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Abstract

Naika and Harishkumar (2022) defined the restricted cubic partition function @,(n),
which counts the number of /-regular cubic partitions of any positive integer n where
the first occurrence of each distinct odd part may be overlined, and proved infinite
families of congruences for the particular cases as(n) and @s(n). In this paper, we
extend and generalize some of the results of Naika and Harishkumar, and also prove
new congruences of as(n) for £ = 2k, 2k + 1,4k, 4k + 1,3,4,5,8,9, 16, where ¢ > 2
and k > 0 are integers.

1. Introduction

For any complex numbers w and ¢ (with |¢| < 1), define

o0

(@i @)oo = [T (1 = w). (1)

k=0
To be concise, for any positive integers u, we write
Gu = (4"1¢") oo

A partition of a positive integer n is a sequence of positive integers m; > mg >
<> my with n = Zle m;. If A(n) denotes the number of partitions of a positive
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integer n, then the generating function of A(n) is given by

For any integer ¢ > 2, a partition of a positive integer n is said to be f-regular if none
of its parts are divisible by £. If Ay(n) denotes the number of ¢-regular partitions of

n, then
= ge
Z Ae(n)q" = =.
ne0 g1

In [3], Chan studied the cubic partition of a positive integer n in which even parts
appear in two colors. If a(n) denotes the number of cubic partitions of a positive
integer n, then the generating function of a(n) [3] is given by

For example, the number of cubic partitions of n =4 is 9, namely
4y 4y 341, 2,4+ 20, 204+ 2p, 204+ 2, 2, +14+1, 2, +14+1, 1+1+1+1,

where suffixes r and b denote red and blue colors, respectively. For congruences and
other arithmetic properties of a(n) see [3, 4, 5, 6].

Recently, Naika and Harishkumar [10] defined the restricted cubic partition func-
tion @p(n), which counts the number of {-regular cubic partitions of n where the
first occurrence of each distinct odd part may be overlined. For example, as(5) = 18
with the relevant partitions 5, 5, 4, + 1, 4, +1, 4, +1, 4+ 1, 2, + 2, + 1, 2, +
2, +1, 204+ 2+ 1, 2+ 2+ 1, 2, +2,+1, 2, +2,+1, 2, +1+1+41, 2, +1+
141, 2p+1+1+41, 2,+1+1+41, 1+1+14+1+1, T+1+1+1+1, where
suffixes 7 and b denote red and blue colors, respectively. For any integer £ > 2, the
generating function for @,(n) [10] is given by

- 92929
— 2 440
ZGZ(n)qn = e (2)
~ 929492

Naika and Harishkumar [10] proved many infinite families of congruences modulo
powers of 2 and 3 for as(n), and modulo powers of 2 for @s(n). In this paper,
we extend and generalize some of the results of [10], and also establish some new
congruences of a;(n). In Section 3, we prove some new congruences of ay(n) for
0 =2k, 2k + 1,4k, 4k + 1,3,4,5,8,9,16, where ¢ > 2 and k > 0 are integers. To
prove our congruences, we will employ some theta-function and g¢-series identities
which are listed in Section 2.



2. Some Theta-Function and g-Series Identities

This section is devoted to record some g¢-series and theta-function identities. Ra-
manujan’s general theta-function f(z1,22) [2, Page 34, Equation 18.1] is defined
by

f(xlaxQ) = Z x?(7l+1)/2x2(n—1)/2, |£E1SU2‘ < 1.
The three significant special cases of f(x1,z2) are the theta-functions ¢(q), ¥(q),
and f(—q) [2, Page 36, Entry 22 (i), (ii), (iii)] defined by

> 2

b(g) i=fla,q%) = Y ¢""I2 = %7 3)
n=0

f(—q) = f(—q7 —q2) = Z (_1)nqn(3n+1)/2 =gq.

One can use basic g-operations to show that

93
g —q)e = T2 4
(=4 —@) oo o (4)

Lemma 1 ([7, Theorem 2.2]). For any prime p > 5, we have

(p—1)/2

a= > (—1)7 g +n)/2; (_ gBP*HErHDp) /2 q<3p2—(6r+1)p)/2)
=—(p—1)/2
r#(£p—1)/6
+ (_1)(ﬂtp—1)/6q(102—1)/249102
where
+p—1 (pg ), if p=1 (mod 6),
6 <_p6_ ), if p=—-1 (mod 6).

