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Abstract
In this paper, we establish several modular relations involving the Rogers-Raman-
ujan-Slater type functions of order eighteen that are analogues to Ramanujan’s well
known forty identities. Furthermore, we give partition theoretic interpretations of
two modular relations.

1. Introduction

Throughout the paper, we assume |g| < 1 and we use the standard notation

n—1 )
(@:q)o =1, (6:0)n:=][(1—ag’) and (a;9)0 = [J(1 - ag™).
j=0 n=0

The well-known Rogers-Ramanujan functions are defined for |¢| < 1 by

G(q) i il d H(g) i it
q) := - an q) == - .
= (G 0)n = (0)n

These functions satisfy the famous Rogers-Ramanujan identities
1 1
and H(q) = .
(4:6°)o0 (9% ¢°) o (4% ¢°)0(¢: 4°) o
DOLI: 10.5281/zenodo.14339803

G(q) =
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In [24], Ramanujan remarks, “I have now found an algebraic relation between
G(q) and H(q)", viz. H(g{G(9)}"" — ¢*G(g){H(9)}"" = 1 + 11¢{G(q)H (9)}°.
Another interesting formula is H(q)G(¢*!) — ¢*G(q)H(q'!) = 1.

These two identities are from a list of forty identities involving the Rogers-
Ramanujan functions presented by Ramanujan. Ramanujan’s forty identities for
G(q) and H(q) were first brought to the mathematical world by Birch [16] in 1975.
Many of these identities were established by Rogers [27], Watson [30], Bressoud [17]
and Biagioli [15]. Recently, Berndt et al. [14] offered proofs of thirty-five of the forty
identities. A number of mathematicians have tried to find new identities for the
Rogers-Ramanujan functions similar to those found by Ramanujan [24], including
Berndt and Yesilyurt [13], Gugg [21], and Bulkhali and Ranganatha [19].

In [10], Baruah and Bora established several modular relations for the nonic
analogues of the Rogers-Ramanujan functions which are defined as

_ i (a: q m ¢*" _ (6%47)x(6%4°)xc (4% ¢%)
— ( n(@% ¢%)2n (4*: %) o0

— i ) 3n a —q3”+2) D (0%54°)00 (073 0%) oo (4% 4 oo
~ (4% ¢)2nt1 (@ 6%)o

and

3n(n+1)

Z (4:9) 3n+1 q _ (@0°)x(0%¢%) (0% ¢%)
~ (€% 4% )2n41 (0%4%) o

They also established several other modular relations that are connected with the
Rogers-Ramanujan functions, Gollnitz-Gordon functions, and septic analogues of
Rogers-Ramanujan type functions. Motivated by Rogers-Ramanujan functions, the
modular relations of Rogers-Ramanujan type and Rogers-Ramanujan-Slater type
functions are studied in Table 1.

Various Rogers-Ramanujan type functions | Order | References
Cubic functions 6 8, 9]
Septic functions 7 [22]
Gollnitz-Gordon functions 8 [11, 20, 23, 31]
Nonic functions 9 [10]
Rogers-Ramanujan type functions of order 10 10 2]
Rogers-Ramanujan type functions of order 11 11 [4]
Rogers-Ramanujan type functions of order 12 12 [29]
Rogers-Ramanujan type functions of order 13 13 [18]

Table 1: Various Rogers-Ramanujan type functions
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Recently, Adiga et al. [5, 6, 7] established several modular relations for the
Rogers-Ramanujan-Slater type function of order fifteen. These relations are ana-
logues to Ramanujan’s famous forty identities for the Rogers-Ramanujan functions.
Further, they gave interesting partition theoretic interpretations of these relations.
In [3], Gugg studied the sextodecic analogous of the Rogers-Ramanujan functions.
Motivated by Gugg [3] works, the sextodecic analogous of the Rogers-Ramanujan
functions were developed by Adiga and Bulkhali [21]. Almost all of these functions
which have been studied so far are due to Rogers [26] and Slater [28].

