ) or dk(Y )+1

by Remark 2. Thus we obtain 0 ≤ dk−1(Y )− dk(Y ) ≤ 1.

(2) The proof of (2) is similar to that of (1).
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Definition 7. For every Y ∈ F(Ym,n), the diagonal expression for Y is given by

d(Y ) = dm,n(Y ) = (d−m(Y ), d−m+1(Y ), . . . , dn(Y )).

Lemma 3. The function dm,n(Y ) is a bijection of F(Ym,n)→ Dm,n.

Proof. From Lemma 2, the pair (di−1(Y ), di(Y )) satisfies the adjacency requirement

for all −m < i ≤ n. Since d−m(Y ) = dn(Y ) = 0, we have (d−m(Y ), . . . , dn(Y )) ∈
Dm,n. Also, by the definition of d = dm,n, it is obvious that d is an injection.

For a = (a−m, . . . , an) ∈ Dm,n, we define Y as follows. The box (i, j) is contained

in Y if and only if min{i, j} ≤ aj−i. Note that if j − i ≤ −m or n ≤ j − i, then the

box (i, j) is not contained in Y . We claim that Y is a Young diagram. It suffices

to show that if the box (i, j) is not contained in Y , then neither the box (i + 1, j)

nor (i, j + 1) is contained in Y . If −m < j − i < 0, then min{i, j} = j > aj−i. By

the definition of Dm,n, we have

0 ≤ aj−i − aj−i−1 and aj−i+1 − aj−i ≤ 1.

Then we get

min{i+ 1, j} = j > aj−i−1 and min{i, j + 1} = j + 1 > aj−i+1.

Hence, by the definition of Y , we obtain (i + 1, j), (i, j + 1) /∈ Y . The proofs for

the cases that j − i = 0 and 0 < j − i < n are similar. Thus we have shown that

Y is a Young diagram. Further, since (m + 1, 1), (1, n + 1) /∈ Y , it follows that

Y ∈ F(Ym,n).

By the definition of Y , we have dk = ak for −m < k < n. Hence we obtain

d(Y ) = a, which shows that d is a surjection. Thus we have proved that d is a

bijection.

Example 3. Assume that m = 3 and n = 5. If Y ∈ F(Y3,5) is

Y =

3 4 3 2 1

2 3 4 3

1 2 3

,

then d(Y ) = d3,5(Y ) = (0, 1, 2, 3̇, 2, 2, 1, 1, 0) (if necessary, we will accentuate the

0-th component by putting a dot above it as above).

4.2. Diagonal Expressions and Hooks

Let Y ∈ F(Ym,n), (i, j) ∈ Y and set Y ′ := Y \ hY (i, j). We set i′ := max{x ∈ N |
(x, j) ∈ Y } and j′ := max{x ∈ N | (i, x) ∈ Y } For k ∈ Z, it follows that

dk(Y )− dk(Y ′) =

{
1 if j − i′ ≤ k ≤ j′ − i,
0 otherwise.
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Hence the diagonal expression of Y ′ is

d(Y ′) = (. . . , dj−i′−1(Y ), dj−i′(Y )− 1, dj−i′+1(Y )− 1, . . . ,

dj′−i−1(Y )− 1, dj′−i(Y )− 1, dj′−i+1(Y ), . . .). (3.1)

Let a = (a−m, . . . , an) ∈ Dm,n , a′ = (a′−m, . . . , a
′
n) ∈ Nm+n+1

0 , and let l, r be

such that −m < l ≤ r < n. If a′k = ak − 1 for l ≤ k ≤ r, and a′k = ak for the

other k’s, then we write a
l,r−→ a′ or a′ = a[l,r]. In this case, the pair (a′k−1, a

′
k)

satisfies the adjacency requirement for all −m < k ≤ n but k = l and r+ 1. Hence,

if (a′l−1, a
′
l) and (a′r, a

′
r+1) satisfy the adjacency requirement, then a′ ∈ Dm,n.

Lemma 4. Let Y, Y ′ ∈ F(Ym,n). The following are equivalent.

(1) There exists a box (i, j) ∈ Y such that Y ′ = Y \ hY (i, j).

(2) There exist −m < l ≤ r < n such that d(Y )
l,r−→ d(Y ′).

In this case, it follows that l = j − i′ and r = j′ − i, where (i′, j) is the bottom box

in the j-th column of Y , and (i, j′) is the rightmost box in the i-th row of Y .

Example 4. Let Y be as in Example 3, and let Y ′ = Y \ hY (1, 4).

Y =

3 4 3 2 1

2 3 4 3

1 2 3

→ Y ′ =

3 4 3

2 3 4

1 2 3

In the diagonal expression, we see that

d(Y ) = (0, 1, 2, 3̇, 2, 2, 1, 1, 0), d(Y ′) = (0, 1, 2, 3̇, 2, 1, 0, 0, 0),

and d(Y )
2,4−−→ d(Y ′).

Proof of Lemma 4. The implication (1)⇒(2) and equalities l = j− i′ and r = j′− i
follow from (3.1). Let us show (2)⇒(1). A proof is given only for the case that

l ≤ r ≤ 0. Proofs of the cases l ≤ 0 ≤ r and 0 ≤ l ≤ r are similar. Notice

that dl(Y ), dr(Y ) > 0. By Lemma 1 (2), we have both (dl(Y )− l, dl(Y )), (dr(Y )−
r, dr(Y )) ∈ Y . Also, by the adjacency requirement, it follows that dl(Y ) ≤ dr(Y ).

Since dl(Y
′) = dl(Y )− 1 and dr(Y

′) = dr(Y )− 1, we see by Lemma 1 (2) that both

(dl(Y )− l, dl(Y )), (dr(Y )− r, dr(Y )) /∈ Y ′, which implied that

(dl(Y )− l + 1, dl(Y )), (dr(Y )− r, dr(Y ) + 1) /∈ Y ′.

Since dk(Y ′) = dk(Y ) for k < l and r < k, we deduce that for i, j such that

j − i < l or r < j − i, we have (i, j) ∈ Y if and only if (i, j) ∈ Y ′. Hence, both

(dl(Y )− l + 1, dl(Y )), (dr(Y )− r, dr(Y ) + 1) /∈ Y .
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Let h be the hook in Y corresponding to the box (dr(Y ) − r, dl(Y )). Since

(dl(Y ) − l, dl(Y )) ∈ Y and (dl(Y ) − l + 1, dl(Y )) /∈ Y , the bottom box in the

dl(Y )-th column of Y is (dl(Y )− l, dl(Y )). Also, since (dr(Y )− r, dr(Y )) ∈ Y and

(dr(Y ) − r, dr(Y ) + 1) /∈ Y , the rightmost box in the (dr(Y ) − r)-th row of Y is

(dr(Y )− r, dr(Y )). We see from (3.1) that the diagonal expression of Y \ h is

(. . . , dl−1(Y ), dl(Y )− 1, dl+1(Y )− 1, . . . , dr−1(Y )− 1, dr(Y )− 1, dr+1(Y ), . . .),

which is equal to d(Y ′). Thus we have proved the lemma.

The next lemma follows from the proof of Lemma 4.

Lemma 5. Let Y ∈ F(Ym,n) and Y ′ = Y \ hY (i, j) for (i, j) ∈ Y . Also, let

−m < l ≤ r < n be such that d(Y )
l,r−→ d(Y ′) in the diagonal expression. Then,

#(hY (i, j)) = #Aαm,n
(hY (i, j)) = r − l + 1.

Definition 8. Let a = (a−m, . . . , an) ∈ Nm+n+1
0 . Assume that (ak−1, ak) satisfies

the adjacency requirement for some −m < k ≤ n. If (ak−1−1, ak) (resp. (ak−1, ak−
1)) also satisfies the adjacency requirement, then we say that (ak−1, ak) is a left

(resp. right) bulge, and we write ak−1 ↘ ak (resp. ak−1 ↗ ak).

The following lemma can be easily verified.

Lemma 6. Let a = (a−m, . . . , an) ∈ Nm+n+1
0 .

(1) If (ak−1, ak) satisfies the adjacency requirement, then (ak−1, ak) is either a

left bulge or a right bulge.

(2) Assume that (ak−1, ak) satisfies the adjacency requirement. If (ak−1, ak) is a

left bulge, then (ak−1 − 1, ak) is a right bulge.

(3) Assume that (ak−1, ak) satisfies the adjacency requirement. If (ak−1, ak) is a

right bulge, then (ak−1, ak − 1) is a left bulge.

Lemma 7. Let a = (a−m, . . . , an),a′ = (a′−m, . . . , a
′
n) ∈ Dm,n. Assume that

a′ = a[l,r] ∈ Dm,n for some −m < l ≤ r < n. Then,

al−1 ↗ al, ar ↘ ar+1 and a′l−1 ↘ a′l, a
′
r ↗ a′r+1.

Moreover, for −m < k ≤ n with k 6= l, r+ 1, if ak−1 ↗ ak (resp. ak−1 ↘ ak), then

a′k−1 ↗ a′k (resp. a′k−1 ↘ a′k).

Proof. Since a′ = a[l,r] ∈ Dm,n, it follows that (al−1, al − 1) and (ar − 1, ar+1)

satisfy the adjacency requirement. Hence, (al−1, al) is a right bulge and (ar, ar+1)

is a left bulge. By Lemma 6 (2) and (3), (a′l−1, a
′
l) is a left bulge and (a′r, a

′
r+1)

is a right bulge. By the definition of a[l,r], we have ak − ak−1 = a′k − a′k−1 for

−m < k ≤ n with k 6= l, r + 1. Hence, both (al−1, al) and (a′l−1, a
′
l) are both left

bulges or rights bulges. Thus we have proved the lemma.
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Let Y ∈ F(Ym,n) be a Young diagram with the unimodal numbering αm,n. By

Remark 1 (2), it follows that αm,n(i′, j′) = αm,n(i′ + a, j′ + a) for all (i′, j′) ∈ Y
and a ∈ N such that (i′ + a, j′ + a) ∈ Y . Hence we see that Aαm,n

(Y ) = Aαm,n
(Y \

hY (i, j)) ∪ Aαm,n
(hY (i, j)) for (i, j) ∈ Y .