Furthermore, if

—=D) =), EP D
— — 6 )

then




Lemma 2 ([7, Theorem 2.1]). For any odd prime p, we have

(p—3)/2

2 2 2 _ 2 2
¥(q) = Z q(s +S)/2f <q(p +(25+1)p)/27 q(p (2s+1)p)/2> + q(p 1)/8w(qp ).
s=0
(s°+s) , (-1 (p—3)
Furthermore, 5 % 5 (mod p), when 0<s< 5
Lemma 3. We have
1 @ 9397
=55 T2 =, (5)
91 92916 9298
1 g 9395
— = + 4q , (6)
gt 9398 95"
5 2
2 9293 92916
91 = — 2=/, 7)
" g3gts gs (
2 2 2
92 _ 9699 + qgﬁ, (8)
g1 g3g18 g9
93 _ 9196916931 ,  969a91s (©)
g1 9598912948 93916924 ’
3 3 2.3
971 — 974 _ 3q9291227 (10)
gs g12 949s
6 3 2 9
b G0 g ohooth )
97 92912 9o
4 2 3
94 912918 9699936 96918936
=g t4 75 +2¢° 3 (12)
g1 93936 93918 93
g5 98950 gi’glogm 13
=3 43 ) (13)
g1 93940 9298920
g1 _ 9298950 _ 93940 (14)
g5 949%0940 989%0 7
3 2
99 _ G12918 9196936 (15)

9 B 9596936 93912 .

Identities (5), (6), (8), and (10) follow from (1.9.4), (1.10.1), (14.3.3), and
(22.1.13) of [9], respectively. Identity (13) is from [8]. Replacing g by —gq in (5),
(10), and (13) and then employing (4), we arrive at (7), (11), and (14), respectively.
Identity (9) is from [12], (12) is Lemma 2.6 of [1], and (15) is from [11].

The next lemma is a consequence of the binomial expansion and (1).

Lemma 4. For any positive integers k and m, and a prime p, we have

k—1

k
9bm =gb  (mod p*). (16)



3. Congruences for ag(n)

This section is devoted to proving congruences for @y(n). First, we define the
@

Legendre symbol () Let p be any odd prime and a be any integer relatively
p

prime to p. Then

a\ 1, if a is a quadratic residue of p,
p/) | —1, if aisa quadratic non-residue of p.

Theorem 5. We have the following statements.
(1) If ¢ = 2k and k > 1 are any integers, then
ar(dn+3)=0 (mod 4). (17)
(it) If t =2k +1 and k > 1 are any integers, then
ay(dn+2)=0 (mod 4). (18)
(#it) If ¢ = 4k and k > 0 are any integers, then
ap(dn+2)=0 (mod 4). (19)
(iv) If £ =4k +1 and k > 0 are any integers, then
ar(dn+3)=0 (mod 4). (20)

Proof. Employing (5) and (7) in (2), we obtain

) 7

_ no_ ¢
g ag(n)q™ = ngg + 2495 gae + QqZﬂ (mod 4). (21)
0 9i9ae 94

If ¢ = 2k, where k > 1 is any integer, then collecting the terms involving powers
of ¢ that are congruent to 1 modulo 2 from both sides of (21) and simplifying the
resulting equality yields

oo

Z @e(2n 4+ 1)¢" = 2¢5g2¢  (mod 4). (22)

n=0

Collecting the terms involving odd powers of ¢ from (22), we arrive at (17).

If ¢ = 2k + 1, where £ > 1 is any integer, then collecting the terms involving
powers of ¢ that are multiples of 2 from both sides of (21) and simplifying the
resulting equality yields

oo

_ 9494
ae(2n)q" = mod 4). 23
Z ¢(2n) 93920 ( ) (23)

n=0



Collecting the terms involving odd powers of ¢ from (23), we arrive at (18).

If ¢ = 4k, where k > 0 is any integer, then collecting the terms involving powers
of ¢ that are multiples of 2 from both sides of (21) and simplifying the resulting
equality yields

0 7
S a(2n)g = B o2k Bl (mod 4). (24)
= 9392t 92

Collecting the terms involving odd powers of ¢ from (24), we arrive at (19).

