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Abstract

Naika and Harishkumar (2022) defined the restricted cubic partition function aℓ(n),

which counts the number of ℓ-regular cubic partitions of any positive integer n where

the first occurrence of each distinct odd part may be overlined, and proved infinite

families of congruences for the particular cases a3(n) and a5(n). In this paper, we

extend and generalize some of the results of Naika and Harishkumar, and also prove

new congruences of aℓ(n) for ℓ = 2k, 2k + 1, 4k, 4k + 1, 3, 4, 5, 8, 9, 16, where ℓ > 2

and k > 0 are integers.

1. Introduction

For any complex numbers ω and q (with |q| < 1), define

(ω; q)∞ :=

∞∏
k=0

(1− ωqk). (1)

To be concise, for any positive integers u, we write

gu := (qu; qu)∞.

A partition of a positive integer n is a sequence of positive integers m1 ≥ m2 ≥
· · · ≥ mk with n =

∑k
i=1mi. If λ(n) denotes the number of partitions of a positive
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integer n, then the generating function of λ(n) is given by

∞∑
n=0

λ(n)qn =
1

g1
.

For any integer ℓ ≥ 2, a partition of a positive integer n is said to be ℓ-regular if none

of its parts are divisible by ℓ. If λℓ(n) denotes the number of ℓ-regular partitions of

n, then
∞∑

n=0

λℓ(n)q
n =

gℓ
g1
.

In [3], Chan studied the cubic partition of a positive integer n in which even parts

appear in two colors. If a(n) denotes the number of cubic partitions of a positive

integer n, then the generating function of a(n) [3] is given by

∞∑
n=0

a(n)qn =
1

g1g2
.

For example, the number of cubic partitions of n = 4 is 9, namely

4r, 4b, 3 + 1, 2r + 2r, 2b + 2b, 2r + 2b, 2r + 1 + 1, 2b + 1 + 1, 1 + 1 + 1 + 1,

where suffixes r and b denote red and blue colors, respectively. For congruences and

other arithmetic properties of a(n) see [3, 4, 5, 6].

Recently, Naika and Harishkumar [10] defined the restricted cubic partition func-

tion aℓ(n), which counts the number of ℓ-regular cubic partitions of n where the

first occurrence of each distinct odd part may be overlined. For example, a3(5) = 18

with the relevant partitions 5, 5, 4r + 1, 4r + 1, 4b + 1, 4b + 1, 2r + 2r + 1, 2r +

2r + 1, 2b + 2b + 1, 2b + 2b + 1, 2r + 2b + 1, 2r + 2b + 1, 2r + 1 + 1 + 1, 2r + 1 +

1 + 1, 2b + 1 + 1 + 1, 2b + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1, where

suffixes r and b denote red and blue colors, respectively. For any integer ℓ > 2, the

generating function for aℓ(n) [10] is given by

∞∑
n=0

aℓ(n)q
n =

g2g
2
ℓ g4ℓ

g21g4g2ℓ
. (2)

Naika and Harishkumar [10] proved many infinite families of congruences modulo

powers of 2 and 3 for a3(n), and modulo powers of 2 for a5(n). In this paper,

we extend and generalize some of the results of [10], and also establish some new

congruences of aℓ(n). In Section 3, we prove some new congruences of aℓ(n) for

ℓ = 2k, 2k + 1, 4k, 4k + 1, 3, 4, 5, 8, 9, 16, where ℓ > 2 and k > 0 are integers. To

prove our congruences, we will employ some theta-function and q-series identities

which are listed in Section 2.
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2. Some Theta-Function and q-Series Identities

This section is devoted to record some q-series and theta-function identities. Ra-

manujan’s general theta-function f(x1, x2) [2, Page 34, Equation 18.1] is defined

by

f(x1, x2) =

∞∑
n=−∞

x
n(n+1)/2
1 x

n(n−1)/2
2 , |x1x2| < 1.

The three significant special cases of f(x1, x2) are the theta-functions ϕ(q), ψ(q),

and f(−q) [2, Page 36, Entry 22 (i), (ii), (iii)] defined by

ϕ(q) := f(q, q) =

∞∑
n=−∞

qn
2

=
g52
g21g

2
4

,

ψ(q) := f(q, q3) =

∞∑
n=0

qn(n+1)/2 =
g22
g1
, (3)

f(−q) := f(−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n+1)/2 = g1.

One can use basic q-operations to show that

(−q;−q)∞ =
g32
g1g4

. (4)

Lemma 1 ([7, Theorem 2.2]). For any prime p ≥ 5, we have

g1 =

(p−1)/2∑
r=−(p−1)/2
r ̸=(±p−1)/6

(−1)rq(3r
2+r)/2f

(
−q(3p

2+(6r+1)p)/2,−q(3p
2−(6r+1)p)/2

)

+ (−1)(±p−1)/6q(p
2−1)/24gp2 ,

where

±p− 1

6
:=


(p− 1)

6
, if p ≡ 1 (mod 6),

(−p− 1)

6
, if p ≡ −1 (mod 6).