Lemma 8. For Y ∈ F(Ym,n) and 1 ≤ k ≤ α̂m,n = b(n+m)/2c,

#{x ∈ Aαm,n
(Y ) | x = k} =

{
d−m+k + dn−k if −m+ k 6= n− k,
d−m+k if −m+ k = n− k.

Proof. Assume that −m+ k 6= n− k. Then we compute

#{x ∈ Aαm,n
(Y ) | x = k} = #{(i, j) ∈ Y | j − i = −m+ k or n− k}

= #{(i, j) ∈ Y | j − i = −m+ k}+ #{(i, j) ∈ Y | j − i = n− k}
= d−m+k + dn−k.

The proof of the case −m+ k = n− k is similar.

Lemma 9. Let Y ∈ F(Ym,n) and Y ′ = Y \hY (i, j) for (i, j) ∈ Y . Let −m < l ≤ r <
n be such that d(Y )

l,r−→ d(Y ′) in the diagonal expression (see (3.1)). Assume that

there exists (i′, j′) ∈ Y ′ such that Aαm,n
(hY ′(i

′, j′)) = Aαm,n
(hY (i, j)). Set Y ′′ =

Y ′ \hY ′(i′, j′). Then, d(Y ′)
n−m−r,n−m−l−−−−−−−−−−→ d(Y ′′) in the diagonal expression. Also,

there exists no box (i′′, j′′) ∈ Y ′′ such that Aαm,n
(hY ′′(i

′′, j′′)) = Aαm,n
(hY (i, j)).

Example 5. Let Y be as in Example 3 (note that m = 3 and n = 5), and set

Y ′ = Y \ hY (1, 3). Then we have Aα3,5
(hY (1, 3)) = [3, 4, 3, 2, 1]. Notice that

Aα3,5(hY ′(1, 1)) = [1, 2, 3, 4, 3] = Aα3,5
(hY (1, 3)). Here we set Y ′′ = Y ′ \ hY ′(1, 1)

and it follows that

Y =

3 4 3 2 1

2 3 4 3

1 2 3

→ Y ′ =

3 4 3

2 3

1 2

→ Y ′′ =
3

2

In this case,

d(Y ) = (0, 1, 2, 3̇, 2, 2, 1, 1, 0),

d(Y ′) = (0, 1, 2, 2̇, 1, 1, 0, 0, 0),

d(Y ′′) = (0, 0, 1, 1̇, 0, 0, 0, 0, 0),

and hence d(Y )
0,4−−→ d(Y ′)

−2,2−−−→ d(Y ′′) where −2 = 5− 3− 4 and 2 = 5− 3− 0.

Proof of Lemma 9. We set h := hY (i, j) and h′ := hY ′(i
′, j′). Since Y ′′ = Y ′ \ h′,

we see by (3.1) that d(Y ′)
l′,r′−−→ d(Y ′′) for some −m < l′ ≤ r′ < n. Now we

show that l′ = m − n − r and r′ = n − m − l. Since Aαm,n
(h′) = Aαm,n

(h) and
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d(Y )
l,r−→ d(Y ′), we have #Aαm,n(h′) = #Aαm,n(h) = r− l+1 by Lemma 5. Hence

we see that d(Y ′)
a,a+r−l−−−−−→ d(Y ′′) for some a ∈ Z.

Now it is sufficient to show that a = n −m − r. For a contradiction, suppose

that a = l. Note that d(Y ′)
l,r−→ d(Y ′′). Hence we see by Lemma 7 that dl−1(Y ′)↗

dl(Y
′). Similarly, since d(Y )

l,r−→ d(Y ′), it follows from Lemma 7 that dl−1(Y ′) ↘
dl(Y

′). Thus we get dl−1(Y ′) ↗ dl(Y
′) and dl−1(Y ′) ↘ dl(Y

′), which contradicts

Lemma 6 (1).

Next, suppose that a 6= l, n − m − r. For k ∈ Z, we define µ(k) := min{k +

m,−k + n}. Since d(Y ′)
a,a+r−l−−−−−→ d(Y ′′), we have

Aαm,n(h′) = [αm,n(i′, j′) | (i′, j′) ∈ h′]
= [min{j′ − i′ +m, i′ − j′ + n} | (i′, j′) ∈ h′]
= [µ(k) | a ≤ k ≤ a+ r − l].

Note that

minAαm,n
(h) = min[min{j′ − i′ +m, i′ − j′ + n} | (i′, j′) ∈ h]

= min{min{l +m, l + n},min{r +m, r + n}}
= min{µ(l), µ(r)}.

We give a proof only for the case that µ(l) < µ(r). The proofs for the cases in which

µ(l) = µ(r) and µ(l) > µ(r) are similar. If l ≥ n−m− l, then

µ(l) = min{l +m,−l + n} = m+ min{l,−l + n−m} = n− l
≥ min{r +m, (n− l) + (l − r)︸ ︷︷ ︸

≤0

} = min{r +m,−r + n} = µ(r),

which is a contradiction. Hence we get l < n−m−l and µ(l) = µ(n−m−l) = l+m.

If l < a < n−m− r, then a+ r − l < n−m− l. Then, we have

µ(b) = min{b+m,−b+ n} = min{a+m,−a− r + l + n}
> min{l +m,−n+m+ l + n} = l +m = µ(l)

for a ≤ b ≤ a + r − l. Since Aαm,n
(h′) = [µ(k) | a ≤ k ≤ a + r − l], it follows that

µ(l) ∈ Aαm,n
(h) is not contained in Aαm,n

(h′), which is a contradiction. If a < l,

then

a+m < l +m < n−m− l +m < −a+ n

and

µ(a) = min{a+m,−a+ n} = a+m < l +m = µ(l) = minAαm,n
(h).
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Hence we obtain µ(a) /∈ Aαm,n
(h), another contradiction. If n−m− r < a, then

a+ r − l +m > −l + n > l +m > −a− r + l + n

and

µ(a+ r − l) = min{a+ r − l +m,−a− r + l + n} = −a− r + l + n

< l +m = µ(l) = minAαm,n(h).

Hence we get µ(a + r − l) /∈ Aαm,n
(h), yet another contradiction. Thus we obtain

a = n−m− r, as desired.

Suppose that there exists a box (i′′, j′′) ∈ Y ′′ such that Aαm,n
(h′′) =

Aαm,n
(h), where h′′ := hY ′′(i

′′, j′′). Note that Aαm,n
(h′′) = Aαm,n

(h′). Since

d(Y ′)
n−m−r,n−m−l−−−−−−−−−−→ d(Y ′′), it follows by the argument above that d(Y ′′ \ h′′) is

equal to d(Y ′′)[l,r] or d(Y ′′)[n−m−r,n−m−l].

If d(Y ′′ \h′′) = d(Y ′′)[l,r], then we see by Lemma 7 that dl−1(Y ′′)↗ dl(Y
′′) and

dr(Y
′′)↘ dr+1(Y ′′). Similarly, since d(Y )

l,r−→ d(Y ′), it follows from Lemma 7 that

dl−1(Y ′)↘ dl(Y
′) and dr(Y

′)↗ dr+1(Y ′). Note that d(Y ′)
n−m−r,n−m−l−−−−−−−−−−→ d(Y ′′).

If l = n−m− l + 1, then r ≥ l = n−m− l + 1 ≥ n−m− r + 1 > n−m− r − 1.

Thus we see by Lemma 7 that dl−1(Y ′′) ↘ dl(Y
′′) or dr(Y

′′) ↗ dr+1(Y ′′). Thus

we have

dl−1(Y ′′)↗ dl(Y
′′) and dl−1(Y ′′)↘ dl(Y

′′)

or

dr(Y
′′)↘ dr+1(Y ′′) and dr(Y

′′)↗ dr+1(Y ′′),

which contradicts Lemma 6 (1).

If d(Y ′′ \ h′′) = d(Y ′′)[n−m−r,n−m−l], then we see by Lemma 7 that

dn−m−r−1(Y ′′)↗ dn−m−r(Y
′′).

Similarly, since d(Y ′)
n−m−r,n−m−l−−−−−−−−−−→ d(Y ′′), it follows from Lemma 7 that

dn−m−r−1(Y ′′)↘ dn−m−r(Y
′′).

Thus we get dn−m−r−1(Y ′′) ↗ dn−m−r(Y
′′) and dn−m−r−1(Y ′′) ↘ dn−m−r(Y

′′),

another contradiction of Lemma 6 (1).

5. An Isomorphism between Rectangular Diagrams

For fixed m,n ∈ N, it can be easily shown that MHRG(m,n) is isomorphic to

MHRG(n,m). In what follows, we assume that m ≤ n.
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Assume that m+n is even. We define c := (n−m)/2; note that c is a non-negative

integer. Here we will prove that MHRG(m,n) is isomorphic to MHRG(m,n+ 1).

Let T (Ym,n) be the subset of F(Ym,n) consisting of all Y ∈ F(Ym,n) such that

there exists a transition from Ym,n to Y , that is, T (Ym,n) = C(MHRG(m,n)).

Remark 3. We see by Lemma 9 that in MHRG(m,n), the operation (M2b) is

performed at most once, and the operation (M2c) is never performed.

Let Y ∈ T (Ym,n) and Y ′ ∈ O(Y ). By Lemmas 4 and 9, there exists −m < l ≤
r < n such that

d(Y )
l,r−→ d(Y ′)

or there exist −m < l ≤ r < n and Y ′′ ∈ F(Ym,n) such that

d(Y )
l,r−→ d(Y ′′)

n−m−r,n−m−l−−−−−−−−−−→ d(Y ′).

Definition 9. We define the map E : Nm+n+1
0 → Nm+n+2

0 as follows. If a ∈
Nm+n+1

0 is

a = (a−m, . . . , ac−1, ac︸︷︷︸
c-th

, ac+1, . . . , an),

then

E(a) := (a−m, . . . , ac−1, ac︸︷︷︸
c-th

, ac︸︷︷︸
(c+1)-th

, ac+1, . . . , an).