In [25, p. 33], Ramanujan stated the following identity:

flag®, a'¢®) _ i ¢ (—a7'g; ¢*)n (—ag; 4w 1)

f(=4?) = (4% ¢*)2n ’
where

(o)
fla,b) = Y "t pr=D2 g < 1,
n=—oo
is the general theta function of Ramanujan. The above result of Ramanujan yields
infinitely many identities of Rogers-Ramanujan-Slater type when a is set to +¢" for
r e Q.
Now, we define the following Rogers-Ramanujan-Slater type identities of order

eighteen using Identity (1) with ¢ = ¢® and a = —¢?,a = —¢*, a = —¢®, respectively,
and we obtain

ST =) S (6600 (@500
Pl =5 _,; (4% ¢%)2n ’ @)
5 _ 13 > 6n%-1 (,5. .6 L ;6n1
and
CfEe—dT) S (05601 (22505t
RO =5 m =1 2 (& ) ' @)

The main purpose of this paper is to establish several modular relations involving
P(q), Q(q), and R(q), which are analogues to Ramanujan’s forty identities. Further,
we extract partition theoretic interpretations of our modular relations.

2. Definitions and Preliminary Results

In this section, we present some basic definitions and preliminary results on
Ramanujan’s theta functions.
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The function f(a,b) satisfies the following basic properties [1, Entry 18]:
fla,b) = f(b,a),  f(l,a) =2f(a,a®), and  f(—1,a)=0.
If n is an integer,
f(a,b) = a2 pr(n=D/2 £ (q(ab)™, b(ab) ™).
The well-known Jacobi triple product identity [1, Entry 19] is given by
fla,b) = (=a; ab)oo (—b; ab)oc (ab; ab)oc. ()

The three most interesting special cases of f(a,b) are [1, Entry 22]

o) =f@.0) = Y. 0" = (6% %)

g = S itz _ (€58
¥(q) =f(a,9°) ;q GO
and
f=0) =f(=¢, =) = > (""" V7 = (g;0)ce-

Also, using Ramanujan’s notation, we have
X(@) = (~4:6°) oo
For convenience, we define
fro=F(=q") = (@"4" ),

for positive integers n. The following lemma is a consequence of Identity (5) and
Entry 24 of [1, p. 39].

Lemma 1 ([1]). We have

B _ 13 L o _hfa
@(Q)—f% 7 w<q>—f1, o( Q)—fQ» Y(—q) = 5

__f3 _fi
fa)=5=  xa)=7=
Lemma 2 ([1)). If ab = cd, then

f(av b)f(c7 d) + f(fav 7b)f(7c7 7d) = 2f(ac, bd)f(ad7 bc)’ (6)



INTEGERS: 24 (2024) )

and

F(a,b)f(e,d) — f(—a,—b)f(—c, —d) = 2af (i,gabcd> f (Z,Z@m). (7)

Remark 1. Adding (6) and (7) together, we deduce

fla,b)f(c,d) = f(ac,bd) f(ad,bc) + af (i, Zabcd) f (Z, Zabcd) . (8)

Lemma 3 ([1]). We have
Fla,4%) = x(0)¥(=¢%). 9)

Lemma 4 ([12, Chapter 20]). We have

Nf3(_9
Y R Y R R (10)
Lemma 5 ([12, Chapter 20]). We have
3
@) = ff(_qq)). (11)

3. Main Results

In this section, we present several new modular relations for the functions P(q),
Q(q), and R(q). For simplicity, we use the notations P, := P(q"), Q. := Q(q"),
and R, := R(q"™) for a positive integer n.