If ¢ = 4k + 1, where & > 0 is any integer, then collecting the terms involving
powers of g that are congruent to 1 modulo 2 from both sides of (21) and simplifying
the resulting equality yields

o0 7
Zﬁg(Zn +1)q" = 295920 + 2q2k@ (mod 4). (25)
92
n=0
Collecting the terms involving odd powers of ¢ from (25), we arrive at (20). O

—6
Theorem 6. Suppose p > 5 is any prime with () = —1. Then for any integers
p
6>0,n>0,and1 <t <p-—1, we have

- 10p%° — 1
Z as (8p25n + pg)q” = 69496 (mod 12), (26)
n=0
1 20+2 1
as <8p25+2n + 8p20 Tt + Opg) =0 (mod 12). (27)
Proof. Setting £ = 3 in (2), we obtain
o0 2
> as(n)g" = B2, (28)
ne0 919496

Employing (9) in (28) and collecting the terms involving powers of ¢ that are con-
gruent to 1 modulo 2 from both sides of the resulting equation, we obtain

3 as(2n + 1)q" = 28872 (29)
n=0 91
Utilizing (11) in (29), we obtain
o0 7,3 3, 3
3 as(2n + 1)q" = 29456 gy 9199012 (30)
ne0 92912 92

Collecting the terms involving powers of ¢ that are congruent to 1 modulo 2 from
both sides of (30) and simplifying the resulting equality yields

& 3 3
3 as(dn + 3)¢" = 6255 (31)
n=0 91



With the help of (16), Equation (31) can be written as

oo

Z as(4n + 3)q" 6929396 (mod 12).
n=0 gl

With the help of (11), Congruence (32) can be written as

0 6 6 2.4 2
Z (4n +3)q" = 69496 4 649196912 (104 12).
— 92912 92

Collecting the terms involving even powers of ¢ from (33), we obtain

Zag (8n+3)¢" = 69293 (mod 12).
n=0 196

With the help of (16), Congruence (34) can be written as

oo

Z (8n+ 3)¢" = 6gags (mod 12),

(32)

(35)

which is the 6 = 0 case of (26). Assume that (26) is true for § > 0. Employing

Lemma 1 in (26), we obtain

> 10p20 —1
> (s )

n=0

p—1)/2
6{ S (1) g (g2 O g2 -G n)

r=—(p-1)/2

2 A(£p-1)/6
N (1)<ip1>/6q<p21>/6g4p2]

(r-1)/2
X{ T (_1)yq3(3y2+y>f(_q3(3p2+<6y+1>p>7_q3(3p2—<6y+1>m)

y=—(p—1)/2

yA(Ep-1)/6

+(—1)(ip_1)/6q(p2_1)/4g6p2} (mod 12). (36)

Consider the congruence

2

232+ ) +3(3y> +y) =5 (p _1) (mod p),

12

which is identical to

(122 4+2)> +6(6y+1)> =0 (mod p).



—6
Since (p) = —1, the only solution of (37) is x = y = (&£p — 1)/6. Therefore,

collecting the terms involving q””*‘r’(pg’l)/12 from (36), dividing by q5(p2’1)/12, and
replacing ¢ by ¢'/?, we obtain

o 10 20+2 1
Z <81)2§Jr1 + ps)q" = 6gapgep (mod 12). (38)
n=0

Collecting the terms involving ¢P™ from (38) and replacing g by q'/?, we obtain

e 10 2042 _ 1
263 <8p25+2n + p3>qn = 6gsgs (mod 12),

which is the § + 1 case of (26). Thus, by employing induction, we complete the
proof of (26). Collecting the terms involving ¢P"** for 1 <t < p — 1 from (38), we
arrive at (27). O

Corollary 1. We have

a3(8n+5) =0 (mod 18), (39)
a3(16n+11) =0 (mod 12), (40)
a3(16n+15) =0 (mod 12). (41)

