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Abstract

Recall that a Stirling permutation is a permutation on the multiset

{1, 1, 2, 2, . . . , n, n}

such that any numbers appearing between repeated values of i must be greater than
i. We call a Stirling permutation “flattened” if the leading terms of maximal chains
of ascents (called runs) are in weakly increasing order. Our main result estab-
lishes a bijection between flattened Stirling permutations and type B set partitions
of {0,±1,±2, . . . ,±(n − 1)}, which are known to be enumerated by the Dowling
numbers, and we give an independent proof of this fact. We also determine the
maximal number of runs for any flattened Stirling permutation, and we enumerate
flattened Stirling permutations with a small number of runs or with two runs of
equal length. We conclude with some conjectures and generalizations worthy of
future investigation.
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1. Introduction

Throughout, let n ∈ N := {1, 2, 3, . . .}, [n] := {1, 2, · · · , n}, and Sn denote the set

of permutations of the set [n]. If σ ∈ Sn, then the runs of σ are the maximal

contiguous increasing subwords of σ. If the sequence of leading terms of the runs

appear in increasing order, then we say σ is a flattened partition of length n. For

example, σ = 135246 is a flattened partition of length six while σ = 613425 is not

a flattened partition, as the leading terms 6, 1, 2 are not in increasing order.

Nabawanda, Rakotondrajao, and Bamunoba establish the following recursive for-

mula.

Theorem 1 ([9]). Let fn,k denote the number of flattened partitions of length n

with exactly k runs. Then

fn,k =

n−2∑
m=1

((
n− 1

m

)
− 1

)
fm,k−1,

where fn,1 = 1, for all n ≥ 1, and fn,k = 0, for all k ≥ n ≥ 2.

Elder, Harris, Markman, Tahir, and Verga, generalized the work of Nabawanda et

al. by giving recursive formulas for 1r-insertion flattened parking functions. These

are the flattened parking functions built from permutations of [n], with r additional

ones inserted, and which have k runs [3, Theorems 29, 30 and 35]. Motivated by

the work of Nabawanda et al. [9] and Elder et al. [3], we study flattened Stirling

permutations, a subset of Stirling permutations, which we define next.

We let [n]2 := {1, 1, 2, 2, . . . , n, n} denote the multiset with each element in

[n] appearing twice. We recall that a Stirling permutation of order n is a word

w = w1w2 . . . w2n on the multiset [n]2, in which every letter in [n] appears exactly

twice and any values between the repeated instances of i must be greater than

i. We denote the set of Stirling permutations of order n as Qn, and recall that

|Qn| = (2n− 1)!! [6, Theorem 2.1]. For example, 112299388346677455 ∈ Q9, while

112293883946677545 /∈ Q9 since the threes appears between the two instances of

the nine.

Stirling permutations were introduced by Gessel and Stanley, and they give a

combinatorial interpretation of the coefficients of the polynomial

Qn(t) =
(1− t)2n+1

t

∑
m≥0

S(m+ n,m)tm,

where S(a, b) denotes the Stirling number of the second kind. They establish that

Qn(t) =
∑

w∈Qn

tdes(w),
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where des(w) counts the number of descents of w, which are indices i such that

wi > wi+1 [6, Theorem 2.3]. Since then, many have studied statistics of Stirling

permutations, including enumerating their descents, ascents, ties, and mesa sets,

as well as generalizing to quasi-Stirling permutations and studying descents and

γ-positivity [2, 4, 5, 7, 12].

We now define our main object of study. Given w ∈ Qn, we begin by defining

the runs of w to be the maximal contiguous weakly increasing subwords of w. If the

sequence of leading terms of the runs appear in weakly increasing order, then we

say w is a flattened Stirling permutation of order n. We denote the set of flattened

Stirling permutations of order n by flat(Qn), and we let flatk(Qn) be the subset

of flat(Qn), which have exactly k runs. For example, 112299388346677455 ∈ Q9

is flattened since the leading terms of the runs appear in the order 1, 3, 3, 4; while

123321445566778899 ∈ Q9 is not flattened, as the leading values of the runs are

1, 2, 1, which are not in weakly increasing order. Table 1 provides the cardinality of

the sets |Qn|, |flat(Qn)|, and |flatk(Qn)| for 1 ≤ n ≤ 10 and 1 ≤ k ≤ 7. The Sage

code used to produce the data in this table can be found on CoCalc.

n |Qn| |flat(Qn)| |flat1(Qn)| |flat2(Qn)| |flat3(Qn)| |flat4(Qn)| |flat5(Qn)| |flat6(Qn)| |flat7(Qn)|
1 1 1 1
2 3 2 1 1
3 15 6 1 5
4 105 24 1 15 8
5 945 116 1 37 70 8
6 10395 648 1 83 374 190
7 135135 4088 1 177 1596 2034 280
8 2027025 28640 1 367 6012 15260 6720 280
9 34459425 219920 1 749 20994 93764 88732 15680
10 654729075 1832224 1 1515 69842 508538 866796 363132 22400

Table 1: Counts for flattened Stirling permutations based on number of runs.