We prove the following theorem using ideas similar to those of Watson [30]. In
Watson’s method, one expresses the left sides of the identities in terms of theta
functions by using Identity (5). After clearing fractions, we see that the right side
can be expressed as a product of two theta functions, say with summation indices
m and n. One then tries to find variable substitutions of the form

am+pn=9M +a and ~ym+on=9N +b,

so that the product on the right side decomposes into the requisite sum of two
products of theta functions on the left side.
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Theorem 1. We have
P Ps+¢*°Q1Qs + ¢"°R1 Ry
_ 1 { 518 f3f }_q8f3f128f24f1244
2qfefis \ f2fifie  fisfiaa fefofifr’

Py Pr+¢*Q2Q7 + q"° Ra Ry

_ 1 { 3 f128f623} sf6f21f36f126
2qf12fa2 \[ififos  faefize f12f18f42f63

P3Ps+¢*Q3Q6 + ¢*° R3 R

1{ f5hs [t }_qs fof3ifios
21313 fisfsefsafi08 Jisfor 35 fas”

PyPs+¢*QuQs + ¢"° Ry Rs
_ 1 { 515 f:?effs} _q8f12f15f722f920
2qfaafso L f2fifa0  frafoo f31150 f36 f15

PiQo—q*Q1 Ry + qR Py =

1 {fgf18_f12f2}+ 2f3f18f36
2qfsfi2 U f3e fa fefof?
¢ P1Q20—¢**Q1Rao + R1 Py

_ 1 {fgffso i }+q17f3f128f60f§60
2¢* fof120 \ fisfsco  [2fsfa f& fofiaofiso”

and

¢ PiR1y+Q1 Py — ¢°*R1Q14
1 {f92f1226 J3[74 }+q13f3f128f42f2252

T 2¢%fofsa \ fisfasz Jaf? 13 f&fofdifrze

Proof. Using Identities (2)-(4), we may rewrite Identity (12) in the form
¢ f(=4*,—4"*°) f(=a,—4"") +q3f(— Y, =" f(=4",—¢%)
+f(—q567—q88) f=a',—=d") = {f 4,9) f(=4° —4°)

— (=47 =) f(=d",—")} — 4 f( 120) f(=4*,—4").

In this representation, we make variable substitutions by setting

m+n=9M +a and —m+8n=9N +b,

(14)

(19)
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where a and b have values selected from the set {0, +1, +2, +3, £4}. Then
m=8M—-N+8a—-0)/9 and n=M+ N+ (a+1)/9.

It follows that the values of a and b are associated as in the following table:

a|O[£1[£2] £3[ +4
b O FL|F2 | F3 | F4

When a assumes the values, 0, +1, £2, +3, 4 in succession, it is easy to see that
the corresponding values of 2m? + 16n? are, respectively, as follows:

144m? + 18n% — 128m + 16n + 32,
144m? + 18n? — 96m + 12n + 18,
144m? + 18n? — 64m + 8n + 8,
144m? + 18n? — 32m + 4n + 8,
144m? + 18n?,

144m? + 18n? + 32m — 4n + 2,
144m? 4 18n? + 64m — 8n + 8,
144m? + 18n” 4 96m — 12n + 18,
144m? + 18n? 4 128m — 16n + 32.

It is evident from the equation connecting m and n with M and N that, there
is a one-to-one correspondence between all pairs of integers (m,n) and all sets of
integers (M, N,a). From these correspondences, we deduce that

F@af (=5 =) = 3 (=17 ¢ = 2018 f(—g%, ") f(—q, —¢"7)

+2¢°f(—=¢*, —a"*) f(=¢®, —a"°) + 24" f (=", """ f (=", —0°)

+2¢f (=%, —¢®) f(—a"", —d") + f(=a", —a") f(=¢", =),
which is nothing but Identity (19). The proofs of the Identities (13)-(15) are similar
to Identity (12), with its variable substitutions as follows:

Identity Variable substitutions
13 "m+n=9M +a and 2m —n =9N +b
14 —m+3n=9M +aand m+6n=9N +b
15 —m+4n =9M +a and m+5n =9N + b

where a and b have values selected from the set {0, £1, £2, +3, £4}. So we omit
the proof.
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Using Identities (2)-(4), we may rewrite Identity (16) in the form
Cf(=¢* =) f(=a°,—4") = f(=a"", —*) f(=q,~4"T)
~ F=a" =) =" =) = 5 {f(—0 =) F=a* =)
— f(=a"%.=4") f(=¢°,—")} — ¢’ f(—4®, —¢*) F(=¢°.—¢"°).  (20)
In this representation, we make variable substitutions by setting
2m+n=9M +a and m —4n=9N + b,
where a and b have values from the set 0, +1,£2, +3, 4. Then
m=4M + N+ (4a+b)/9 and n=M —2N + (a —2b)/9.
It follows that the values of a and b are associated as in the following table:

a|0| £l | £2 | £3| £4
b |0 | F4 | £1 | F3 | £2

When a assumes the values, 0, 1, £2, +3, £4 in succession, it is easy to see that
the corresponding values of 2m? + 4n? are, respectively, as follows:

36m? 4+ 18n? — 32m — 8n + 8,

36m? 4+ 18n? — 24m + 12n + 6,

36m? 4 18n? — 16m — 4n + 2,

36m? 4+ 18n? — 8m + 16n + 4,

36m? + 18n?,

36m? + 18n” 4 8m — 16n + 4,

36m? + 18n2 + 16m + 4n + 2,

36m? 4 18n2 + 24m — 12n + 6,

36m? + 18n* + 32m + 8n + 8.
It is evident from the equation connecting m and n with M and N that there
is a one-to-one correspondence between all pairs of integers (m,n) and all sets of

integers (M, N, a). From these correspondences, we deduce that

f~a. - f(- —*) = Y (—1)mng 2

=2¢*f(=¢*, =" ) f (=", =¢"*) + 2¢° f (=", =¢**) f(=¢*, ¢"°)
=2¢f(=¢"°, =) f(=d". =¢"") = 2¢° f(=¢"*, =¢**) f (. —¢'T)
+f(=¢",=4") f(=¢°, =",
which is nothing but Identity (20). The proofs of the Identities (17)-(18) are similar
to Identity (16), with its variable substitutions as follows:
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Identity Variable substitutions
17 m+n=9M +a and 4m —5n =9N +b
18 m—n=9M +aand 2m+T™m=9N +b

where a and b have values selected from the set {0, £1, £2, £3, £4}. So we omit
the proof. O

The following identities are relations involving some combinations of P(q), Q(q),
and R(q) and the nonic analogues of the Rogers-Ramanujan functions A(q), B(q),
and C(q). For simplicity, we use the notations A, := A(¢"), B, := B(q"), and
C,, := C(q"™), for a positive integer n.

Theorem 2. We have

x(=9)f*(—¢"®)
PRy = EDEEk (21)
P Ay +q3R1C2 _ f92 (22)
Ay fefis’
Q14> — ¢*R1 B> _ /3 (23)
B, fefis’
PBy — qQ1Cs _ f92 (24)
Ch fefig’
PiAs + Q1Bs + q3R102 _ f92 f3f128 (25)
Ay fofis  [éfo’
Q145 — ¢*R1 By + P1Cs _ /3 f3fts (26)
B fefis  féfo’
and
Ry Ay + PiBy — qQ1Cs _ fg2 + f3f128 (27)

Ch  fefis  féfo’

Proof. Setting {a = —¢,b= —¢®,c=1,d=¢"}, {a = —¢*>,b=—¢",c=1,d = ¢°},
and {a = —¢*,b= —¢°,c = 1,d = ¢} in Identity (6), respectively, and using basic
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properties of f(a,b), we obtain

f(_q7 _qS)f<q97 q27)

f(_q7 _q17) = f(qu, 7q10) ) (28)
2 7 9 27
f(_q7,_q11) :f( qf(a_qqz’)_f;?G)aq )’ (29)
and
f(—q5,—q13) :f(—q4, _qs)f(qg,qW). (30)