It can be easily verified that

a ∈ Dm,n if and only if E(a) ∈ Dm,n+1. (5.1)

Hence the map E : Nm+n+1
0 → Nm+n+2

0 induces the map E : F(Ym,n)→ F(Ym,n+1)

as follows. For Y ∈ F(Ym,n), we define E(Y ) to be the unique element of F(Ym,n+1)

whose diagonal expression is

E(d(Y )) = (d−m(Y ), . . . , dc−1(Y ), dc(Y ), dc(Y ), dc+1(Y ), . . . , dn(Y )).

Note that d(E(Y )) = E(d(Y )). Notice, also, that E : F(Ym,n)→ F(Ym,n+1) is an

injection. For l, r ∈ Z, we define el, er : Z→ Z by

el(k) :=

{
k if k ≤ c,
k + 1 if k > c,

er(k) :=

{
k if k < c,

k + 1 if k ≥ c.

In particular, note that el(k) 6= c + 1 and er(k) 6= c. The following lemma can be

shown easily.

Lemma 10. Let l, r ∈ Z. It follows that el(n −m − k) = n −m + 1 − er(k) for

k ∈ Z.
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Lemma 11. For l, r ∈ Z and a ∈ Nm+n+1
0 , it follows that E(a[l,r]) =

E(a)[el(l),er(r)]. Therefore, for Y ∈ F(Ym,n), it follows that d(Y )[l,r] ∈ Dm,n if

and only if d(E(Y ))[el(l),er(r)] ∈ Dm,n+1.

Proof. If c < l ≤ r, then l + 1 = el(l), r + 1 = er(r) and

E(a[l,r]) = (. . . , ac︸︷︷︸
c-th

, ac︸︷︷︸
(c+1)-th

, . . . , al−1, al − 1︸ ︷︷ ︸
(l+1)-th

, . . . , ar − 1︸ ︷︷ ︸
(r+1)-th

, ar+1, . . .).

Thus we obtain E(a[l,r]) = E(a)[l+1,r+1] = E(a)[el(l),er(r)].

If l ≤ c ≤ r, then l = el(l), r + 1 = er(r) and

E(a[l,r]) = (. . . , al−1, al − 1︸ ︷︷ ︸
l-th

, . . . , ac − 1︸ ︷︷ ︸
c-th

, ac − 1︸ ︷︷ ︸
(c+1)-th

, . . . , ar − 1︸ ︷︷ ︸
(r+1)-th

, ar+1, . . .).

This implies E(a[l,r]) = E(a)[l,r+1] = E(a)[el(l),er(r)].

If l ≤ r < c, then l = el(l), r = er(r) and

E(a[l,r]) = (. . . , al−1, al − 1︸ ︷︷ ︸
l-th

, . . . , ar − 1︸ ︷︷ ︸
r-th

, ar+1, . . . , ac︸︷︷︸
c-th

, ac︸︷︷︸
(c+1)-th

, . . .).

And, hence, we obtain E(a[l,r]) = E(a)[l,r] = E(a)[el(l),er(r)].

In all cases above, we have E(a[l,r]) = E(a)[el(l),er(r)] for −m < l ≤ r < n.

Hence, by d(E(Y )) = E(d(Y )) and (5.1), we obtain

d(Y )[l,r] ∈ Dm,n
(5.1)⇔ E(d(Y )[l,r]) ∈ Dm,n+1

⇔ E(d(Y ))[el(l),er(r)] ∈ Dm,n+1

⇔ d(E(Y ))[el(l),er(r)] ∈ Dm,n+1,

as desired.

Lemma 12. Let Y, Y ′ ∈ T (Ym,n). Assume that Y → Y ′ and E(Y ) ∈ T (Ym,n+1).

Then, E(Y ′) ∈ T (Ym,n+1) and E(Y )→ E(Y ′).

Proof. Since Y → Y ′, it follows from definition that

(a) there exists −m < l ≤ r < n such that d(Y )
l,r−→ d(Y ′) or

(b) there exist −m < l ≤ r < n and Y ′′ ∈ F(Ym,n) such that d(Y )
l,r−→

d(Y ′′)
n−m−r,n−m−l−−−−−−−−−−→ d(Y ′).

We give a proof only for the case (b); the proof for the case (a) is easier and entirely

similar.
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By Lemma 10, we have el(n−m− r) = n−m+ 1− er(r) and er(n−m− l) =

n−m+ 1− el(l). Thus we have

d(E(Y ))
el(l),er(r)−−−−−−→ d(E(Y ′′))

el(n−m−r),er(n−m−l)−−−−−−−−−−−−−−−→ d(E(Y ′))

by Lemma 11, which implies that E(Y )→ E(Y ′). Thus we have proved the lemma.

Let Y ′ ∈ T (Ym,n), and let Ym,n = Y0 −→ Y1 −→ · · · −→ Yk = Y ′ be a transition from

Ym,n to Y ′ in MHRG(m,n). Note that E(Y0) = E(Ym,n) = Ym,n+1 ∈ T (Ym,n+1).

Also, we see by Lemma 12 that for 0 ≤ p < k, if E(Yp) ∈ T (Ym,n+1), then E(Yp+1) ∈
T (Ym,n+1). Thus we obtain E(Y ′) ∈ T (Ym,n+1) by inductive argument. Therefore,

we obtain

E(T (Ym,n)) ⊂ T (Ym,n+1). (5.2)

Moreover, it is obvious from Lemma 12 that

E(O(Y )) ⊆ O(E(Y )) (5.3)

for Y ∈ T (Ym,n+1).

Lemma 13. It follows that dc(Y ) = dc+1(Y ) for all Y ∈ T (Ym,n+1).

Proof. Suppose, for a contradiction, that there exists Y ∈ T (Ym,n+1) such that

dc(Y ) 6= dc+1(Y ). Let V ⊂ T (Ym,n+1) be the subset of T (Ym,n+1) consisting of

elements Y ∈ T (Ym,n+1) such that dc(Y ) 6= dc+1(Y ); also, let Y0 ∈ V be such

that #(Y0) ≥ #(Y ) for all Y ∈ V. Since c ≥ 0 and (dc(Y0), dc+1(Y0)) satisfies the

adjacency requirement, we have

dc(Y0) = dc+1(Y0) + 1 and dc(Y0)↘ dc+1(Y0).

Since Y0 6= Ym,n+1, there exists Y1 ∈ T (Ym,n+1) such that Y1 → Y0. Note that

#(Y1) ≥ #(Y0), which implies that Y1 /∈ V by the maximality of Y0. Thus we have

dc(Y1) = dc+1(Y1) and dc(Y1) ↗ dc+1(Y1). By Lemma 8, we set that for p = 0, 1,

the number tp of boxes in Yp having the number α̂m,n = (m + n)/2 is equal to

dc(Yp) + dc+1(Yp). Thus, t1 − t0 is odd. If two hooks are removed in Y1 → Y0,

then the two hooks have the same multiset of numbers. Thus t1 − t0 is even, but

this contradicts the fact that t1 − t0 is odd. Consequently, one hook is removed in

Y1 → Y0. Hence

dc(Y0) = dc(Y1) and dc+1(Y0) = dc+1(Y1)− 1

by 0 ≤ dk(Y1) − dk(Y0) ≤ 1 for −m ≤ k ≤ n. Also, there exists c + 1 ≤ k =

k(Y1) < n + 1 such that d(Y1)
c+1,k−−−−→ d(Y0) and d(Y0)[n+1−m−k,c] /∈ Dm,n+1. Note

that n+ 1−m− (c+ 1) = c. By Lemma 7, we have

dn−m−k(Y1)↘ dn+1−m−k(Y1), dc(Y1)↗ dc+1(Y1), and dk(Y1)↘ dk+1(Y1).
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Now we choose Y1 such that k = k(Y1) is a maximum.

Suppose that Y1 = Ym,n+1. In this case, we have dp(Y1) ↗ dp+1(Y1) for −m ≤
p < n − m, and dp(Y1) ↘ dp+1(Y1) for n − m ≤ p ≤ n. Since c ≤ n − m, we

have dn−m−k(Y1) ↗ dn+1−m−k(Y1) and dn−m−k(Y0) ↗ dn+1−m−k(Y0) by Lemma

7. Thus we have d(Y0)[n+1−m−k,c] ∈ Dm,n+1 by Lemma 7, which is a contradiction.

Hence we obtain Y1 6= Ym,n+1. Then, there exists Y2 ∈ T (Ym,n+1) such that

Y2 → Y1. Note that dc(Y2) = dc+1(Y2) and dc(Y2)↗ dc+1(Y2).

Suppose that dn−m−k(Y2)↘ dn+1−m−k(Y2) and dk(Y2)↘ dk+1(Y2). By Lemma

7, we have d(Y2)[c+1,k] ∈ Dm,n+1. Let Y ′1 ∈ F(Ym,n+1) be the Young diagram whose

diagonal expression is equal to d(Y2)[c+1,k]; also, notice that dc(Y
′
1) 6= dc+1(Y ′1) and

dn−m−k(Y ′1) ↘ dn+1−m−k(Y ′1). Since d(Y ′1)[n+1−m−k,c] /∈ Dm,n+1, it follows that

Y ′1 ∈ O(Y2) and hence Y ′1 ∈ V. Since #(Y1) − #(Y0) = #(Y2) − #(Y ′1), we have

#(Y ′1) = #(Y2)−#(Y1) + #(Y0) > #(Y0) which contradicts the maximality of Y0.

Suppose that dn−m−k(Y2) ↘ dn+1−m−k(Y2) and dk(Y2) ↗ dk+1(Y2). If two

hooks are removed in Y2 → Y1, then there exist −m < l ≤ r < n and Y ′ ∈ F(Ym,n)

such that

d(Y2)
l,r−→ d(Y ′)

n+1−m−r,n+1−m−l−−−−−−−−−−−−−−→ d(Y1).

Since dk(Y2)↗ dk+1(Y2) and dk(Y1)↘ dk+1(Y1), we have

d(Y2)
k+1,r−−−−→ d(Y ′)

n+1−m−r,n−m−k−−−−−−−−−−−−→ d(Y1)

or

d(Y2)
l,n−m−k−−−−−−→ d(Y ′)

k+1,n+1−m−l−−−−−−−−−−→ d(Y1).