Nabawanda et al. give a combinatorial bijection between flattened partitions over

[n+1] and set partitions of [n] [9, Theorem 19]. Elder et al. also establish a bijection

between 1r-insertion flattened parking functions with set partitions of [n+ r] with

exactly k blocks having two or more elements [3, Theorem 37]. Given these results,

it is natural to ask whether flattened Stirling permutations are in bijection with

some type of set partitions. This is in fact true, and is the content of our main

result, which we state below.

Theorem 2. For n ≥ 1, the set flat(Qn+1) of flattened Stirling permutations of

order n + 1 is in bijection with the set of type B set partitions on the interval of

integers [−n, n].

We recall that the Dowling numbers, denoted Dn (OEIS A007405), enumerate

type B set partitions [1, Statement 6]. Thus, Theorem 2 readily implies that the set

of flattened Stirling permutations of order n+ 1 are enumerated by the nth Dowling

number (Corollary 1). Utilizing our bijection between type B set partitions and

https://cocalc.com/share/public_paths/49995921347a438cdfdbf1bd39a740a325a909d2
https://oeis.org/A007405
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flattened Stirling permutations, we give a proof for the following formula (Theorem

4):

Dn = |flat(Qn+1)| =
n∑

i=0

(
n

i

) n−i∑
k=0

2n−i−kS(n− i, k),

where S(a, b) denote the Stirling numbers of the second kind with S(a, 0) = 0 for

all a ≥ 0.

Our paper is organized as follows. In Section 2, we provide the necessary back-

ground to make our approach precise, including definitions and examples of type B

set partitions. In Section 3, we prove Theorem 2. In Section 4, we give enumerative

formulas for

1. the number of runs in a flattened Stirling permutation of order n (Lemma 4),

2. the maximal number of runs in a flattened Stirling permutation of order n

(Lemma 5),

3. the number of flattened Stirling permutations of order n with one or two runs

(Proposition 2),

4. the total number of flattened Stirling permutations of order n (Theorem 4).

In Section 5, we conclude by presenting a few conjectures and a generalization of

our work worthy of future study.

2. Background on Type B Set Partitions

We remark that the study of type B set partitions began with the work of Mon-

tenegro, where he investigates the type B analog of noncrossing set partitions from

which he constructs the type B associahedron [8]. Using this construction, Reiner

[10] develops a definition for type B set partitions. Adler expands Reiner’s work

and creates a notation for type B set partitions as canonical words [1]. In this

section, we provide the necessary definitions and adopt Adler’s notation for type B

set partitions for our purposes.

Definition 1. A type B set partition of [−n, n] is a collection of sets (also referred

to as blocks), B = {β0, β1, β2, . . . , βk}, satisfying the following conditions:

1. βi is a subset of [−n, n] for all 0 ≤ i ≤ k,

2. βi ∩ βj = ∅ whenever i ̸= j,

3. ∪k
i=0 βi = [−n, n],
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4. if β ∈ B, then −β := {−b : b ∈ β} ∈ B, and

5. there is exactly one block β ∈ B satisfying β = −β.

Note that Conditions 1-3 are the definition of a “standard” set partition of

[−n, n]. We say the blocks β and −β, described in Condition 4, are a block pair of

B. The unique block described in Condition 5, satisfying β = −β, must contain 0

and is called the zero-block of B. We let ΠB
n denote the collection of all type B

set partitions of [−n, n], and we let ΠB
n,m denote the collection of all type B set

partitions having exactly m block pairs.

We illustrate these definitions next.

Example 1. Consider the following collections of subsets of [−4, 4]:

B1 = {{−4, 3}, {1,−2, 0,−1, 2}, {−3, 4}}

and

B2 = {{3,−4, 2}, {1}, {−1}, {−2, 4,−3}, {0}} .

Notice that, B1 has zero-block {1,−2, 0,−1, 2} and a block pair consisting of {3,−4}
and {−3, 4}. Thus, B1 ∈ ΠB

4,1. Whereas, B2 has zero-block {0} and two block pairs

consisting of {1}, {−1} and {−2,−3, 4}, {2, 3,−4}. Thus, B2 ∈ ΠB
4,2.

We adopt the notation of Adler, who encodes type B set partitions through a

canonical sequence of words, which we describe below [1, p. 2].

Notation 1. Given B ∈ ΠB
n,m, perform the following steps:

1. In each of the m block pairs in B, keep only the block with minimal positive

element.

2. Keep the 0-block, removing any negative elements, and label the block β0.

3. Order the remaining blocks by minimum positive elements and label them

β1, . . . , βm.