Proof. Collecting the terms involving even powers of ¢ from (30), we obtain

o0

Z (4n +1)q 29293. (42)
9 e

With the help of (16), Equation (42) can be written as

Zag (4n+1)q" = 292 (mod 18). (43)
n=0
Collecting the terms involving powers of ¢ that are congruent to 1 modulo 2 from
both sides of (43), we arrive at (39). Collecting the terms involving odd powers of
q from (35), we arrive at (40). Collecting the terms involving odd powers of ¢ from
(33), we obtain
929396
i

> as8n+7)q" =6 (mod 12). (44)
With the help of (16), Congruence (44) can be written as
> as(8n+7)g" = gi (mod 12). (45)
- 2

Collecting the terms involving odd powers of ¢ from (45), we arrive at (41). O



Remark 1. Congruences (40) and (41) are extensions of the congruences az(16n +
11) = 0 (mod 4) and a3(16n + 15) = 0 (mod 4) due to Naika and Harishkumar
[10], respectively.

-3

Theorem 7. Suppose p > 5 is any prime with () = —1. Then for any integers
p

0>0,n>0,and 1 <t<p-—1, we have

. — 26 4p26 -1 n
Z asz| 8p“°n + 3 q" =2g195 (mod 6), (46)
n=0
4 20+2 1
as <8p25+2n + 8p2 1t + L 3 ) =0 (mod 6).

Proof. Collecting the terms involving powers of ¢ that are multiples 2 from both
sides of (43), we obtain

a3(8n +1)¢" = 2g7  (mod 6). (47)

NE

n=0

With the help of (16), Congruence (47) can be written as
263(871 +1)¢" =2g193 (mod 6). (48)
n=0

Congruence (48) is the § = 0 case of (46). As one can now proceed via the same
argument used in our proof of Theorem 6, we omit the remaining details. O

Remark 2. Congruence (46) is a generalization of the following result of Naika
and Harishkumar [10]: for all n > 0 and § > 0,

- 4.5% —1
263 <8 - 52n, + 3)(]" = 2g193 (mod 3).
n=0

-2

Theorem 8. Suppose p > 5 is any prime with (> = —1. Then for any integers
p

6>20,n>0,and1 <t<p-—1, we have

- — 26 3p25 -1 n
z as| 4p”°n + )4 =2g19s (mod 4), (49)
n=0

— 2642 2641 3>t —1 —
ag| 4p™° T n +4pT°TE + 5 =0 (mod 4).

Proof. Setting ¢ =4 in (2), we obtain

o\ 9204916
E as(n)q" = . 50
"0 4( ) 9%98 ( )




10
Employing (5) in (50), we obtain
o0 4 3.3
_ n _ 9498 94916
> au(n)g" = =7 +2 : (51)
~ 93916 9393

Collecting the terms involving powers of ¢ that are congruent to 1 modulo 2 from
(51) and simplifying the resulting equality yields

c- 9593
as(2n + 1)g" = 2225, (52)
n=0 191
Using (6) in (52), we obtain
o0 12 7
- n g4 g8
as(2n+1)¢" = 2—— + 8q¢==. 53
2 ) 95'9s 95 (53)

n=0

Collecting the terms involving powers of ¢ that are divisible by 2 from (53) and
simplifying the resulting equality yields

Y aun + 1)t =292, (54)
0 91794

With the help of (16), Equation (54) can be written as
264(471 +1)¢" =2¢19s (mod 4),
n=0

which is the § = 0 case of (49). As one can now proceed via the same argument
used in our proof of Theorem 6, we omit the remaining details. O

Corollary 2. We have

as(4n+3)=0 (mod 8), (55)
(280 +4j+3)=0 (mod 56), for j=1,2,3,4,5,6, (56)
a4(36n+19) =0 (mod 24). (57)

Proof. Collecting the terms involving powers of ¢ that are congruent to 1 modulo
2 from both sides of (53) and simplifying the resulting equality yields

oo 7
Y au(an +3)¢" =84, (58)

n=0 91
Now (55) follows easily from (58). Using (16) with {p = 7,k = 1} in (58), we obtain
3 a(dn +3)¢" =872 (mod 56). (59)

g7

n=0



11

Collecting the terms involving powers of ¢ that are not divisible by 7 from (59), we
arrive at (56). Using (16) with {p = 3,k = 1} in (58), we obtain

e 2
3 a(dn +3)¢" =822 (1mod 24). (60)
n=0 9193

Using (12) in (60) and collecting the terms involving powers of ¢ that are congruent
to 1 modulo 3 from both sides of the resulting equation, we obtain