Thus we have dn−m−k(Y1) ↗ dn+1−m−k(Y1), another contradiction. Hence one

hook is removed in Y2 → Y1. Then there exist p ≥ k + 1 such that

d(Y2)
k+1,p−−−−→ d(Y1).

Note that d(Y1)[n+1−m−p,n−m−k] /∈ Dm,n+1, also, that

dn−m−p(Y2)↘ dn+1−m−p(Y2) and dp(Y2)↘ dp+1(Y2).

By Lemma 7, we have d(Y2)[c+1,p] ∈ Dm,n+1. Let Y ′1 ∈ F(Ym,n+1) be the Young

diagram whose diagonal expression is equal to d(Y2)[c+1,p]; notice that dc(Y
′
1) 6=

dc+1(Y ′1). Since d(Y ′1)[n+1−m−p,c] /∈ Dm,n+1, it follows that Y ′1 ∈ O(Y2). Hence

Y ′1 = d(Y2)[c+1,p] = (d(Y2)[k+1,p])[c+1,k] = Y0 which contradicts the maximality of

k.

Suppose that dn−m−k(Y2) ↗ dn+1−m−k(Y2) and dk(Y2) ↘ dk+1(Y2). If two

hooks are removed in Y2 → Y1, then there exist −m < l ≤ r < n and Y ′ ∈ F(Ym,n)

such that

d(Y2)
l,r−→ d(Y ′)

n+1−m−r,n+1−m−l−−−−−−−−−−−−−−→ d(Y1).



INTEGERS: 23 (2023) 20

Since dn−m−k(Y2)↗ dn+1−m−k(Y2) and dn−m−k(Y1)↘ dn+1−m−k(Y1), we have

d(Y2)
n+1−m−k,r−−−−−−−−→ d(Y ′)

n+1−m−r,k−−−−−−−−→ d(Y1)

or

d(Y2)
l,k−−→ d(Y ′)

n+1−m−k,n+1−m−l−−−−−−−−−−−−−−→ d(Y1).

Thus we have dk(Y1)↗ dk+1(Y1), another contradiction, hence one hook is removed

in Y2 → Y1. Consequently, there exist p ≥ n+ 1−m− k such that

d(Y2)
n+1−m−k,p−−−−−−−−→ d(Y1).

Note that d(Y1)[n+1−m−p,k] /∈ Dm,n+1 and dn−m−p(Y2)↘ dn+1−m−p(Y2), dp(Y2)↘
dp+1(Y2). Since dc(Y2) ↗ dc+1(Y2), we have p 6= c. By Lemma 7, we have

d(Y2)[c+1,max(p,n+1−m−p)] ∈ Dm,n+1. Also, notice that c+1 ≤ max(p, n+1−m−p)
since p 6= c. Let Y ′1 ∈ F(Ym,n+1) be the Young diagram whose diagonal

expression is equal to d(Y2)[c+1,max(p,n+1−m−p)]; note that dc(Y
′
1) 6= dc+1(Y ′1). Since

d(Y ′1)[min{p,n+1−m−p},c] /∈ Dm,n+1, it follows that Y ′1 ∈ O(Y2) and hence Y ′1 ∈ V.

If max(p, n + 1 − m − p) ≤ k, then #(Y1) − #(Y0) ≥ #(Y2) − #(Y ′1) and hence

#(Y ′1) ≥ #(Y2) − #(Y1) + #(Y0) > #(Y0). If max(p, n + 1 − m − p) > k, then

#(Y2)−#(Y1) > #(Y2)−#(Y ′1) and, hence, #(Y ′1) > #(Y1) > #(Y0). In any case,

we obtain #(Y ′1) > #(Y0), which contradicts the maximality of Y0.

Suppose that dn−m−k(Y2) ↗ dn+1−m−k(Y2) and dk(Y2) ↗ dk+1(Y2). Let Y ′1 ∈
O(Y2). If dn−m−k(Y ′1) ↘ dn+1−m−k(Y ′1) and dk(Y ′1) ↘ dk+1(Y ′1), then by Lemma

7, we have

d(Y2)
n+1−m−k,n−m−k−−−−−−−−−−−−−→ d(Y ′)

k+1,k−−−−→ d(Y ′1)

or

d(Y2)
k+1,k−−−−→ d(Y ′)

n+1−m−k,n−m−k−−−−−−−−−−−−−→ d(Y ′1)

for Y ′ ∈ F(Ym,n), which is a contradiction. Thus there exists no option Y ′1 ∈ O(Y2)

such that dn−m−k(Y ′1)↘ dn+1−m−k(Y ′1) and dk(Y ′1)↘ dk+1(Y ′1), which contradicts

Y2 → Y1. Thus we have proved Lemma 13.

Theorem 1. Let m,n ∈ N be such that m ≤ n and m + n is even. Then the

map E gives an isomorphism from MHRG(m,n) to MHRG(m,n + 1). Therefore,

for each Y ∈ T (Ym,n), it follows that G(Y ) = G(E(Y )). In particular, G(Ym,n) in

MHRG(m,n) is equal to G(Ym,n+1) in MHRG(m,n+ 1).

Proof. We have shown that the map E : T (Ym,n) → T (Ym,n+1) is injective (see

(5.2)) and E(O(Y )) ⊆ O(E(Y )) for Y ∈ T (Ym,n) (see (5.3)). Hence it remains to

show that E(O(Y )) ⊇ O(E(Y )) for Y ∈ T (Ym,n) and E(T (Ym,n)) = T (Ym,n+1).

We first show that E(O(Y )) ⊇ O(E(Y )). Let Y ∈ T (Ym,n), and let X ∈
O(E(Y )). There exists −m < l ≤ r < n such that

d(Y )
l,r−→ d(X) (a)
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or there exist −m < l ≤ r < n and X ′ ∈ F(Ym,n) such that

d(Y )
l,r−→ d(X ′)

n−m−r,n−m−l−−−−−−−−−−→ d(X). (b)

By Lemma 13, we have dc(E(Y ))↗ dc+1(E(Y )) and r 6= c.

In the first case (a), we get d(X)[n+1−m−r,n+1−m−l] /∈ Dm,n+1. If l = c+ 1, then

dc(X)↘ dc+1(X) and dc(X) > dc+1(X), which contradicts Lemma 13. If l 6= c+1,

then there exist −m < l0 ≤ r0 < n such that el(l0) = l, er(r0) = r. By Lemma 11,

we have

d(Y )[l0,r0] ∈ Dm,n and (d(Y )[l0,r0])[n−m−r0,n−m−l0] /∈ Dm,n.

Thus, the Young diagram Y ′ ∈ T (Ym,n), whose diagonal expression is equal to

d(Y )[l0,r0] ∈ Dm,n, is an option of Y . By the proof of Lemma 12, we obtain

X = E(Y ′) ∈ E(O(Y )).

Consider the second case (b). If l = c+ 1, then

d(X) = (d(E(Y ))[c+1,r])[n+1−m−r,c] = d(E(Y ))[n+1−m−r,r].

Then there exist −m < l0 ≤ r0 < n such that el(l0) = n+ 1−m− r, er(r0) = r. By

Lemma 10, we have

el(n−m− r0) = el(n−m− r0) + er(r0)− r = n−m+ 1− r = el(l0)

and hence l0 = n−m− r0. By Lemma 11, we have

d(Y )[l0,r0] ∈ Dm,n and (d(Y )[l0,r0])[n−m−r0,n−m−l0] = (d(Y )[l0,r0])[l0,r0] /∈ Dm,n.

Thus, the Young diagram Y ′ ∈ T (Ym,n), whose diagonal expression is equal to

d(Y )[l0,r0] ∈ Dm,n, is an option of Y . By the proof of Lemma 12, we obtain

X = E(Y ′) ∈ E(O(Y )). If l 6= c+ 1, then there exist −m < l0 ≤ r0 < n such that

el(l0) = l, er(r0) = r. By Lemma 11, we have

d(Y )[l0,r0] ∈ Dm,n and (d(Y )[l0,r0])[n−m−r0,n−m−l0] ∈ Dm,n.

Thus, the Young diagram Y ′ ∈ T (Ym,n), whose diagonal expression is equal to

(d(Y )[l0,r0])[n−m−r0,n−m−l0] ∈ Dm,n, is an option of Y . By the proof of Lemma

12, we obtain X = E(Y ′) ∈ E(O(Y )). In any case, we obtain X ∈ E(O(Y )), as

desired.

We next show that E(T (Ym,n)) = T (Ym,n+1). Let X ′ ∈ T (Ym,n+1), and let

Ym,n+1 = X0 −→ X1 −→ · · · −→ Xk = X ′ be a transition from Ym,n+1 to X ′ in

MHRG(m,n + 1). We show by induction on k that X ′ ∈ E(T (Ym,n)). If k = 0,

then X ′ = Ym,n+1 = E(Ym,n) ∈ E(T (Ym,n)). Assume that k > 0; note that

Xk−1 ∈ E(T (Ym,n)) by the induction hypothesis. Let X ′k−1 ∈ T (Ym,n) be such
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that Xk−1 = E(X ′k−1). Since E(O(X ′k−1)) = O(E(X ′k−1)) = O(Xk−1) as shown

above, we get

X ′ = Xk ∈ O(Xk−1) = E(O(X ′k−1)) ⊂ E(T (Ym,n)),

as desired. Therefore, we conclude that E(T (Ym,n)) ⊃ T (Ym,n+1) and hence

E(T (Ym,n)) = T (Ym,n+1). This completes the proof of Theorem 1.

6. Sprague-Grundy Values for MHRG for m = 1 and m = 2

6.1. Values for MHRG(1, n)

Theorem 2. Let m = 1 and n ∈ N. In MHRG(1, n),

T (Y1,n) =

{
F(Y1,n) if n is odd,

F(Y1,n) \ {Y1,n2 } if n is even.
.