Furthermore, if

−(p− 1)

2
≤ r ≤ (p− 1)

2
and r ̸= (±p− 1)

6
,

then

3r2 + r

2
̸≡ p2 − 1

24
(mod p).
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Lemma 2 ([7, Theorem 2.1]). For any odd prime p, we have

ψ(q) =

(p−3)/2∑
s=0

q(s
2+s)/2f

(
q(p

2+(2s+1)p)/2, q(p
2−(2s+1)p)/2

)
+ q(p

2−1)/8ψ(qp
2

).

Furthermore,
(s2 + s)

2
̸≡ (p2 − 1)

8
(mod p), when 0 ≤ s ≤ (p− 3)

2
.

Lemma 3. We have

1

g21
=

g58
g52g

2
16

+ 2q
g24g

2
16

g52g8
, (5)

1

g41
=

g144
g142 g

4
8

+ 4q
g24g

4
8

g102
, (6)

g21 =
g2g

5
8

g24g
2
16

− 2q
g2g

2
16

g8
, (7)

g22
g1

=
g6g

2
9

g3g18
+ q

g218
g9
, (8)

g3
g1

=
g4g6g16g

2
24

g22g8g12g48
+ q

g6g
2
8g48

g22g16g24
, (9)

g31
g3

=
g34
g12

− 3q
g22g

3
12

g4g26
, (10)

g3
g31

=
g64g

3
6

g92g
2
12

+ 3q
g24g6g

2
12

g72
, (11)

g4
g1

=
g12g

4
18

g33g
2
36

+ q
g26g

3
9g36

g43g
2
18

+ 2q2
g6g18g36

g33
, (12)

g5
g1

=
g8g

2
20

g22g40
+ q

g34g10g40
g32g8g20

, (13)

g1
g5

=
g2g8g

3
20

g4g310g40
− q

g24g40
g8g210

, (14)

g9
g1

=
g312g18
g22g6g36

+ q
g24g6g36
g32g12

. (15)

Identities (5), (6), (8), and (10) follow from (1.9.4), (1.10.1), (14.3.3), and

(22.1.13) of [9], respectively. Identity (13) is from [8]. Replacing q by −q in (5),

(10), and (13) and then employing (4), we arrive at (7), (11), and (14), respectively.

Identity (9) is from [12], (12) is Lemma 2.6 of [1], and (15) is from [11].

The next lemma is a consequence of the binomial expansion and (1).

Lemma 4. For any positive integers k and m, and a prime p, we have

gp
k−1

pm ≡ gp
k

m (mod pk). (16)
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3. Congruences for aℓ(n)

This section is devoted to proving congruences for aℓ(n). First, we define the

Legendre symbol

(
α

p

)
. Let p be any odd prime and α be any integer relatively

prime to p. Then(
α

p

)
=

{
1, if α is a quadratic residue of p,

−1, if α is a quadratic non-residue of p.

Theorem 5. We have the following statements.

(i) If ℓ = 2k and k > 1 are any integers, then

aℓ(4n+ 3) ≡ 0 (mod 4). (17)

(ii) If ℓ = 2k + 1 and k ≥ 1 are any integers, then

aℓ(4n+ 2) ≡ 0 (mod 4). (18)

(iii) If ℓ = 4k and k > 0 are any integers, then

aℓ(4n+ 2) ≡ 0 (mod 4). (19)

(iv) If ℓ = 4k + 1 and k > 0 are any integers, then

aℓ(4n+ 3) ≡ 0 (mod 4). (20)

Proof. Employing (5) and (7) in (2), we obtain

∞∑
n=0

aℓ(n)q
n ≡ g8g8ℓ

g34g4ℓ
+ 2qg54g4ℓ + 2qℓ

g74ℓ
g4

(mod 4). (21)

If ℓ = 2k, where k > 1 is any integer, then collecting the terms involving powers

of q that are congruent to 1 modulo 2 from both sides of (21) and simplifying the

resulting equality yields

∞∑
n=0

aℓ(2n+ 1)qn ≡ 2g52g2ℓ (mod 4). (22)

Collecting the terms involving odd powers of q from (22), we arrive at (17).

If ℓ = 2k + 1, where k ≥ 1 is any integer, then collecting the terms involving

powers of q that are multiples of 2 from both sides of (21) and simplifying the

resulting equality yields

∞∑
n=0

aℓ(2n)q
n ≡ g4g4ℓ

g32g2ℓ
(mod 4). (23)
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Collecting the terms involving odd powers of q from (23), we arrive at (18).

If ℓ = 4k, where k > 0 is any integer, then collecting the terms involving powers

of q that are multiples of 2 from both sides of (21) and simplifying the resulting

equality yields
∞∑

n=0

aℓ(2n)q
n ≡ g4g4ℓ

g32g2ℓ
+ 2q2k

g72ℓ
g2

(mod 4). (24)

Collecting the terms involving odd powers of q from (24), we arrive at (19).