0 2.3.2
Y @120+ 7)g" = 8RIBAN2 (154 24), (61)

0 9798

Using (16) in (61), we obtain

- 9393912
D a(12n 4 T)g" =872 (mod 24). (62)
n=0 9296
Utilizing (8) in (62), we obtain
— 9391297 9391293
D (120 4 7)g" = 8T8 4 g2 R0 (1n0d 24). (63)
96936 96918

n=0

Collecting the terms involving powers of ¢ that are congruent to 1 modulo 3 from
both sides of (63), we arrive at (57). O

-3

Theorem 9. Suppose p > 5 is any prime with () = —1. Then for any integers
p

6>0,n>0,and1 <t<p-—1, we have

— 5p* — 2 _
> (mp%n + pg)q" =21’V %10(g) (mod 8),  (64)
n=0
= 26+2 26+1 5p*t? —2
as| 10p*°™n + 10p™° Tt + 3 =0 (mod 8), (65)
S 65p%° — 2 _
Soas (a0 2 ) = 4 g (mods), (69
n=0
65p*0+2 — 2
as (40p25+2n + 40p*+1t 4 p3) =0 (mod 8). (67)

Proof. Setting ¢ =5 in (2), we obtain

S 2
> as(n)g" = S0 (68)
0 9194910



12

Using (13) in (68) and collecting the terms involving powers of ¢ that are congruent
to 1 modulo 2 from both sides of the resulting equation, we obtain

S 9393
> a5 (2n + 1)g" = 222510 (69)
n=0 gl

With the help of (16), Equation (69) can be written as
oo
265(2n +1)¢" =2¢%, (mod 8). (70)
n=0

Collecting the terms involving powers of ¢ that are multiples of 5 from both sides
of (70) and simplifying the resulting equality yields

265(1071 +1)¢" =292 =2g; - 22 (mod 8). (71)
n=0

With the help of (3), Congruence (71) can be written as

o0

265(1071 +1)¢" =2¢1¢(q) (mod 8),

n=0

which is the § = 0 case of (64). The remaining proofs of Congruences (64) and (65)
are similar to the proofs of Congruences (26) and (27), respectively, and the desired
result can be obtained by appealing to Lemmas 1 and 2. As a result, we omit the
details.

Collecting the terms involving powers of ¢ that are multiples of 10 from both
sides of (70) and simplifying the resulting equality yields

> @5(20n 4 1)g" = 2g7  (mod 8). (72)
n=0

Substituting (7) in (72) and then collecting the terms involving powers of ¢ that
are congruent to 1 modulo 2 from both sides of the resulting equation, we obtain

- 9193
> a5(40n +21)g" =472 (mod 8).
n=0 94

Then, using (3), we get

oo

> @5(40n + 21)¢" = 4g19(¢*)  (mod 8),

n=0



13

which is the 6 = 0 case of (66). Now suppose that (66) holds for some § > 0.
Employing Lemmas 1 and 2 in (66), we obtain

e 20 9
Z as <4Op26n + Gop~ — 2 3 >q"
n=0
(p—1)/2 ) ) )
_ 4(_1)6&17—1)/6[ S (~1)7 g0/ (g s 2 _ (o (G 2)
z=—(p—1)/2
A (Ep-1)/6
N (_1)(ip—l)/eq(p2—1>/24gp2]
(p—3)/2
y [ S 2 (2ot q2<p2<2y+1>p>>+q<p21)/2¢(q4p2)] (mod 8).
y=0
(73)
Consider the congruence
3x2 + 9 p?—1
2 =1
( 5 > +2(y° +y) =13 ( 51 (mod p),
which is equivalent to
(6 +1)>+3(4y+2)°=0 (mod p). (74)

Since <_3) = —1, the only solution of (74) is z = (£p—1)/6 and y = (p — 1)/2.

p
Therefore, collecting the terms involving powers of ¢ that are congruent to
13(p? — 1)/24 modulo p from both sides of (73) and simplifying the resulting equal-
ity yields