Moreover, for 0 ≤ l ≤ n such that Y1,l ∈ T (Y1,n),

G(Y1,l) =


l if n is odd,

l if n is even and l < n/2,

l − 1 if n is even and n/2 < l.

.

In particular,

G(Y1,n) =

{
n if n is odd,

n− 1 if n is even.
.

Proof. By Theorem 1, it suffices to show the assertion for the case that n is odd.

We set k = (n + 1)/2 ∈ N. We see that for 0 ≤ l ≤ n, the unimodal numbering

of Y1,l ∈ F(Y1,n) is as follows:

1 2 · · · l−1 l if 0 ≤ l ≤ k,

1 2 · · · k−1 k k−1 · · · n+2−l n+1−l if k < l ≤ n.

By this fact, we deduce that in MHRG(1, n) (with odd n), the operation removing

two hooks never takes place. Hence, we obtain O(Y1,l) = {Y1,i | 0 ≤ i < l} for

all 0 ≤ l ≤ n. The assertion of the theorem follows immediately from the last

statement and the definition of the G-value.
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6.2. Values for MHRG(2, n)

Let m = 2 and n ≥ 2. Recall that Y = (λ1, λ2) denotes the Young diagram

having λ1 boxes in the first row and λ2 boxes in the second row. If n is even, then

MHRG(2, n) is isomorphic to MHRG(2, n+ 1) (see Theorem 1). Thus it suffices to

study the case in which n is even; we set n′ := n/2 ∈ N.

Lemma 14. Let (λ1, λ2) ∈ F(Y2,2n′) and µ1, µ2 ∈ N0 with 2n′ ≥ µ1 ≥ µ2 ≥ 0.

Then (λ1, λ2) = (µ1, µ2) if and only if

dµ1−1(Y )↘ dµ1
(Y ), dµ2−2(Y )↘ dµ2−1(Y ),

and

dk−1(Y )↗ dk(Y )

for −2 < k ≤ 2n′ = n with k 6= µ1, µ2 − 1.

Proof. If λ2 = 0, then (λ1, 0) = (µ1, µ2) if and only if µ2 = 0, d−1(Y ) = 0,

dk(Y ) = 1 for 0 ≤ k < µ1, and dk(Y ) = 0 for µ1 ≤ k < 2n′. The latter is

equivalent to dµ1−1(Y ) ↘ dµ1
(Y ), dµ2−2(Y ) ↘ dµ2−1(Y ), and dk−1(Y ) ↗ dk(Y )

for −2 < k ≤ 2n′ = n with k 6= µ1, µ2 − 1.

If λ2 > 0, then (λ1, λ2) = (µ1, µ2) if and only if d−1(Y ) = 1, dk(Y ) = 2 for

0 ≤ k < µ2 − 1, dk(Y ) = 1 for µ2 − 1 ≤ k < µ1, and dk(Y ) = 0 for µ1 ≤ k <

2n′. The latter is equivalent to dµ1−1(Y ) ↘ dµ1
(Y ), dµ2−2(Y ) ↘ dµ2−1(Y ), and

dk−1(Y )↗ dk(Y ) for −2 < k ≤ 2n′ = n with k 6= µ1, µ2 − 1.

Thus we have proved the lemma.

Lemma 15. Let Y = (λ1, λ2) ∈ F(Y2,2n′) and (i, j) ∈ Y . Also, set

Y ′ = (λ′1, λ
′
2) = Y \ hY (i, j).

Then, λ′1 + λ′2 = 2n′ if and only if there exists a box (i′, j′) ∈ Y ′ such that

Aα2,n
(hY (i, j)) = Aα2,n

(hY ′(i
′, j′)). In this case, Y ′′ := Y ′ \ h′Y (i′, j′) is equal

to (2n′ − λ2, 2n′ − λ1).

Proof. We first show the “if” part. By Lemma 4, there exist −2 < l, r < 2n′ such

that d(Y )
l,r−→ d(Y ′). If there exists a box (i′, j′) ∈ Y ′ such that Aα2,n(hY (i, j)) =

Aα2,n(hY ′(i
′, j′)), then it follows from Lemma 9 that d(Y ′)[2n′−2−r,2n′−2−l] ∈ D2,2n′ .

Note that 2n′− 2− l+ 1 6= l. By Lemmas 7 and 14, the pair (r, 2n′− 2− l) is equal

to (λ1 − 1, λ2 − 2) or (λ2 − 2, λ1 − 1), and hence

λ′1 + λ′2 = (λ1 + λ2)− (r − l + 1) = (λ1 + λ2)− (2− 2n′ + λ1 − 1 + λ2 − 2 + 1)

= (λ1 + λ2)− (2n′ + λ1 + λ2) = 2n′.
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We next show the “only if” part. As above, assume that d(Y )
l,r−→ d(Y ′). If

λ′1 + λ′2 = 2n′, then

dλ′1−1(Y ′)↘ dλ′1(Y ′), d2n′−λ′1−2(Y ′)↘ d2n′−λ1−1(Y ′),

and

dk−1(Y ′)↗ dk(Y ′)

for −2 < k ≤ 2n′ with k 6= λ′1, 2n
′ − λ′1 − 1. By Lemma 7, we have l = λ′1 or

l = 2n′−λ′1− 1. If l = λ′1, then r 6= 2n′−λ′1− 2 and hence 2n′− 2− r 6= λ′1. Thus,

d(Y ′)[2n′−2−r,2n′−2−l] = d(Y ′)[2n′−2−r,2n′−2−λ′1] ∈ D2,2n′ .

If l = 2n′ − λ′1 − 1, then r 6= λ′1 − 1 and hence 2n′ − 2− r 6= 2n′ − 1− λ′1. Thus,

d(Y ′)[2n′−2−r,2n′−2−l] = d(Y ′)[2n′−2−r,λ′1−1] ∈ D2,2n′ .

In both cases, we have d(Y ′)[2n′−2−r,2n′−2−l] ∈ D2,2n′ , which implies that there

exists a box (i′, j′) ∈ Y ′ such that Aα2,n
(hY (i, j)) = Aα2,n

(hY ′(i
′, j′)) (see Lemma

9).

Finally, let us show that Y ′′ := Y ′ \hY ′(i′, j′) is equal to (2n′−λ2, 2n′−λ1). By

Lemma 7, we have

d(Y )
l,r−→ d(Y ′)

2n′−2−r,2n′−2−l−−−−−−−−−−−→ d(Y ′′),

and

dl−1(Y ′′)↘ dl(Y
′′), d2n′−2−r−1(Y ′′)↘ d2n′−2−r(Y

′′),

and

dk(Y ′′)↗ dk(Y ′′)

for −2 < k ≤ 2n′ with k 6= l, 2n′ − 2− r. As seen above, the pair (r, 2n′ − 2− l) is

equal to (λ1− 1, λ2−2) or (λ2− 2, λ1−1). If (r, 2n′−2− l) = (λ1−1, λ2− 2), then

l = 2n′ − λ2 > 2n′ − 1− λ1 = 2n′ − 2− l.

Otherwise, if (r, 2n′ − 2− l) = (λ2 − 2, λ1 − 1), then

l = 2n′ − 1− λ1 < 2n′ − λ2 = 2n′ − 2− l.

In both cases, we get

d2n′−2−λ1(Y ′′)↘ d2n′−1−λ1(Y ′′), d2n′−λ2−1(Y ′′)↘ d2n′−λ2(Y ′′),

and

dk(Y ′′)↗ dk(Y ′′)

for −2 < k ≤ 2n′ with k 6= 2n′ − 1 − λ1 and k 6= 2n′ − λ2. Hence we obtain

Y ′′ = (2n′ − λ2, 2n′ − λ1) by Lemma 14, as desired.
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For Y ∈ F(Y2,2n′), we set OH(Y ) := {Y \ hY (i, j) | (i, j) ∈ Y }. If Y = (λ1, λ2),

then

OH(Y ) = {(λ′1, λ2) | λ2 ≤ λ′1 < λ1} ∪ {(λ1, λ′2) | 0 ≤ λ′2 < λ2}
∪ {(λ2 − 1, λ′1) | 0 ≤ λ′1 < λ2}.

By Lemma 15, we can easily show the following lemma.

Lemma 16. In MHRG(2, 2n′),

T (Y2,2n′) = F(Y2,2n′) \ {(λ′1, λ′2) ∈ F(Y2,2n′) | λ′1 + λ′2 = 2n′}.

Moreover, for Y = (λ1, λ2) ∈ F(Y2,2n′),

(1) if λ1 + λ2 < 2n′ , then O(Y ) = OH(Y );

(2) if λ1 + λ2 > 2n′ , then O(Y ) = OH(Y ) \ {(λ′1, λ′2) ∈ F(Y2,2n′) | λ′1 + λ′2 =

2n′} ∪ {(2n′ − λ2, 2n′ − λ1)}.

By Lemma 16, the G-value of Y = (λ1, λ2) ∈ T (Y2,2n′) with λ1 + λ2 < n = 2n′

is equal to the G-value of the game position corresponding to Y in the Sato–Welter

game (see, e.g., [5, Theorem 2]). For later use, we list those Y = (λ1, λ2) ∈ T (Y2,2n′)

with λ1 + λ2 < 2n′ whose G-values are 0, 1, or 2.

G(Y ) = 0 G(Y ) = 1 G(Y ) = 2

(2i, 2i)
(1 + 4i, 4i)

(2 + 4i, 1 + 4i)
(2 + 4i, 4i)

(1 + 4i, 1 + 4i)

Table 3: Y = (λ1, λ2) ∈ F(Y2,2n′) with λ1 + λ2 < 2n′ whose G-values are 0, 1, or 2.

Theorem 3. As above, assume that n is even, and set n′ = n/2. In MHRG(2, 2n′),

the list of those Y = (λ1, λ2) ∈ F(Y2,2n′) with λ1 +λ2 > 2n′ whose G-values are 0,1

or 2 is given by Table 4.

Proof. We give a proof only for the case of n′ = 4n′′ for n′′ ∈ N; the proofs of the

cases n′ = 4n′′ + 1, 4n′′ + 2, 4n′′ + 3 for n′′ ∈ N0 are similar. We set

Gk := {(λ1, λ2) ∈ T (Y2,2n′) | λ1 + λ2 > 2n′,G((λ1, λ2)) = k}

for k ∈ N0.