If ℓ = 4k + 1, where k > 0 is any integer, then collecting the terms involving

powers of q that are congruent to 1 modulo 2 from both sides of (21) and simplifying

the resulting equality yields

∞∑
n=0

aℓ(2n+ 1)qn ≡ 2g52g2ℓ + 2q2k
g72ℓ
g2

(mod 4). (25)

Collecting the terms involving odd powers of q from (25), we arrive at (20).

Theorem 6. Suppose p ≥ 5 is any prime with

(
−6

p

)
= −1. Then for any integers

δ ≥ 0, n ≥ 0, and 1 ≤ t ≤ p− 1, we have

∞∑
n=0

a3

(
8p2δn+

10p2δ − 1

3

)
qn ≡ 6g4g6 (mod 12), (26)

a3

(
8p2δ+2n+ 8p2δ+1t+

10p2δ+2 − 1

3

)
≡ 0 (mod 12). (27)

Proof. Setting ℓ = 3 in (2), we obtain

∞∑
n=0

a3(n)q
n =

g2g
2
3g12

g21g4g6
. (28)

Employing (9) in (28) and collecting the terms involving powers of q that are con-

gruent to 1 modulo 2 from both sides of the resulting equation, we obtain

∞∑
n=0

a3(2n+ 1)qn = 2
g3g4g12
g31

. (29)

Utilizing (11) in (29), we obtain

∞∑
n=0

a3(2n+ 1)qn = 2
g74g

3
6

g92g12
+ 6q

g34g6g
3
12

g72
. (30)

Collecting the terms involving powers of q that are congruent to 1 modulo 2 from

both sides of (30) and simplifying the resulting equality yields

∞∑
n=0

a3(4n+ 3)qn = 6
g32g3g

3
6

g71
. (31)
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With the help of (16), Equation (31) can be written as

∞∑
n=0

a3(4n+ 3)qn ≡ 6
g2g3g

3
6

g31
(mod 12). (32)

With the help of (11), Congruence (32) can be written as

∞∑
n=0

a3(4n+ 3)qn ≡ 6
g64g

6
6

g82g
2
12

+ 6q
g24g

4
6g

2
12

g62
(mod 12). (33)

Collecting the terms involving even powers of q from (33), we obtain

∞∑
n=0

a3(8n+ 3)qn ≡ 6
g62g

6
3

g81g
2
6

(mod 12). (34)

With the help of (16), Congruence (34) can be written as

∞∑
n=0

a3(8n+ 3)qn ≡ 6g4g6 (mod 12), (35)

which is the δ = 0 case of (26). Assume that (26) is true for δ ≥ 0. Employing

Lemma 1 in (26), we obtain

∞∑
n=0

a3

(
8p2δn+

10p2δ − 1

3

)
qn

≡ 6

[ (p−1)/2∑
x=−(p−1)/2
x ̸=(±p−1)/6

(−1)xq2(3x
2+x)f

(
−q2(3p

2+(6x+1)p),−q2(3p
2−(6x+1)p)

)

+ (−1)(±p−1)/6q(p
2−1)/6g4p2

]

×
[ (p−1)/2∑
y=−(p−1)/2
y ̸=(±p−1)/6

(−1)yq3(3y
2+y)f

(
−q3(3p

2+(6y+1)p),−q3(3p
2−(6y+1)p)

)

+ (−1)(±p−1)/6q(p
2−1)/4g6p2

]
(mod 12). (36)

Consider the congruence

2
(
3x2 + x

)
+ 3

(
3y2 + y

)
≡ 5

(
p2 − 1

12

)
(mod p),

which is identical to

(12x+ 2)
2
+ 6 (6y + 1)

2 ≡ 0 (mod p). (37)
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Since

(
−6

p

)
= −1, the only solution of (37) is x = y = (±p− 1)/6. Therefore,

collecting the terms involving qpn+5(p2−1)/12 from (36), dividing by q5(p
2−1)/12, and

replacing q by q1/p, we obtain

∞∑
n=0

a3

(
8p2δ+1n+

10p2δ+2 − 1

3

)
qn ≡ 6g4pg6p (mod 12). (38)

Collecting the terms involving qpn from (38) and replacing q by q1/p, we obtain

∞∑
n=0

a3

(
8p2δ+2n+

10p2δ+2 − 1

3

)
qn ≡ 6g4g6 (mod 12),

which is the δ + 1 case of (26). Thus, by employing induction, we complete the

proof of (26). Collecting the terms involving qpn+t for 1 ≤ t ≤ p− 1 from (38), we

arrive at (27).