— _ 25+1 65p>0+2 — 2 n (64+1)(£p—1)/6 4
> a5 40p nt——a—— J¢" =4(-1) P gp0(qP)  (mod 8). (75)
n=0

Collecting the terms involving powers of ¢ that are multiples p from both sides of
(75) and simplifying the resulting equality yields

— _ 25+2 65p>0+2 — 2 n (6+1)(x£p—1)/6 4

S (40240 4+ =2 ) = a(-1) a(a")  (mod 8),
n=0

which is the § + 1 case of (66). Thus, by employing induction, we complete the

proof of (66). Finally, collecting the terms involving ¢?"* for 1 < ¢ < p — 1 from

both sides of (75) yields (67). O
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Corollary 3. We have

a5(8n+7) =0 (mod 16), (76)
a5(20n+2j4+1)=0 (mod8), for j;=1,2,3,...,9. (77)

Proof. Employing (6) in (69) and then collecting the terms involving powers of ¢
that are congruent to 1 modulo 2 from both sides of the resulting equation, we

obtain
oo

2.4 .2
3 a5 (dn + 3)q" = 8245, (78)
n=0 g1

With the help of (16), Equation (78) can be written as

oo

91910
> as(4n+3)g" =8 492 (mod 16). (79)
2

n=0

Collecting the terms involving odd powers of ¢ from (79), we arrive at (76). Col-
lecting the terms involving powers of ¢ that are congruent to j modulo 10, where
j=1,2,3,...,9 from both sides of (70), we arrive at (77). O

Remark 3. Congruence (77) is an extension of congruence a5(40n +8j + 1) =0
(mod 8), where j =1,2,3,4 due to Naika and Harishkumar [10].

—15
Theorem 10. Suppose p > 5 is any prime with <> = —1. Then for any
p

integers § >0, n >0, and 1 <t <p-—1, we have

- 122p20+2 — 2
265 (16p25+2n + pg>qn = 2(_1)(6+1)(ip—1)/6gl¢(q20) (mod 4),
n=0
(80)
122 20+2 _ )
s <16p25+2n + 16p*° 1t 4 pg) =0 (mod 4). (81)
Proof. Setting ¢ =5 in (23), we obtain
o0
Y as2n)g" = 2920 (mod 4). (82)
=0 92910
Collecting the terms involving powers of ¢ that are multiples of 2 from (82), we
obtain -
3 as(dn)g" = 210 (mod 4). (83)
"0 9195
Employing (16) in (83), we obtain
3 as(n)g" = 9 (mod 4) (84)
9295
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Employing (14) in (84) and then collecting the terms involving powers of ¢ that are
congruent to 0 modulo 2 from both sides of the resulting equation, we obtain

Z as(8n)q" = 94910 (mod 4). (85)
9293920

Utilizing (5) in (85) and then collecting the terms involving powers of ¢ that are
congruent to 1 modulo 2 from both sides of the resulting equation, we obtain

Z (16n + 8)¢" = 2¢ 2% (mod 4). (36)
n—0 9195920

Utilizing (16) with {p = 2,k =1} in (86) and then applying (3), we obtain

oo

2
Z (16n + 8)q ZqQ% = 2¢2919(¢®) (mod 4). (87)

Applying Lemmas 1 and 2 into (87), we obtain

oo

> as(16n + 8)¢"

n=0

(p—1)/2
quz[ 3 (_1)xq<3x2+x)/2f(_q<3p2+<6x+1>p>/27_q<3p2—(6x+1)p)/2)

— )2
w#(£p—1)/6
4p— _
(1) P/ 1) 24 p]
(-3)/2 [
" { 3 q10<y2+y>f(qm<p2+(2y+1>p>7q10<pt<2y+1>p>)
y=0

+q20(p21)/8¢(q20192)] (mod 4). (88)

Consider the congruence

2 2_1
<3m +x)+10(y2+y)+2—61(p >+2 (mod p),

2 24

which is identical to

(6 +1)°+15(4y+2)>=0 (mod p). (89)

—15
Since (p) = —1, the only solution of (89) isz = (£p—1)/6 and y = (p — 1)/2.