f(=q* —q")
Multiplying Identities (28)-(30) together and using Lemma 1 and Identity (10),
after some simplifications, we obtain Identity (21).
Setting {a = —¢*,b = —¢°, ¢ = ¢®,d = ¢°} in Identity (8), we obtain

f=a*,=a*) f(¢®.4°)
= f(=d",~a")f(=¢*, ~a'") + @ F(~a, ") f(=¢*, —¢'%).  (31)
Using Identity (11) with ¢ = ¢3 and Lemma 1 in Identity (31), we obtain Identity
(22). The proofs of Identities (23) and (24) are similar to Identity (22), and hence,
are omitted here.
Adding Identities (30) and (31) together and then by using Identity (11) with

q = ¢* and Lemma 1, we obtain Identity(25). The proofs of Identities (26) and (27)
are similar to Identity (25), and hence, are omitted here. O

4. Applications to the Theory of Partitions

In this section, we present partition theoretic interpretations of Identities (16) and
(27). For simplicity, we define

where r and s are positive integers and r < s.

Definition 1. A positive integer n has k colors if there are k copies of n available
and all of them are viewed as distinct objects. Partitions of a positive integer into
parts with colors are called colored partitions.

For example, if 2 is allowed to have two colors, say r (red), and g (green), then all
colored partitions of 3 are 3, 2, +1, 2,4+ 1,and 1 +14 1.

An important fact is that
1

(g% q“)k,
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is the generating function for the number of partitions of n, where all the parts are
congruent to u modulo v and have k colors.

Let P;(n) denote the number of partitions of n into parts congruent to +7, £11,
18 modulo 36 with two colors, parts congruent to +1, +£3, £4, +5, £8, £10, £13,
+15, £16, £17 modulo 36 with three colors, parts congruent to +2, +£6, +12, +14
modulo 36 with four colors, and parts congruent to +9 modulo 36 with five colors.

Let Py(n) denote the number of partitions of n into parts congruent to +5, £13,
18 modulo 36 with two colors, parts congruent to +1, +2, +3, +4, £7, £8, £11,
+15, +£16, 17 modulo 36 with three colors, parts congruent to £6, £10, +12, +14
modulo 36 with four colors, and parts congruent to 9 modulo 36 with five colors.

Let P3(n) denote the number of partitions of n into parts congruent to 41, +3,
417, 18 modulo 36 with two colors, parts congruent to +4, £5, +7, +8, +11, +13,
+14, £15, £16 modulo 36 with three colors, parts congruent to +2, £6, 10, £12
modulo 36 with four colors, and parts congruent to +9 modulo 36 with five colors.

Let Py4(n) denote the number of partitions of n into parts congruent to 1, +3,
+4, +5, £7, £8, +9, £11, £13, +15, +16, +17 modulo 36 with three colors, and
parts congruent to £2, +6, £10, +12, +14 modulo 36 with four colors.

Let Ps(n) denote the number of partitions of n into parts congruent to +1, +2,
+3, +4, +5, +6, £7, +8, +£10, +£11, +£13, +£14, +15, +16, +17 modulo 36, parts
congruent to £12 modulo 36 with two colors, and parts congruent to +9 modulo
36 with three colors.

Let Ps(n) denote the number of partitions of n into parts congruent to +3, £15,
+17 modulo 36, parts congruent to £1, £4, +5, £6, £7, 8, £10, =11, +13, £16,
+18 modulo 36 with two colors, parts congruent to +2, £12, £14 modulo 36 with
three colors, and parts congruent to +£9 modulo 36 with four colors.

Theorem 3. For any positive integer n > 3, we have
1 1
Pi(n) — Py(n—3)+ P3s(n—1) — §P4(n +1)+ §P5(n +1)—Ps(n—2)=0, (32)

where P;(n), 1 <14 <6, are defined above.