Corollary 1. We have

a3(8n+ 5) ≡ 0 (mod 18), (39)

a3(16n+ 11) ≡ 0 (mod 12), (40)

a3(16n+ 15) ≡ 0 (mod 12). (41)

Proof. Collecting the terms involving even powers of q from (30), we obtain

∞∑
n=0

a3(4n+ 1)qn = 2
g72g

3
3

g91g6
. (42)

With the help of (16), Equation (42) can be written as

∞∑
n=0

a3(4n+ 1)qn ≡ 2
g72
g6

(mod 18). (43)

Collecting the terms involving powers of q that are congruent to 1 modulo 2 from

both sides of (43), we arrive at (39). Collecting the terms involving odd powers of

q from (35), we arrive at (40). Collecting the terms involving odd powers of q from

(33), we obtain
∞∑

n=0

a3(8n+ 7)qn ≡ 6
g22g

4
3g

2
6

g61
(mod 12). (44)

With the help of (16), Congruence (44) can be written as

∞∑
n=0

a3(8n+ 7)qn ≡ 6
g46
g2

(mod 12). (45)

Collecting the terms involving odd powers of q from (45), we arrive at (41).
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Remark 1. Congruences (40) and (41) are extensions of the congruences a3(16n+

11) ≡ 0 (mod 4) and a3(16n + 15) ≡ 0 (mod 4) due to Naika and Harishkumar

[10], respectively.

Theorem 7. Suppose p ≥ 5 is any prime with

(
−3

p

)
= −1. Then for any integers

δ ≥ 0, n ≥ 0, and 1 ≤ t ≤ p− 1, we have

∞∑
n=0

a3

(
8p2δn+

4p2δ − 1

3

)
qn ≡ 2g1g3 (mod 6), (46)

a3

(
8p2δ+2n+ 8p2δ+1t+

4p2δ+2 − 1

3

)
≡ 0 (mod 6).

Proof. Collecting the terms involving powers of q that are multiples 2 from both

sides of (43), we obtain

∞∑
n=0

a3(8n+ 1)qn ≡ 2g41 (mod 6). (47)

With the help of (16), Congruence (47) can be written as

∞∑
n=0

a3(8n+ 1)qn ≡ 2g1g3 (mod 6). (48)

Congruence (48) is the δ = 0 case of (46). As one can now proceed via the same

argument used in our proof of Theorem 6, we omit the remaining details.

Remark 2. Congruence (46) is a generalization of the following result of Naika

and Harishkumar [10]: for all n ≥ 0 and δ ≥ 0,

∞∑
n=0

a3

(
8 · 52δn+

4 · 52δ − 1

3

)
qn ≡ 2g1g3 (mod 3).

Theorem 8. Suppose p ≥ 5 is any prime with

(
−2

p

)
= −1. Then for any integers

δ ≥ 0, n ≥ 0, and 1 ≤ t ≤ p− 1, we have

∞∑
n=0

a4

(
4p2δn+

3p2δ − 1

2

)
qn ≡ 2g1g8 (mod 4), (49)

a4

(
4p2δ+2n+ 4p2δ+1t+

3p2δ+2 − 1

2

)
≡ 0 (mod 4).

Proof. Setting ℓ = 4 in (2), we obtain

∞∑
n=0

a4(n)q
n =

g2g4g16
g21g8

. (50)
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Employing (5) in (50), we obtain

∞∑
n=0

a4(n)q
n =

g4g
4
8

g42g16
+ 2q

g34g
3
16

g42g
2
8

. (51)

Collecting the terms involving powers of q that are congruent to 1 modulo 2 from

(51) and simplifying the resulting equality yields

∞∑
n=0

a4(2n+ 1)qn = 2
g32g

3
8

g41g
2
4

. (52)

Using (6) in (52), we obtain

∞∑
n=0

a4(2n+ 1)qn = 2
g124
g112 g8

+ 8q
g78
g72
. (53)

Collecting the terms involving powers of q that are divisible by 2 from (53) and

simplifying the resulting equality yields

∞∑
n=0

a4(4n+ 1)qn = 2
g122
g111 g4

. (54)

With the help of (16), Equation (54) can be written as

∞∑
n=0

a4(4n+ 1)qn ≡ 2g1g8 (mod 4),

which is the δ = 0 case of (49). As one can now proceed via the same argument

used in our proof of Theorem 6, we omit the remaining details.

Corollary 2. We have

a4(4n+ 3) ≡ 0 (mod 8), (55)

a4(28n+ 4j + 3) ≡ 0 (mod 56), for j = 1, 2, 3, 4, 5, 6, (56)

a4(36n+ 19) ≡ 0 (mod 24). (57)

Proof. Collecting the terms involving powers of q that are congruent to 1 modulo

2 from both sides of (53) and simplifying the resulting equality yields

∞∑
n=0

a4(4n+ 3)qn = 8
g74
g71
. (58)

Now (55) follows easily from (58). Using (16) with {p = 7, k = 1} in (58), we obtain

∞∑
n=0

a4(4n+ 3)qn ≡ 8
g28
g7

(mod 56). (59)
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Collecting the terms involving powers of q that are not divisible by 7 from (59), we

arrive at (56). Using (16) with {p = 3, k = 1} in (58), we obtain

∞∑
n=0

a4(4n+ 3)qn ≡ 8
g4g

2
12

g1g23
(mod 24). (60)

Using (12) in (60) and collecting the terms involving powers of q that are congruent

to 1 modulo 3 from both sides of the resulting equation, we obtain

∞∑
n=0

a4(12n+ 7)qn ≡ 8
g22g

3
3g

2
4g12

g61g
2
6

(mod 24). (61)

Using (16) in (61), we obtain

∞∑
n=0

a4(12n+ 7)qn ≡ 8
g3g

2
4g12

g2g6
(mod 24). (62)

Utilizing (8) in (62), we obtain

∞∑
n=0

a4(12n+ 7)qn ≡ 8
g3g

2
12g

2
18

g26g36
+ 8q2

g3g12g
2
36

g6g18
(mod 24). (63)

Collecting the terms involving powers of q that are congruent to 1 modulo 3 from

both sides of (63), we arrive at (57).