Therefore, collecting the terms containing P’ 61’ ~1/24+2 from (88), dividing by
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qu(pQ_l)/M”, and replacing qu by ¢, we obtain

> as (16p2n + % (p* 1)+ 40) ¢" = 2(=1)FPD/00,4 () (mod 4). (90)

n=0
Tterating (90) by using Lemmas 1 and 2, bringing out the terms containing

2 - 2 - 2 2
gP 1P =1)/24 - Qividing by ¢%1P"~1/24 and replacing ¢”~ by ¢, we deduce that,
for integer § > 0

o0

122
> as (16}92%4— 3 (P 1) +40> q" = 2(—1)°E70/0g,4(¢*°)  (mod 4). (91)

n=0

Utilizing Lemmas 1 and 2 in (91) and collecting the terms containing
GPP L’ =1)/24 qividing by ¢61(®*~1/24 and replacing ¢ by ¢'/P, we obtain

- 122
265 <16p25+1n+3 (p26+2 - 1)+40> q" = 2(—1)CFTVEP=D/6g (¢2P) (mod 4).
n=0

(92)
Collecting the terms containing ¢*” from (92) and replacing ¢ by ¢'/?, we arrive at
(80). Collecting the terms involving ¢?"** for 1 <t < p— 1 from (92), we arrive at

(81). O
-3
Theorem 11. Suppose p > 5 is any prime with () = —1. Then for any
p
integers 0 >0, n >0, and 1 <t <p—1, we have
oo 1 20
Soas (a0 + BT g = - i) (mod a), (99
n=0
13 20+2 7
ag <4p25+2n + 4p? e 4 P 5 ) =0 (mod 4), (94)
- 19p?0 — 7
> s (4p25n + 7’6>qn = 4(-1)°P D% (g)g15 (mod 8),  (95)
n=0
19 20+2 _ 7
s <4p26+2n + 4p®° Tt 4 pﬁ) =0 (mod 8). (96)
Proof. Setting £ = 8 in (2), we obtain
oo 2 :
> as(n)g" = HRE2, (97)
vt 9194916

Utilizing (5) in (97), we obtain

o0 7
— 98932 9498916932
g as(n)q" = 2 T+ +2q 1 . (98)
=0 92949716 92
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Collecting the terms involving powers of ¢ that are not divisible by 2 from (98), we
obtain

— 1

Employing (6) in (99), we find that

— 91’916 9193916
> as(2n 4 1)q" = 220 + 8¢HEN0 (100)
ot 92" 98 92

Collecting the terms involving powers of ¢ that are divisible by 2 from (100) and
then simplifying, we obtain

[ee]
Y as(dn + 1)q _292 98. (101)
9 94

Employing (16) with {p = 2,k =1} in (101) and then using (3), we find that
(o)
3 as(4n +1)g" —29198 2019(¢")  (mod 4),

which is the § = 0 case of (93). The remaining proofs of Congruences (93) and (94)
are similar to the proofs of Congruences (66) and (67), respectively, and the desired
result can be obtained by appealing to Lemmas 1 and 2. As a result, we omit the
details. Collecting the terms involving powers of ¢ that are multiples of 2 from (98),
we obtain

> 7
= n 94916
g as(2n)q" = . (102)
— 919298

Employing (6) in (102) and then collecting the terms involving powers of ¢ that are
not multiples of 2 from both sides of the resulting equation, we obtain

Zas dn +2)q 4929498. (103)
Employing (16) in (103), we obtain
= 939398
D as(dn +2)¢" = 47222 (mod 8). (104)

g1

Using (16) in (104) and then employing (3), we obtain

Zag (An+2)q" = 492516 =49Y(q)g1s (mod 8),
n=0



18

which is the § = 0 case of (95). The remaining proofs of Congruences (95) and (96)
are similar to the proofs of Congruences (66) and (67), respectively, and the desired
result can be obtained by appealing to Lemmas 1 and 2. As a result, we omit the
details. O

—6

Theorem 12. Suppose p > 5 is any prime with () = —1. Then for any
p

integers 0 >0, n >0, and 1 <t <p—1, we have

— a5 L 2507 =T\ L o s(dpo1)/6 8
> as( *n+ = J¢" =8(-1) g(g”)  (mod 16),  (105)

n=0
2642 _

6

25p

7
s (4p25+2n + 4p* e 4+ ) =0 (mod 16). (106)