Proof. Using Identities (2)-(5) in Identity (16), and then rewriting all the products
on both sides of the resulting identity subject to the common base ¢3¢, we obtain
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1

{(q:t7,q:t11,q18;q36)go(q:t1 q:t3 :t4 8 :th :|:137q:t15’q:t167q:|:17;q36)go

5.q
« ! }
(q%2,¢%6, q*12, ¢4 ¢30) 4 (

{ (q%°, 13, ¢18;¢%6)2 (¢F1, %2, ¢33, ¢
1
(in7 qi10’ qi127 qi14; q36)

:t7 :N:S’ q:i:117 q:I:15, q:i:16’ q:|:17; q36)go

X

+ { (qil’ qi3’ qi17’ q18; q36)2 (qi4 qiS
y 1
(q%2, %6, ¢+10, ¢F12;¢30)4 (g

=
i8 qi117 qi137 qilél7 qilo7 qilﬁ; q36)go

E
)

-1
q
{ 2 (qFT, 3, qF qF5, qFT qF8 B0, F 1T g F 13 g ET5 g E16 g E1T, 36)3

1
X
(qF2, q%6, qH10, gF12 g+ 14 ¢36) 4 }

-1
q
+ { 2 (qET, g2, qF3, qFL, qF5 qE6 qET ¢FB qFI0 gEIT F13 1A (E15. 436)

1
X —
(qilGaqi17;q36)oo(qi12;q36)go (q:l:);qSG)go}
q2
{(qi?’aqil"’,qi”;q%)m (g, g, qt5, g0, qFT, qF8, qF10, gF 1 g F13; ¢36) 2

1
X
(qF16, ¢18; ¢30)2 (g2, 12, gF14; ¢30)3 (qig;q%)?ﬁo}

=0.
(33)

Observe that the left-hand side of Equation (33) represents the generating functions

for Pi(n), P2(n), Ps(n), Py(n), Ps(n), and Ps(n), respectively. Hence, the above
equation is equivalent to

o0 o) o 1 o
D Pi(n)g" =Y Pa(n)g" ™+ Py(n)g"t — 52 Py(n)g"
n=0 n=0 n=0 n=0
1 - n—1 - n+2
+ 5 Pa(n)g" ™t =Y Pe(n)g"t? =0.

n=0 n=0

Equating the coefficients of ¢” (n > 3) on both sides of the above relation, we
obtain Equation (32). O
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Example 1. Table 2 illustrates the case n = 4 in Theorem 3.

1, 4, 4, 3, +1,, 3, + 1y, 3, T 1, 3, 1, 3, 1,
39+ 1y 3y + 1o, 3y + 100 3y + 1y 20 + 2, 2, +2,,
2 + 20, 20+ 250 25 + 251 20 + 20, 20 + 20,
2+ 2y, 2+ 20 25 + 20, 2 + 1o+ 1y,
9+ 1, + 1y, 20+ 1, + 1y, 2,4+ 1, + 1,
%+ 1y + 1y 2+ 1+ 1y 25+ 1, + 10, 25+ 1, + 1,
2 + 1y + 1y, 29+ 1y + 14,20 + 1y + 1y 25 + 1y + 1y,
2 + Lo+ 1, 2+ 1y + 19, 25+ Lo+ 1y, 2, + Lo + 1,
2+ 1,+1,, 2,+1,+1,, 2+ 1, +1,, 2, +1, + 1
2w+1r+1ya 2w+1r+1ya2w+1y+1y, 211)+1g+1y;
Lot L+ 141, L+ 1+ 1y, 1o+ 1, + 1+ 1y,
Lot 1y +1g+1g, 1g+1g+ 19+ 1y, 1o+ 1, + 1, + 1y,
L+L+1,+1,, L +1, +1, +1,, 1, +1, +1, + 1,
Ly+1g+1g+1y 1g+1g+1,+1, 1, +1,+1, +1,

1, 1y, 1,

31, 39, 2+ 1py 20+ 14, 29+ 1,, 29+ 1g, 2, + 1,
2+ 19y 20+ 1, 204 1g, L4141, 1+ 1,41,
L+ 1,41, 1,4+ 1,+1,