Theorem 9. Suppose p ≥ 5 is any prime with

(
−3

p

)
= −1. Then for any integers

δ ≥ 0, n ≥ 0, and 1 ≤ t ≤ p− 1, we have

∞∑
n=0

a5

(
10p2δn+

5p2δ − 2

3

)
qn ≡ 2(−1)δ(±p−1)/6g1ψ(q) (mod 8), (64)

a5

(
10p2δ+2n+ 10p2δ+1t+

5p2δ+2 − 2

3

)
≡ 0 (mod 8), (65)

∞∑
n=0

a5

(
40p2δn+

65p2δ − 2

3

)
qn ≡ 4(−1)δ(±p−1)/6g1ψ(q

4) (mod 8), (66)

a5

(
40p2δ+2n+ 40p2δ+1t+

65p2δ+2 − 2

3

)
≡ 0 (mod 8). (67)

Proof. Setting ℓ = 5 in (2), we obtain

∞∑
n=0

a5(n)q
n =

g2g
2
5g20

g21g4g10
. (68)
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Using (13) in (68) and collecting the terms involving powers of q that are congruent

to 1 modulo 2 from both sides of the resulting equation, we obtain

∞∑
n=0

a5(2n+ 1)qn = 2
g22g

2
10

g41
. (69)

With the help of (16), Equation (69) can be written as

∞∑
n=0

a5(2n+ 1)qn ≡ 2g210 (mod 8). (70)

Collecting the terms involving powers of q that are multiples of 5 from both sides

of (70) and simplifying the resulting equality yields

∞∑
n=0

a5(10n+ 1)qn ≡ 2g22 ≡ 2g1 ·
g22
g1

(mod 8). (71)

With the help of (3), Congruence (71) can be written as

∞∑
n=0

a5(10n+ 1)qn ≡ 2g1ψ(q) (mod 8),

which is the δ = 0 case of (64). The remaining proofs of Congruences (64) and (65)

are similar to the proofs of Congruences (26) and (27), respectively, and the desired

result can be obtained by appealing to Lemmas 1 and 2. As a result, we omit the

details.

Collecting the terms involving powers of q that are multiples of 10 from both

sides of (70) and simplifying the resulting equality yields

∞∑
n=0

a5(20n+ 1)qn ≡ 2g21 (mod 8). (72)

Substituting (7) in (72) and then collecting the terms involving powers of q that

are congruent to 1 modulo 2 from both sides of the resulting equation, we obtain

∞∑
n=0

a5(40n+ 21)qn ≡ 4
g1g

2
8

g4
(mod 8).

Then, using (3), we get

∞∑
n=0

a5(40n+ 21)qn ≡ 4g1ψ(q
4) (mod 8),
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which is the δ = 0 case of (66). Now suppose that (66) holds for some δ ≥ 0.

Employing Lemmas 1 and 2 in (66), we obtain

∞∑
n=0

a5

(
40p2δn+

65p2δ − 2

3

)
qn

≡ 4(−1)δ(±p−1)/6

[ (p−1)/2∑
x=−(p−1)/2
x ̸=(±p−1)/6

(−1)xq(3x
2+x)/2f

(
−q(3p

2+(6x+1)p)/2,−q(3p
2−(6x+1)p)/2

)

+ (−1)(±p−1)/6q(p
2−1)/24gp2

]

×
[ (p−3)/2∑

y=0

q2(y
2+y)f

(
q2(p

2+(2y+1)p), q2(p
2−(2y+1)p)

)
+q(p

2−1)/2ψ(q4p
2

)

]
(mod 8).

(73)

Consider the congruence(
3x2 + x

2

)
+ 2

(
y2 + y

)
≡ 13

(
p2 − 1

24

)
(mod p),

which is equivalent to

(6x+ 1)
2
+ 3 (4y + 2)

2 ≡ 0 (mod p). (74)

Since

(
−3

p

)
= −1, the only solution of (74) is x = (±p− 1)/6 and y = (p− 1)/2.