First, we determine G0. Let Y = (λ1, λ2) ∈ T (Y2,2n′) with λ1 + λ2 > 2n′. If

λ2 < n′ and λ2 is even (resp. odd), then we deduce that Y ′ = (λ2, λ2) (resp.

Y ′ = (λ2− 1, λ2− 1)) is contained in O(Y ). Since G(Y ′) = 0 by Table 3, we obtain

Y /∈ G0.
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n′ G(Y ) = 0 G(Y ) = 1 G(Y ) = 2

4n′′ (n′ + 1 + 4i, n′ + 4i)
(n′ + 2 + 4i, n′ + 1 + 4i)

(n′ + 2, n′)
(n′ + 1, n′ + 1)

(n′ + 4 + 2i, n′ + 4 + 2i)

(n′ + 2, n′ + 2)
(n′ + 3, n′)

(n′ + 4, n′ + 1)
(n′ + 7 + 4i, n′ + 6 + 4i)
(n′ + 8 + 4i, n′ + 7 + 4i)

4n′′ + 1
(n′ + 2 + 4i, n′ + 1 + 4i)
(n′ + 3 + 4i, n′ + 2 + 4i)

(n′ + 2 + 2i, n′ + 2i)

(n′ + 1, n′)
(n′ + 2, n′ − 1)
(n′ + 3, n′ + 1)

(n′ + 5 + 2i, n′ + 5 + 2i)

4n′′ + 2
(n′ + 1 + 4i, n′ + 4i)

(n′ + 2 + 4i, n′ + 1 + 4i)
(n′ + 2 + 2i, n′ + 2 + 2i)

(n′ + 3 + 4i, n′ + 2 + 4i)
(n′ + 4 + 4i, n′ + 3 + 4i)

4n′′ + 3
(n′ + 2 + 4i, n′ + 1 + 4i)
(n′ + 3 + 4i, n′ + 2 + 4i)

(n′ + 1 + 2i, n′ + 1 + 2i)

(n′ + 4 + 8i, n′ + 1 + 8i)
(n′ + 5 + 8i, n′ + 2 + 8i)
(n′ + 6 + 8i, n′ + 3 + 8i)
(n′ + 7 + 8i, n′ + 4 + 8i)

Table 4: Y = (λ1, λ2) ∈ F(Y2,2n′) with λ1 + λ2 > 2n′ whose G-values are 0, 1, or 2.

Now, we see by Lemma 16 that

O((n′ + 1, n′)) =
(
{(n′, n′)} ∪ {(n′ + 1, λ′2) | 0 ≤ λ′2 < n′}

∪ {(n′ − 1, λ′1) | 0 ≤ λ′1 < n′}
)

\ {(λ′1, λ′2) | λ′1 + λ′2 = 2n′} ∪ {(n′, n′ − 1)}
= {(n′ + 1, λ′2) | 0 ≤ λ′2 < n′ − 1}
∪ {(n′ − 1, λ′1) | 0 ≤ λ′1 < n′} ∪ {(n′, n′ − 1)}.

Note that n′ = 4n′′ is even. By Table 3 and the argument above, it can be seen that

O((n′ + 1, n′)) has no position whose G-value is 0. Thus we get G((n′ + 1, n′)) = 0.

If

Y ∈ {(n′ + 1, n′ + 1)} ∪ {(λ′1, n′) | n′ + 2 ≤ λ′1 ≤ 2n′}
∪ {(λ′1, n′ + 2) | n′ + 2 ≤ λ′1 ≤ 2n′},

then (n′ + 1, n′) ∈ O(Y ), which implies that Y /∈ G0.

Similarly, we see by Lemma 16 that

O((n′ + 2, n′ + 1)) =
(
{(n′ + 1, n′ + 1)} ∪ {(n′ + 2, λ′2) | 0 ≤ λ′2 < n′ + 1}

∪ {(n′, λ′1) | 0 ≤ λ′1 < n′ + 1}
)

\ {(λ′1, λ′2) | λ′1 + λ′2 = 2n′} ∪ {(n′ − 1, n′ − 2)}
= {(n′ + 1, n′ + 1)}

∪
(
{(n′ + 2, λ′2) | 0 ≤ λ′2 < n′ + 1} \ {(n′ + 2, n′ − 2)}

)
∪ {(n′, λ′1) | 0 ≤ λ′1 < n′} ∪ {(n′ − 1, n′ − 2)}.
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By Table 3 and the argument above, we deduce that O((n′ + 2, n′ + 1)) has no

position whose G-value is 0. Thus we obtain G((n′ + 2, n′ + 1)) = 0. If

Y ∈ {(n′ + 2, n′ + 2)} ∪ {(λ′1, n′ + 1) | n′ + 3 ≤ λ′1 ≤ 2n′}
∪ {(λ′1, n′ + 3) | n′ + 3 ≤ λ′1 ≤ 2n′},

then (n′ + 2, n′ + 1) ∈ O(Y ), which implies that Y /∈ G0. Therefore, for Y =

(λ1, λ2) ∈ F(Y2,2n′) with n′ ≤ λ2 ≤ n′ + 3 and λ2 ≤ λ1 ≤ 2n′,

Y ∈ G0 if and only if Y = [(n′ + 1, n′), (n′ + 2, n′ + 1)]. (6.1)

Let i ∈ N with n′ + 4 + 4i ≤ 2n′. By Lemma 16,

(n′ + 4 + 4i, n′ + 4 + 4i)→ (n′ − 4− 4i, n′ − 4− 4i).

Since

G((n′ − 4− 4i, n′ − 4− 4i)) = G((4n′′ − 4− 4i, 4n′′ − 4− 4i)) = 0

by Table 3, we obtain G((n′ + 4 + 4i, n′ + 4 + 4i)) 6= 0. Furthermore, in the same

way that (6.1) was obtained, it can be verified that for Y = (λ1, λ2) ∈ F(Y2,2n′)

with n′ + 4i ≤ λ2 ≤ n′ + 3 + 4i and λ2 ≤ λ1 ≤ 2n′, Y ∈ G0 if and only if

Y = [(n′ + 1 + 4i, n′ + 4i), (n′ + 2 + 4i, n′ + 1 + 4i)]. Therefore, we obtain

G0 =
(
{(n′ + 1 + 4i, n′ + 4i) | i ≥ 0} ∪ {(n′ + 2 + 4i, n′ + 1 + 4i) | i ≥ 0}

)
∩ F(Y2,2n′),

as desired.

Next, we determine G1. Let Y = (λ1, λ2) ∈ T (Y2,2n′) with λ1 + λ2 > 2n′.

Similar to the determination of G0, if λ2 < n′, then Y /∈ G1. By Table 3 and

G((n′ + 1, n′)) = 0, we deduce that O((n′ + 2, n′)) and O((n′ + 1, n′ + 1)) have no

position whose G-value is 1, but we have a position (n′ + 1, n′), whose G-value is 0.

Thus we get

G((n′ + 2, n′)) = G((n′ + 1, n′ + 1)) = 1.

If

Y ∈ {(λ′1, n′) | n′ + 2 ≤ λ′1 ≤ 2n′} ∪ {(λ′1, n′ + 1) | n′ + 1 ≤ λ′1 ≤ 2n′}
∪ {(λ′1, n′ + 2) | n′ + 1 ≤ λ′1 ≤ 2n′} ∪ {(λ′1, n′ + 3) | n′ + 2 ≤ λ′1 ≤ 2n′},

then (n′ + 2, n′) ∈ O(Y ) or (n′ + 1, n′ + 1) ∈ O(Y ), which implies that Y /∈ G1.

Therefore, for Y = (λ1, λ2) ∈ F(Y2,2n′) with n′ ≤ λ2 ≤ n′ + 3 and λ2 ≤ λ1 ≤ 2n′,

Y ∈ G1 if and only if Y = [(n′ + 2, n′), (n′ + 1, n′ + 1)].
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We see by Lemma 16 that

O((n′ + 4, n′ + 4)) =
(
{(n′ + 4, λ′2) | 0 ≤ λ′2 < n′ + 3}

∪ {(n′ + 3, λ′1) | 0 ≤ λ′1 < n′ + 3}
)

\ {(λ′1, λ′2) | λ′1 + λ′2 = 2n′} ∪ {(n′ − 4, n′ − 4)}.

By Table 3 and the argument above, we deduce that O((n′ + 2, n′ + 1)) has no

position whose G-value is 1, but we have a position (n′ − 4, n′ − 4), whose G-value

is 0. Thus we get G((n′ + 4, n′ + 4)) = 1. If

Y ∈ {(λ′1, n′ + 4) | n′ + 5 ≤ λ′1 ≤ 2n′}
∪ {(λ′1, n′ + 5) | n′ + 5 ≤ λ′1 ≤ 2n′},

then (n′ + 4, n′ + 4) ∈ O(Y ), which implies that Y /∈ G1. Therefore, for Y =

(λ1, λ2) ∈ F(Y2,2n′) with n′ + 4 ≤ λ2 ≤ n′ + 5 and λ2 ≤ λ1 ≤ 2n′, Y ∈ G1 if and

only if Y = (n′+ 4, n′+ 4). Similarly, for each i ∈ N (with n′+ 4 + 2i ≤ 2n′), it can

be verified that for Y = (λ1, λ2) ∈ F(Y2,2n′) with n′+ 4 + 2i ≤ λ2 ≤ n′+ 5 + 2i and

λ2 ≤ λ1 ≤ 2n′, Y ∈ G1 if and only if Y = (n′ + 4 + 2i, n′ + 4 + 2i). Therefore, we

obtain

G1 =
(
{(n′ + 2, n′), (n′ + 1, n′ + 1)} ∪ {(n′ + 4 + 2i, n′ + 4 + 2i) | i ≥ 0}

)
∩ F(Y2,2n′)

as desired.

Finally, we determine G2. Let Y = (λ1, λ2) ∈ T (Y2,2n′) with λ1 + λ2 > 2n′.