Pi(4) =58
P(1) =3
P3(3) = 14
Py(5) = 133

Br, Bgy By Ar + 1ry 4p £ 1,, 4.+ 1,
dg+1p, Ag+1g, 49+ 1y, 4y +1,, 4y + 1y, 4y + 1,
3042, 30+ 24, 3042y, 3r+ 20, 39+ 20, 39+ 2,
354 2y, 39+ 2w, 3y +2r 3y 420, 3y + 2y, 3y + 20
3414 1o, 3p4 Lo+ 1, 3,4 1,4 14, 3,4 1, + 1,
34+ 1y+1y, 3p+ 141, 354 1o+ 1y 3,4 1r + 1y,
3g+1g+1g7 3g+17'+1y7 39+1y+1y7 3g+1g+1y7
By+1r+1, 3+ 1,41y, 3,4+ 1,41y 3, + 1, +1,,
3y+1y+1y 3y +1g+1y, 2,42, +1,, 2, +2,+1,,
2+ 2 + 1 2042+ 1, 242, + 10, 2,42, +1,,

20+ 20 + 1ry 20+ 2y + 1p, 29+ 20 + 1ry 2 + 20 + 1,
%424 19, 20429+ 1y, 29 +25+ 1y, 2,42, + 1y,
2+ 2y + 1y, 20+ 20 + 1y, 20+ 20 + 1y, 25 +2, + 1,
2+ 2w+ 1g, 2+ 2w+ 1y, 20 +2,+1,, 2,+2,+ 1,
242+ 1y, 2042+ 1y, 2,+2,+ 1y, 2,42, + 1y,
Q0+ 20+ Ly 2942y + 15,20 + 20 + 1y, 2, + 20 + 1,
%A Lot Lot 1oy 2o Lo+ L4 1y, 204+ 141+ 1y,
2+ 1,4+ 1+ 1, 2.+ 1, +1,+1, 2, + 1, +1,+1,,
%A1y + 1y 41y 24+ 1,4+ 1+ 1y, 2.+ 1,41, + 1,
%4 Lo+ 1g+1y, 20+ 1+ 141, 25+ 1, + 1, + 1,
2+ 1o+ 1g+1y, 20+ 1,4+ 1,+ 1y, 2,+ 1, + 1, +1,,
2t e+ 1y+1y, 2041, +1,+1,, 2, +1,4+1,+1,,
2, +1,+1,+1,, 2,+ 1. +1,+1,

13
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2 + 1, +1,+1,, 2,1, +1, +1,, 2, + 1, + 1, +1,,

2 +1g+ 141, 2,0+ 14+ 1o+ 1y, 2,+ 1, +1, + 1,

2+ 1y 1, +1y, 2+ 1+ 1,41, 2,+1,+1, +1,,

2+ 1+ 141y 20+ 1+ 1,41, 25+ 1, 4 1, + 1,

2+ 1+ 1419, 20+ 1+ 1,4+ 19, 20 + 1+ 1, + 1,

2+ LA 1y + 1y, 2+ 1y + 1y + 1y, 24+ 1+ 1, + 1,

20+ 1o+ 1, + 1y, 20+ 1,41, +1,
L+l + L+ 1L+ 1, L+ 1L+ 1L+ 1,41,
L+l 41 41,41y, L4141+ 1,+1,,
Lo+ lg+1g 41,41, T4+ 1,+1,+1, 41y,
Lo+ lg+ 1y + 1,41y, 1o+ 1, + 1,41, +1,,
L+l 4L+ 1y, L4141 +1,+1,,
L+l 41,41, + 1, L+1,4+1,+1,+1,,
L+ 1y +1y+ 1,4+ 1y, Lo+ Llo+ 1, +1,+1,,
Lo+ 1,4+ 1g+ 1,41y, 1,41, + 1, + 1, + 1,
L+l l,4+ 141, L+1,+1,+1,+1,,
141,41, +1,+1,