Proof. Collecting the terms involving powers of ¢ that are not divisible by 2 from
(100), we obtain
- 939395
D as(4n + 3)¢" = 872 (107)
91
Employing (16) with {p = 2,k =1} in (107), we obtain

Z as(4n + 3)q M (mod 16). (108)

Using (16) with {p = 2,k =1} in (108), we obtain
Zﬁg(4n +3)¢" =8g1g5  (mod 16). (109)

Again, using (16) with {p =2,k =1} in (109) and then applying (3), we obtain
3 as(dn + 3)¢" _ 91906 _ g g1(¢®)  (mod 16),

ne0 gs

which is the § = 0 case of (105). The remaining proofs of Congruences (105) and
(106) are similar to the proofs of Congruences (66) and (67), respectively, and the
desired result can be obtained by appealing to Lemmas 1 and 2. As a result, we

omit the details. O
-2
Theorem 13. Suppose p > 5 is any prime with () = —1. Then for any
p
integers 0 >0, n >0, and 1 <t <p—1, we have
- 19p%° — 4
ZEQ <8p2‘sn + pB) q" =2g1q1s (mod 4), (110)
n=0

19p26+2 _

[ (8p25+2n +8p20tlt 4+ 3

4) =0 (mod 4).
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Proof. Setting £ =9 in (2), we obtain

e 2
> aa(n)g" = LR (111)
ne0 9194918

Using (15) in (111) and then collecting the terms involving powers of ¢ that are
congruent to 1 modulo 2 from both sides of the resulting equation, we obtain

oo 2
3 ag(2n + 1)¢" = 2295678, (112)
n=0 91
Using (6) in (112) and simplifying, we obtain
o0 14 2 2.2 4
S ag(2n + 1)g" = 2956918 | g IATISINS (113)
ne0 92798 92

Collecting the terms involving powers of ¢ that are multiples of 2 from (113), we
obtain

S 95939
> ag(4n + 1)q" = 22227 (114)
n=0 9194

Using (16) in (114), we obtain

Y ag(dn + 1)g" =29 (mod 4). (115)
9
n=0

Using (15) in (115) and then collecting the terms involving powers of ¢ that are not
divisible by 2 from both sides of the resulting equation, we obtain

& 2 2
3 g (8n + 5)q" = 22898 (1mod 4), (116)

n=0 9196

With the help of (16), Congruence (116) can be written as

a9(8n +5)¢" = 291918 (mod 4). (117)

n=0

Congruence (117) is the § = 0 case of (110). As one can now proceed via the same
argument used in our proof of Theorem 6, we omit the remaining details. O]

Corollary 4. We have
ag(4n+3) =0 (mod 8). (118)

Proof. Collecting the terms involving odd powers of ¢ from (113), we arrive at
(118). O
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-2

Theorem 14. Suppose p > 5 is any prime with () = —1. Then for any
p

integers § >0, n >0, and 1 <t <p-—1, we have

o0

11p» -5
2616 <4p25n + p2>q" =8¢1932 (mod 16), (119)

n=0

— 26+2 26+1 1 2042 _ 5
a6 | 4p=° T n + 4p° Tt +

2

1 ) =0 (mod 16).

Proof. Setting ¢ = 16 in (2), we obtain

> 2
> ds(n)g" = HHOE, (120)
=0 9194932

Employing (5) in (120) and then collecting the terms involving powers of ¢ that are
not divisible by 2 from both sides of the resulting equation, we obtain

& 4
3 as(2n + 1)g" = 2729892, (121)
ne0 9194916

Employing (6) in (121) and then collecting the terms involving powers of ¢ that are
not divisible by 2 from both sides of the resulting equation, we obtain

s 8
3 ars(an + 3)g" = 82900, (122)
n=0 9198
Utilizing (16) with {p = 2,k = 1}, Equation (122) can be written as
> ais(dn +3)q" = 8g1g5  (mod 16). (123)
n=0
Utilizing (16) with {p = 2,k = 1}, Congruence (123) can be written as
> a6(4n + 3)q" =8g1gs2  (mod 16). (124)
n=0

Congruence (124) is the § = 0 case of (119). As one can now proceed via the same
argument used in our proof of Theorem 6, we omit the remaining details. O]
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