Similar to G0 and G1, we determine G2 as follows.

• If λ2 < n′, then Y /∈ G2.

• If n′ ≤ λ2 ≤ n′ + 5 and λ2 ≤ λ1 ≤ 2n′, then Y ∈ G1 if and only if Y =

[(n′ + 2, n′ + 2), (n′ + 3, n′), (n′ + 4, n′ + 1)].

• For each i ∈ N0 (with n′ + 6 + 4i ≤ 2n′), if n′ + 6 + 4i ≤ λ2 ≤ n′ + 9 + 4i and

λ2 ≤ λ1 ≤ 2n′, then Y ∈ G0 if and only if Y = [(n′+ 7 + 4i, n′+ 6 + 4i), (n′+

8 + 4i, n′ + 7 + 4i)].

Therefore, we obtain

G2 =
(
{(n′ + 2, n′ + 2), (n′ + 3, n′), (n′ + 4, n′ + 1)}

∪ {(n′ + 7 + 4i, n′ + 6 + 4i) | i ≥ 0}

∪ {(n′ + 8 + 4i, n′ + 7 + 4i) | i ≥ 0}
)
∩ F(Y2,2n′),

as desired. This completes the proof of Theorem 3.
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The following is an immediate consequence of Theorem 3, together with Theorem

1.

Corollary 1. Let n ≥ 2. In MHRG(2, n), the G-value of the starting position Y2,n
is given as follows:

G(Y2,n) =


3 if n = 2, 3,

2 if n ≡ 2, 3 mod 8,

1 otherwise.

Proof. We can easily calculate the G-value of the starting position in the cases that

n = 2, 3. In the other case, we can prove it by Theorem 3 and Theorem 1.

7. Relation between MHRG and HRG in Terms of Shifted Young
Diagrams

7.1. Shifted Young Diagrams

Shifted Young diagrams are described as follows (see [7] for additional details).

Let m ∈ N, and let λ1, . . . , λm ∈ N be such that λ1 > · · · > λm > 0. The set

S = (λ1, . . . , λm) := {(i, j) ∈ N2 | i ≤ j, 1 ≤ i ≤ m, 1 ≤ j ≤ λi} is called the

shifted Young diagram corresponding to (λ1, . . . , λm). An element of the shifted

Young diagram is called a box, and the shifted Young diagram is described in terms

of boxes as follows.

S = (7, 6, 4, 3, 2) =

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7)

(2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7)

(3, 3) (3, 4) (3, 5) (3, 6)

(4, 4) (4, 5) (4, 6)

(5, 5) (5, 6)

For i ∈ N, the subset {(i, j) | j ∈ N}∩S of S is called the i-th row of S. Similarly,

for j ∈ N, the subset {(i, j) | i ∈ N}∩S of S is called the j-th column of S. We call

h(S) := max{i | (i, j) ∈ S} the height of S.

For a shifted Young diagram S, let F(S) denote the set of all shifted Young

diagrams contained in S.
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7.2. Hooks of a Shifted Young Diagram

Definition 10. For a box (i, j) of a shifted Young diagram S, we define

armS(i, j) := {(i′, j′) ∈ S | i = i′, j < j′},
legS(i, j) := {(i′, j′) ∈ S | i < i′, j = j′},
tailS(i, j) := {(i′, j′) ∈ S | j + 1 = i′, j < j′},
hS(i, j) := {(i, j)} t armS(i, j) t legS(i, j) t tailS(i, j).

The set hS(i, j) is called the hook corresponding to the box (i, j).

Example 6. In the figures below, the shaded boxes form the hook corresponding

to the box v = (i, j).

(a):
v

(b):
v

(c):
v

Definition 11. For a box (i, j) of a shifted Young diagram S, we remove the hook

hS(i, j) corresponding to the box (i, j) as follows:

1. Remove all boxes in the hook hS(i, j).

2. Move each box (i′, j′) satisfying j + 1 > i′ > i and j′ > j to (i′ − 1, j′ − 1).

3. Move each box (i′, j′) satisfying i′ > j + 1 to (i′ − 2, j′ − 2).

Example 7. If we remove the hook corresponding to the box (2, 3) from the

shifted Young diagram S = (7, 6, 4, 3, 2), then we get S′ = (7, 4, 2).

→
↖ ↖
↖
↖ ↖
↖

→

Definition 12. A Hook Removing Game (HRG for short) in terms of shifted Young

diagrams is an impartial game. The rules of this game are as follows:

(HS1) Given a shifted Young diagram S, each player chooses a box (i, j) ∈ S, and

remove the hook hS(i, j) corresponding to the box (i, j) from S on his/her

turn.
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(HS2) The player who makes the empty shifted Young diagram ∅ wins.

We denote HRG (in terms of shifted Young diagrams) whose starting position is

a shifted Young diagram S by HRG(S). It is clear from the definition of HRG(S)

that F(S) is identical to the set of all positions in HRG(S).

Proposition 3. Let S = (λ1, λ2, . . . , λn) be a shifted Young diagram, and let T be

a shifted Young diagram containing S. The G-value of S in HRG(T ) is equal to

G(S) =
⊕

1≤i≤n

λi,

where
⊕

i ai denotes the nim-sum (the addition of numbers in binary form without

carrying) of all ai.

While this formula is (apparently) well-known by experts, will deduce it from

the results of [5], or by the fact that HRG(S) is isomorphic to Turning Turtles (for

Turning Turtles, see, e.g., [11, page 182]).

7.3. Diagonal Expression of a Shifted Young Diagram

We now describe the diagonal expression for shifted Young diagrams. Fix n ∈ N.

An element b ∈ Nn+1
0 is written as b = [b0, . . . , bn]. Also, we denote by SDn ⊂ Nn+1

0

the set of all elements b = [b0, . . . , bn] ∈ Nn+1
0 with bn = 0 satisfying

0 ≤ bk − bk+1 ≤ 1

for 0 ≤ k < n.

Denote by Sn the shifted Young diagram corresponding to (n, n−1, n−2, . . . , 2, 1),

and let S ∈ F(Sn). We set

dk = dk(S) := #{(i, j) ∈ S | j − i = k}

for k ∈ Z. Note that if k ≥ n, then dk = 0. As in Lemma 3, we deduce that

sd(S) = sdn(S) := [d0(S), . . . , dn(S)] ∈ SDn

for S ∈ F(Sn) and the fact that the map sd = sdn : F(Sn)→ SDn, S 7→ sd(S) is

bijective.

Definition 13. We call sd(S) = sdn(S) the diagonal expression of S ∈ F(Sn).

Let b = [b0, . . . , bn] ∈ SDn, b′ = [b′0, . . . , b
′
n] ∈ Nn+1

0 , and 0 ≤ l ≤ r < n. If

b′k =

{
bk − 1 if l ≤ k ≤ r,

bk otherwise,
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then we write b
l,r−→ b′. If

b′k =


bk − 2 if 0 ≤ k ≤ r′ < r,

bk − 1 if r′ < k ≤ r,
bk otherwise,

then we write b
0,r−−→ 0,r′−−→ b′ (or b

0,r′−−→ 0,r−−→ b′). Otherwise, if

b′k =


bk − 2 if 0 ≤ k ≤ r′ < r,

bk − 1 if r′ < k ≤ r,
bk otherwise,

then b′ ∈ SDn.

Lemma 17. Let S, S′ ∈ F(Sn). The following are equivalent.

(1) There exists a box (i, j) ∈ S such that S′ = S \ hS(i, j).

(2) There exists 0 ≤ l ≤ r < n such that sd(S)
l,r−→ sd(S′) or we have 0 ≤ r′ <

r < n such that sd(S)
0,r−−→ 0,r′−−→ sd(S′).

Let us explain the key point of a proof of the lemma by using some examples. Let

S ∈ F(Sn), and write sd(S) as sd(S) = [d0, . . . , dn] for S ∈ F(Sn). Let us consider

(1) =⇒ (2). If h(S) ≤ j, then the removed hook hs(i, j) is of the form either (b)

or (c) in Example 6. Thus, there exist 0 ≤ l ≤ r < n such that sd(S)
l,r−→ sd(S′).

For example, let S be as in Example 6, and let S′ = S \ hS(2, 6). Note that the

right-half of S is an (ordinary) Young diagram. Removing the hook hs(i, j) of this

form from S naturally corresponds to removing a hook from the Young diagram

(see [7, Chapter 4]).

S = → S′ =

In the diagonal expression, we see that

sd(S) = [5, 5, 4, 3, 2, 2, 1, 0], sd(S′) = [5, 4, 3, 2, 1, 1, 1, 0],

and hence sd(S)
1,5−−→ sd(S′).

If j < h(S), then the removed hook is of the form (a) in Example 6. In this case,

we deduce that sd(S)
0,r−−→ 0,r′−−→ sd(S′) for some 0 ≤ r′ < r < n. For example, let S

be as in Example 6, and let S′ = S \ hS(2, 3).
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S = → S′ =

In the diagonal expression, we see that

sd(S) = [5, 5, 4, 3, 2, 2, 1, 0], sd(S′) = [3, 3, 2, 2, 1, 1, 1, 0],

and hence sd(S)
0,5−−→ 0,2−−→ sd(S′).

The implication (2) =⇒ (1) can be verified as in Lemma 4.

Definition 14. A sequence (a−m, . . . , an) ∈ Dm,n is said to be symmetric if ai =

an−m−i for all −m ≤ i ≤ n.

Lemma 18.

(1) Let Y ∈ F(Yn,n). The sequence d(Y ) ∈ Dn,n is symmetric if and only if

Y ∈ T (Yn,n).

(2) Let Y ∈ F(Yn,n+1). The sequence d(Y ) ∈ Dn,n+1 is symmetric if and only if

Y ∈ T (Yn,n+1).