Ps(5)=7| 5, 4+1,3+23+1+1,2+2+1 2+1+1+1,

1+1+1+1+41

Ps(2) =6 2, 24, 24, Lr+ 1, 1o+ 1y, 1, + 1,

Table 2: Partition function values and colored partitions

Let Q1(n) denote the number of partitions of n into parts congruent to +2, +5,
46 modulo 18 and parts congruent to +1, £8, 9 modulo 18 with two colors. Let
Q2(n) denote the number of partitions of n into parts congruent to £4, £6, £7, +8
modulo 18, parts congruent to 1 modulo 18 with two colors, and parts congruent
to 9 modulo 18 with four colors. Let Q3(n) denote the number of partitions of n
into parts congruent to +1, 2, +4, £5, £6, +7, +8 modulo 18 and parts congruent
to 9 modulo 18 with two colors. Let Q4(n) denote the number of partitions of n
into parts congruent to +£1, £2, £3, +4, £5, £6, £7, £8 modulo 18. Let Q5(n)
denote the number of partitions of n into parts congruent to +1, £2, +4, +5, +6,
+7, £8 modulo 18 and parts congruent to 9 modulo 18 with two colors.

Theorem 4. For any positive integer n > 1, we have
Q1(n) — Q2(n — 1) + Qs(n) — Qa(n) — Qs(n) =0, (34)
where Q;(n), 1 <i <5, are defined above.

Proof. Using Identities (2)-(5), in Identity (27), and then rewriting all the products
on both sides of the resulting identity subject to the common base ¢'8, we obtain
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1
(a1, q*8, 0% ¢"®)2 (a%2, ¢*°, ¢, 48, ¢18)
q
(g% a®)2 (¢4, ¢, 657, 458 %) o (¢°; )4
1
(qFY, g2, 0%, ¢, 655, ¢FT7, 4585 ¢18) oo (0% 1) %
1
(g*, q%2,¢%3, ¢4, ¢, ¢36, ¢F7, ¢F8; ¢1%) o
! ~0 (35)
(¢FL, ¢%2, ¢4, g5, g6, g5, ¢8; q18) o (9, ¢1F)2 :
Observe that the left-hand side of Equation (35) represents the generating functions
for Q1(n), Q2(n), Qs(n), Qs(n), and Qs(n), respectively. Hence it is equivalent to

_|_

> Q)" —q)_ Qan)g" + Y Qs(n)g" = > Qu(n)g" =Y Qs(n)g" =0,
n=0 n=0 n=0 n=0 n=0

where we set Q1(0) = @2(0) = Q3(0) = Q4(0) = @5(0) = 1. Equating coefficients
of ¢" (n > 1) on both sides yields of the above relation, with which we obtain
Equation (34). O

Example 2. Table 3 illustrates the case n = 5 in the above theorem.

Pi(5)=13 1[5 2+2+1,, 2+2+1,, 2+ 1, +1,+1,, 2+ 1, + 1, + 1,
241, +1,+ 1y, 241, +1,4+ 1, 1, + 1, + 1, + 1, +1,
L+l 41, +1+1, 1L, + 1 +1,+ 1, + 1,

L, +1, 4+l +1,+1,, L, +1,+1,+1,+ 1,
1g+1g+1g+1g+1g

Py(4) =6 4, 1, +1,. +1,+1,, L, +1,+1,+1,,
L,+1,+1,4+1,, 1, +1,+1,+1,, 1,+1,+1,+ 1,

P;(5)=5 5, 4+1,24+24+1,2+1+14+1, 1+14+14+1+1
Py(5) =7 5, 4+1,3+2, 3+1+1,

24241, 2414141, 1+1+141+1
Ps(5) =5 5, 4+1,2+2+1, 24+1+1+1, 1+1+1+1+1

Table 3: Partition function values and colored partitions
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