Therefore, collecting the terms involving powers of q that are congruent to

13(p2 − 1)/24 modulo p from both sides of (73) and simplifying the resulting equal-

ity yields

∞∑
n=0

a5

(
40p2δ+1n+

65p2δ+2 − 2

3

)
qn ≡ 4(−1)(δ+1)(±p−1)/6gpψ(q

4p) (mod 8). (75)

Collecting the terms involving powers of q that are multiples p from both sides of

(75) and simplifying the resulting equality yields

∞∑
n=0

a5

(
40p2δ+2n+

65p2δ+2 − 2

3

)
qn ≡ 4(−1)(δ+1)(±p−1)/6g1ψ(q

4) (mod 8),

which is the δ + 1 case of (66). Thus, by employing induction, we complete the

proof of (66). Finally, collecting the terms involving qpn+t for 1 ≤ t ≤ p − 1 from

both sides of (75) yields (67).
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Corollary 3. We have

a5(8n+ 7) ≡ 0 (mod 16), (76)

a5(20n+ 2j + 1) ≡ 0 (mod 8), for j = 1, 2, 3, . . . , 9. (77)

Proof. Employing (6) in (69) and then collecting the terms involving powers of q

that are congruent to 1 modulo 2 from both sides of the resulting equation, we

obtain
∞∑

n=0

a5(4n+ 3)qn = 8
g22g

4
4g

2
5

g81
. (78)

With the help of (16), Equation (78) can be written as

∞∑
n=0

a5(4n+ 3)qn ≡ 8
g44g10
g22

(mod 16). (79)

Collecting the terms involving odd powers of q from (79), we arrive at (76). Col-

lecting the terms involving powers of q that are congruent to j modulo 10, where

j = 1, 2, 3, . . . , 9 from both sides of (70), we arrive at (77).

Remark 3. Congruence (77) is an extension of congruence a5(40n + 8j + 1) ≡ 0

(mod 8), where j = 1, 2, 3, 4 due to Naika and Harishkumar [10].

Theorem 10. Suppose p ≥ 5 is any prime with

(
−15

p

)
= −1. Then for any

integers δ ≥ 0, n ≥ 0, and 1 ≤ t ≤ p− 1, we have

∞∑
n=0

a5

(
16p2δ+2n+

122p2δ+2 − 2

3

)
qn ≡ 2(−1)(δ+1)(±p−1)/6g1ψ(q

20) (mod 4),

(80)

a5

(
16p2δ+2n+ 16p2δ+1t+

122p2δ+2 − 2

3

)
≡ 0 (mod 4). (81)

Proof. Setting ℓ = 5 in (23), we obtain

∞∑
n=0

a5(2n)q
n ≡ g4g20

g32g10
(mod 4). (82)

Collecting the terms involving powers of q that are multiples of 2 from (82), we

obtain
∞∑

n=0

a5(4n)q
n ≡ g2g10

g31g5
(mod 4). (83)

Employing (16) in (83), we obtain

∞∑
n=0

a5(4n)q
n ≡ g1g10

g2g5
(mod 4). (84)
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Employing (14) in (84) and then collecting the terms involving powers of q that are

congruent to 0 modulo 2 from both sides of the resulting equation, we obtain

∞∑
n=0

a5(8n)q
n ≡ g4g

3
10

g2g25g20
(mod 4). (85)

Utilizing (5) in (85) and then collecting the terms involving powers of q that are

congruent to 1 modulo 2 from both sides of the resulting equation, we obtain

∞∑
n=0

a5(16n+ 8)qn ≡ 2q2
g2g10g

2
40

g1g25g20
(mod 4). (86)

Utilizing (16) with {p = 2, k = 1} in (86) and then applying (3), we obtain

∞∑
n=0

a5(16n+ 8)qn ≡ 2q2
g1g

2
40

g20
≡ 2q2g1ψ(q

20) (mod 4). (87)

Applying Lemmas 1 and 2 into (87), we obtain

∞∑
n=0

a5(16n+ 8)qn

≡ 2q2
[ (p−1)/2∑
x=−(p−1)/2
x ̸=(±p−1)/6

(−1)xq(3x
2+x)/2f

(
−q(3p

2+(6x+1)p)/2,−q(3p
2−(6x+1)p)/2

)

+ (−1)(±p−1)/6q(p
2−1)/24gp2

]

×
[ (p−3)/2∑

y=0

q10(y
2+y)f

(
q10(p

2+(2y+1)p), q10(p
2−(2y+1)p)

)
+ q20(p

2−1)/8ψ(q20p
2

)

]
(mod 4). (88)

Consider the congruence(
3x2 + x

2

)
+ 10

(
y2 + y

)
+ 2 ≡ 61

(
p2 − 1

24

)
+ 2 (mod p),

which is identical to

(6x+ 1)
2
+ 15 (4y + 2)

2 ≡ 0 (mod p). (89)

Since

(
−15

p

)
= −1, the only solution of (89) is x = (±p− 1)/6 and y = (p− 1)/2.