Proof. By Theorem 1, we need only to show part (1) since it is clear that for

Y ∈ T (Yn,n), d(Y ) is symmetric if and only if d(E(Y )) is symmetric. We show by

induction on #Y that if Y ∈ T (Yn,n), then d(Y ) = (d−n(Y ), . . . , dn(Y )) ∈ Dn,n is

symmetric. If Y = Yn,n, then

d(Yn,n) = (0, 1, . . . , n− 1, n, n− 1, . . . , 1, 0)

is symmetric. Assume that Y 6= Yn,n. Then there exists Ŷ ∈ T (Yn,n) such that

Ŷ → Y . Note that d(Ŷ ) = (d−n(Ŷ ), . . . , dn(Ŷ )) is symmetric by the induction

hypothesis, and dk−1(Ŷ )↗ dk(Ŷ ) if and only if d−k(Ŷ )↘ d−k+1(Ŷ ) for −n < k ≤
n. Then,

(i) there exist −n < l ≤ r < n such that d(Ŷ )
l,r−→ d(Y ), or

(ii) there exist −n < l ≤ r < n such that d(Ŷ )
l,r−→ d(Ŷ ′)

l′=−r,r′=−l−−−−−−−−→ d(Y ).

Let us consider case (i). Suppose that l 6= −r. Note that dl−1(Ŷ ) ↗ dl(Ŷ ),

d−l(Ŷ ) ↘ d−l+1(Ŷ ), dr(Ŷ ) ↘ dr+1(Ŷ ), and d−r−1(Ŷ ) ↗ d−r(Ŷ ). By Lemma 7,

we have

d−r−1(Y )↗ d−r(Y ) and d−l(Y )↘ d−l+1(Y ).
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Thus d(Y )[−r,−l] ∈ Dn,n by Lemma 9, but this is a contradiction. Hence we deduce

that l = −r. Then we have d(Ŷ )
−r,r−−−→ d(Y ). In this case, it is obvious that

d(Y ) ∈ Dn,n is symmetric.

Let us consider case (ii). We will show that dk(Y ) = d−k(Y ) for any −n < k < n.

Assume that l ≤ k ≤ r and −r ≤ k ≤ −l. In this case, we have

dk(Ŷ ) = dk(Ŷ ′) + 1 = dk(Y ) + 2.

Since l ≤ −k ≤ r and −r ≤ −k ≤ −l, we have

d−k(Ŷ ) = d−k(Ŷ ′) + 1 = d−k(Y ) + 2.

Thus we have

dk(Y ) = dk(Ŷ )− 2 = d−k(Ŷ )− 2 = d−k(Y ).

The proofs for the other cases are similar. Hence d(Y ) ∈ Dn,n is symmetric.

Next, we show that if d(Y ) = (d−n(Y ), . . . , dn(Y )) ∈ Dn,n is symmetric, then

Y ∈ T (Yn,n). Let

A := {0 ≤ i ≤ n− 1 | di = di+1 + 1}

and write it as A = {i1, i2, . . . , ik}. Then there exists a transition

Yn,n = Y0 −→ Y1 −→ Y2 −→ · · · −→ Yk−1 −→ Yk = Y

such that d(Yl−1)
−il,il−−−→ d(Yl) for 1 ≤ l ≤ k. Thus we obtain Y ∈ T (Yn,n), as

desired.

Let a = (a−n, an−1, . . . , a−1, ȧ0, a1, . . . , an, an+1) ∈ Dn,n+1. Assume that

â := [a1, a2, . . . , an, an+1] ∈ Nn+1
0 .

By the definition of Dn,n+1, we thus have â ∈ SDn.

Definition 15. The map A : T (Yn,n+1) → F(Sn) is defined as follows. If the

diagonal expression of Y ∈ T (Yn,n+1) is

d(Y ) = (a−n, an−1, . . . , a−1, ȧ0, a1, . . . , an, an+1),

then we define A(Y ) ∈ F(Sn) to be the shifted Young diagram in F(Sn) whose

diagonal expression is equal to

sd(A(Y )) = [a1, a2, . . . , an, an+1].

Lemma 19. Let Y ∈ T (Yn,n+1), and let Y ′ ∈ O(Y ). Also, set S := A(Y ) ∈ F(Sn).

Then there exists S′ ∈ O(S) such that A(Y ′) = S′.

Proof. Since Y ′ ∈ O(Y ), we see that
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(i) there exist −n < l ≤ r < n+ 1 such that d(Y )
l,r−→ d(Y ′), or

(ii) there exist −n < l ≤ r < n + 1 and Y ′′ ∈ F(Yn,n+1) such that d(Y )
l,r−→

d(Y ′′)
−r+1,−l+1−−−−−−−→ d(Y ′).

First, we consider case (i). By the proof of Lemma 18, we see that l = −r + 1

and hence d(Y )
−r+1,r−−−−−→ d(Y ′). In this case, we have dr−1(S) = dr(S) + 1. Let

S′ ∈ F(Sn) be such that sd(S)
0,r−1−−−−→ sd(S′). Then we deduce that A(Y ′) = S′.

Next, we consider case (ii). By the proof of Lemma 18, we see that l 6= −r + 1

and hence d(Y )[l,r], (d(Y )[l,r])[−r+1,−l+1] ∈ Dn,n+1.

Assume that 0 ≤ l ≤ r. In this case, we have dl−2(S) = dl−1(S) and dr−1(S) =

dr(S) + 1. Let S′ ∈ F(Sn) be such that sd(S)
l−1,r−1−−−−−→ sd(S′). Then we deduce

that A(Y ′) = S′.

Assume that l ≤ r ≤ 0. In this case, we have d−r−1(S) = d−r(S) and d−l(S) =

d−l+1(S) + 1. Let S′ ∈ F(Sn) be such that sd(S)
−r,−l−−−−→ sd(S′). Then we deduce

that A(Y ′) = S′.

Assume that l ≤ 0 < r. In this case, we have dr−1(S) = dr(S) + 1 and d−l(S) =

d−l+1(S) + 1. Let S′ ∈ F(Sn) be such that sd(S)
0,−l−−−→ 0,r−1−−−−→ sd(S′). Then we

deduce that A(Y ′) = S′.

Thus we have proved the lemma.

Let b = [b0, b1, . . . , bn−1, bn] ∈ SDn. Assume that

b̂ := (b−n, bn−1, . . . , b−1, ḃ0, b0, b1, . . . , bn−1, bn) ∈ N2n+2
0 .

By the definition of SDn, we have b̂ ∈ Dn,n+1.

Definition 16. The map B : F(Sn) → T (Yn,n+1) is defined as follows. If the

diagonal expression of Y ∈ F(Sn) is

sd(S) = [a0, a1, . . . , an−1, an].

then we define B(S) ∈ T (Yn,n+1) to be the rectangular Young diagram in T (Yn,n+1)

whose diagonal expression is equal to

d(B(S)) = (an, an−1, . . . , ȧ0, a0︸︷︷︸
1st

, a1, . . . , an−1, an︸︷︷︸
(n+1)-th

).

Lemma 20. Let S ∈ F(Sn), and let S′ ∈ O(S). Also, set Y := B(S) ∈ T (Yn,n+1).

Then there exists Y ′ ∈ O(Y ) such that B(S′) = Y ′.

Proof. Since S′ ∈ O(S), we see that

(i) there exist 0 ≤ l ≤ r < n such that sd(S)
l,r−→ sd(S′), or
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(ii) there exist 0 ≤ r′ < r < n such that sd(S)
0,r−−→ 0,r′−−→ sd(S′).

First, we consider case (i). Assume that l = 0. In this case, dr(S) = dr+1(S)+ 1.

Then, we have

dr+1(B(S)) = dr+2(B(S)) + 1, d−r−1(B(S)) + 1 = d−r(B(S)),

and hence

d(B(S))[−r,r+1] ∈ Dn,n+1

by Lemma 7. Let Y ′ ∈ O(Y ) be such that d(Y )
−r,r+1−−−−−→ d(Y ′). Then we deduce

that B(S′) = Y ′. Assume that 0 < l ≤ r. In this case, dl−1(S) = dl(S) and

dr(S) = dr+1(S) + 1. Then, we have

dl(B(S)) = dl+1(B(S)), d−l(B(S)) = d−l+1(B(S)),

dr+1(B(S)) = dr+2(B(S)) + 1, d−r−1(B(S)) + 1 = d−r(B(S)),

and hence

d(B(S))[l+1,r+1], (d(B(S))[l+1,r+1])[−r,−l] ∈ Dn,n+1

by Lemma 7. Let Y ′ ∈ O(Y ) be such that d(Y )
l+1,r+1−−−−−→ d(Y ′′)

−r,−l−−−−→ d(Y ′). Then

we deduce that B(S′) = Y ′.

Next, we consider case (ii). In this case, dr(S) = dr+1(S) + 1 and dr′(S) =

dr′+1(S) + 1. Then, we have

dr+1(B(S)) = dr+2(B(S)) + 1, d−r−1(B(S)) + 1 = d−r(B(S)),

dr′+1(B(S)) = dr′+2(B(S)) + 1, d−r′−1(B(S)) + 1 = d−r′(B(S)),

and hence, by Lemma 7, we have

d(B(S))[−r′,r+1], (d(B(S))[−r′,r+1])[−r,r′+1] ∈ Dn,n+1.

Let Y ′ ∈ O(Y ) be such that d(Y )
−r′,r+1−−−−−→ d(Y ′′)

−r,r′+1−−−−−→ d(Y ′). This implies that

B(S′) = Y ′.

Thus we have proved the lemma.

The next theorem follows from Lemmas 19 and 20.

Theorem 4. For n ∈ N, MHRG(n, n + 1) and HRG(Sn) are isomorphic. In

particular, G(Yn,n+1) in MHRG(n, n+ 1) is equal to G(Sn) in HRG(Sn).

Combining Proposition 3, Theorem 1, and Theorem 4, we obtain the following

corollary.
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Corollary 2. In MHRG(n, n) (resp. MHRG(n, n+ 1)), the G-value of the starting

position Yn,n (resp. Yn,n+1) is equal to

G(Yn,n) = G(Yn,n+1) =
⊕

1≤k≤n

k.

Example 8. Assume that n = 3. The G-value of Y3,4 =
3 3 2 1
2 3 3 2
1 2 3 3

is equal to

1⊕ 2⊕ 3 = 0.
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