Therefore, collecting the terms containing qp
2n+61(p2−1)/24+2 from (88), dividing by
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q61(p
2−1)/24+2, and replacing qp

2

by q, we obtain

∞∑
n=0

a5

(
16p2n+

122

3

(
p2 − 1

)
+ 40

)
qn ≡ 2(−1)(±p−1)/6g1ψ(q

20) (mod 4). (90)

Iterating (90) by using Lemmas 1 and 2, bringing out the terms containing

qp
2n+61(p2−1)/24, dividing by q61(p

2−1)/24, and replacing qp
2

by q, we deduce that,

for integer δ ≥ 0

∞∑
n=0

a5

(
16p2δn+

122

3

(
p2δ − 1

)
+40

)
qn ≡ 2(−1)δ(±p−1)/6g1ψ(q

20) (mod 4). (91)

Utilizing Lemmas 1 and 2 in (91) and collecting the terms containing

qpn+61(p2−1)/24, dividing by q61(p
2−1)/24, and replacing q by q1/p, we obtain

∞∑
n=0

a5

(
16p2δ+1n+

122

3

(
p2δ+2 − 1

)
+40

)
qn ≡ 2(−1)(δ+1)(±p−1)/6gpψ(q

20p) (mod 4).

(92)

Collecting the terms containing qpn from (92) and replacing q by q1/p, we arrive at

(80). Collecting the terms involving qpn+t for 1 ≤ t ≤ p− 1 from (92), we arrive at

(81).

Theorem 11. Suppose p ≥ 5 is any prime with

(
−3

p

)
= −1. Then for any

integers δ ≥ 0, n ≥ 0, and 1 ≤ t ≤ p− 1, we have

∞∑
n=0

a8

(
4p2δn+

13p2δ − 7

6

)
qn ≡ 2(−1)δ(±p−1)/6g1ψ(q

4) (mod 4), (93)

a8

(
4p2δ+2n+ 4p2δ+1t+

13p2δ+2 − 7

6

)
≡ 0 (mod 4), (94)

∞∑
n=0

a8

(
4p2δn+

19p2δ − 7

6

)
qn ≡ 4(−1)δ(±p−1)/6ψ(q)g16 (mod 8), (95)

a8

(
4p2δ+2n+ 4p2δ+1t+

19p2δ+2 − 7

6

)
≡ 0 (mod 8). (96)

Proof. Setting ℓ = 8 in (2), we obtain

∞∑
n=0

a8(n)q
n =

g2g
2
8g32

g21g4g16
. (97)

Utilizing (5) in (97), we obtain

∞∑
n=0

a8(n)q
n =

g78g32
g42g4g

3
16

+ 2q
g4g8g16g32

g42
. (98)
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Collecting the terms involving powers of q that are not divisible by 2 from (98), we

obtain
∞∑

n=0

a8(2n+ 1)qn = 2
g2g4g8g16

g41
. (99)

Employing (6) in (99), we find that

∞∑
n=0

a8(2n+ 1)qn = 2
g154 g16
g132 g

3
8

+ 8q
g34g

5
8g16
g92

. (100)

Collecting the terms involving powers of q that are divisible by 2 from (100) and

then simplifying, we obtain

∞∑
n=0

a8(4n+ 1)qn = 2
g152 g8
g131 g

3
4

. (101)

Employing (16) with {p = 2, k = 1} in (101) and then using (3), we find that

∞∑
n=0

a8(4n+ 1)qn ≡ 2
g1g

2
8

g4
≡ 2g1ψ(q

4) (mod 4),

which is the δ = 0 case of (93). The remaining proofs of Congruences (93) and (94)

are similar to the proofs of Congruences (66) and (67), respectively, and the desired

result can be obtained by appealing to Lemmas 1 and 2. As a result, we omit the

details. Collecting the terms involving powers of q that are multiples of 2 from (98),

we obtain
∞∑

n=0

a8(2n)q
n =

g74g16
g41g2g

3
8

. (102)

Employing (6) in (102) and then collecting the terms involving powers of q that are

not multiples of 2 from both sides of the resulting equation, we obtain

∞∑
n=0

a8(4n+ 2)qn = 4
g92g4g8
g111

. (103)

Employing (16) in (103), we obtain

∞∑
n=0

a8(4n+ 2)qn ≡ 4
g22g

2
4g8
g1

(mod 8). (104)

Using (16) in (104) and then employing (3), we obtain

∞∑
n=0

a8(4n+ 2)qn ≡ 4
g22g16
g1

≡ 4ψ(q)g16 (mod 8),
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which is the δ = 0 case of (95). The remaining proofs of Congruences (95) and (96)

are similar to the proofs of Congruences (66) and (67), respectively, and the desired

result can be obtained by appealing to Lemmas 1 and 2. As a result, we omit the

details.

Theorem 12. Suppose p ≥ 5 is any prime with

(
−6

p

)
= −1. Then for any

integers δ ≥ 0, n ≥ 0, and 1 ≤ t ≤ p− 1, we have

∞∑
n=0

a8

(
4p2δn+

25p2δ − 7

6

)
qn ≡ 8(−1)δ(±p−1)/6g1ψ(q

8) (mod 16), (105)

a8

(
4p2δ+2n+ 4p2δ+1t+

25p2δ+2 − 7

6

)
≡ 0 (mod 16). (106)

Proof. Collecting the terms involving powers of q that are not divisible by 2 from

(100), we obtain
∞∑

n=0

a8(4n+ 3)qn = 8
g32g

5
4g8
g91

. (107)

Employing (16) with {p = 2, k = 1} in (107), we obtain

∞∑
n=0

a8(4n+ 3)qn ≡ 8
g54g8
g31

(mod 16). (108)

Using (16) with {p = 2, k = 1} in (108), we obtain

∞∑
n=0

a8(4n+ 3)qn ≡ 8g1g
3
8 (mod 16). (109)

Again, using (16) with {p = 2, k = 1} in (109) and then applying (3), we obtain

∞∑
n=0

a8(4n+ 3)qn ≡ 8
g1g

2
16

g8
≡ 8g1ψ(q

8) (mod 16),

which is the δ = 0 case of (105). The remaining proofs of Congruences (105) and

(106) are similar to the proofs of Congruences (66) and (67), respectively, and the

desired result can be obtained by appealing to Lemmas 1 and 2. As a result, we

omit the details.

Theorem 13. Suppose p ≥ 5 is any prime with

(
−2

p

)
= −1. Then for any

integers δ ≥ 0, n ≥ 0, and 1 ≤ t ≤ p− 1, we have

∞∑
n=0

a9

(
8p2δn+

19p2δ − 4

3

)
qn ≡ 2g1g18 (mod 4), (110)

a9

(
8p2δ+2n+ 8p2δ+1t+

19p2δ+2 − 4

3

)
≡ 0 (mod 4).
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Proof. Setting ℓ = 9 in (2), we obtain

∞∑
n=0

a9(n)q
n =

g2g
2
9g36

g21g4g18
. (111)

Using (15) in (111) and then collecting the terms involving powers of q that are

congruent to 1 modulo 2 from both sides of the resulting equation, we obtain

∞∑
n=0

a9(2n+ 1)qn = 2
g2g

2
6g18
g41

. (112)

Using (6) in (112) and simplifying, we obtain

∞∑
n=0

a9(2n+ 1)qn = 2
g144 g

2
6g18

g132 g
4
8

+ 8q
g24g

2
6g

4
8g18

g92
. (113)

Collecting the terms involving powers of q that are multiples of 2 from (113), we

obtain
∞∑

n=0

a9(4n+ 1)qn = 2
g142 g

2
3g9

g131 g
4
4

. (114)

Using (16) in (114), we obtain

∞∑
n=0

a9(4n+ 1)qn ≡ 2
g6g9
g1

(mod 4). (115)

Using (15) in (115) and then collecting the terms involving powers of q that are not

divisible by 2 from both sides of the resulting equation, we obtain

∞∑
n=0

a9(8n+ 5)qn ≡ 2
g22g

2
3g18

g31g6
(mod 4). (116)

With the help of (16), Congruence (116) can be written as

∞∑
n=0

a9(8n+ 5)qn ≡ 2g1g18 (mod 4). (117)

Congruence (117) is the δ = 0 case of (110). As one can now proceed via the same

argument used in our proof of Theorem 6, we omit the remaining details.

Corollary 4. We have

a9(4n+ 3) ≡ 0 (mod 8). (118)

Proof. Collecting the terms involving odd powers of q from (113), we arrive at

(118).
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Theorem 14. Suppose p ≥ 5 is any prime with

(
−2

p

)
= −1. Then for any

integers δ ≥ 0, n ≥ 0, and 1 ≤ t ≤ p− 1, we have

∞∑
n=0

a16

(
4p2δn+

11p2δ − 5

2

)
qn ≡ 8g1g32 (mod 16), (119)

a16

(
4p2δ+2n+ 4p2δ+1t+

11p2δ+2 − 5

2

)
≡ 0 (mod 16).

Proof. Setting ℓ = 16 in (2), we obtain

∞∑
n=0

a16(n)q
n =

g2g
2
16g64

g21g4g32
. (120)

Employing (5) in (120) and then collecting the terms involving powers of q that are

not divisible by 2 from both sides of the resulting equation, we obtain

∞∑
n=0

a16(2n+ 1)qn = 2
g2g

4
8g32

g41g4g16
. (121)

Employing (6) in (121) and then collecting the terms involving powers of q that are

not divisible by 2 from both sides of the resulting equation, we obtain

∞∑
n=0

a16(4n+ 3)qn = 8
g2g

8
4g16

g91g8
. (122)

Utilizing (16) with {p = 2, k = 1}, Equation (122) can be written as

∞∑
n=0

a16(4n+ 3)qn ≡ 8g1g
8
4 (mod 16). (123)

Utilizing (16) with {p = 2, k = 1}, Congruence (123) can be written as

∞∑
n=0

a16(4n+ 3)qn ≡ 8g1g32 (mod 16). (124)

Congruence (124) is the δ = 0 case of (119). As one can now proceed via the same

argument used in our proof of Theorem 6, we omit the remaining details.
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