4. Order the full subcollection of block as β0, β1, . . . , βm.

5. Within each block, order the elements by first placing the negatives in de-

creasing order, followed by the positive numbers in increasing order.

6. For notational simplicity, denote negatives with bars, i.e, barred elements are

just negative numbers.

7. Encode the elements of βi as a word πi and denote the collection of blocks by

π = π0|π1|π2| · · · |πm.
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We illustrate the use of Adler’s notation (as described in Notation 1) with the

following example.

Example 2. The type B set partitions from Example 1

B1 = {{−4, 3}, {1,−2, 0,−1, 2}, {−3, 4}}

and

B2 = {{3,−4, 2}, {1}, {−1}, {−2, 4,−3}, {0}}

are encoded by 012 | 4̄3 and 0 | 1 | 4̄23, respectively. Consider the following element

of ΠB
10,4:

B =

{
{0}, {1}, {−1}, {2, 7,−8}, {−2,−7, 8},

{3, 5, 6,−9,−10}, {−3,−5,−6, 9, 10}, {4}, {−4}

}
.

In this case, applying Notation 1 yields 0 | 1 | 8̄27 | 9̄(10)356 | 4.

Henceforth, all of our type B set partitions adopt Notation 1, and we utilize the

canonical sequence of words to denote them. Therefore, we write π ∈ ΠB
n to denote

elements of the set for which we have implemented Notation 1.

3. Main Bijection

The main objective of this section is to prove Theorem 2, establishing a bijection

between flattened Stirling permutations of order n+1 and type B set partitions of

[−n, n]. To begin, we adapt Notation 1 for these purposes.

Definition 2. Let π = π0 |π1 | · · · |πm be a type B set partition in ΠB
n,m. For

every 0 ≤ i ≤ m further partition πi into πi = NiPi, where:

• Ni consists of the barred elements in πi and

• Pi consists of the positive values in πi.

Note that for any π ∈ ΠB
n,m, by Notation 1, we know π0 always consists of

nonnegative values. Thus, it is always the case that N0 = ∅. Henceforth, we only

consider Ni with 1 ≤ i ≤ m.

Example 3. Continuing Example 2, let π = 0 | 1 | 8̄27 | 9̄(1̄0)356 | 4. Then

π = 0︸︷︷︸
P0

| ∅︸︷︷︸
N1

1︸︷︷︸
P1

| 8̄︸︷︷︸
N2

27︸︷︷︸
P2

| 9̄(1̄0)︸ ︷︷ ︸
N3

356︸︷︷︸
P3

| ∅︸︷︷︸
N4

4︸︷︷︸
P4

,

where we include an empty set symbol whenever a block does not have any barred

elements.
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We now provide the following technical result.

Lemma 1. Let π = π0 |π1 | · · · |πm be a type B set partition in ΠB
n,m. If πi = NiPi

is as in Definition 2, then for all 0 ≤ i ≤ m:

1. |Pi| ≥ 1, and

2. the minimal magnitude of the elements in Ni is larger than the minimum

element in Pi, i.e., min(−Ni) > min(Pi), where −Ni = {−ℓ : ℓ ∈ Ni}.

Proof. (1): By definition, we always select a block pair by minimum of the positive

elements. Thus there is at least one element in the corresponding Pi, implying that

|Pi| ≥ 1.

(2): If Ni = ∅, then by definition, the minimal magnitude of the elements in Ni is

infinity. This is larger than the minimum element in Pi. If Ni ̸= ∅ and min(−Ni) <

min(Pi), then this would contradict that πi = NiPi is the block pair that has the

smallest nonnegative positive value, as −π would have been selected in Step 1 of

Notation 1.

We now establish the following results, which will be used in our main bijection.

Given the simplicity of the proof, we have omitted the details.

Lemma 2. Let P ([−n, n]) denote the power set of the set of integers in the interval

[−n, n]. Then for each S ∈ P ([−n, n]) the function h : P ([−n, n]) → P ([n + 1])

defined by

h(S) = {|i|+ 1 : i ∈ S}

yields h(S) ∈ P ([n+ 1]).

Let W([n+ 1]) denote the set of all words of even length at most 2n+ 2, whose

letters come from the alphabet [n+1] and each letter that appears in a word appears

exactly twice. For example, if n = 1, then

W([2]) = {∅, 11, 22, 1122, 1212, 1221, 2112, 2121, 2211},

where we let ∅ denote the empty word, which has length zero. Note that Qn+1 ⊆
W([n+ 1]) for all n ≥ 0.

Lemma 3. Let P ([n + 1]) denote the power set of [n + 1]. Define the function f

on P ([n+ 1]) by

f(S) =

{
s1 s1 s2 s2 s3 s3 · · · sk sk if S = {s1 < s2 < s3 < · · · < sk}
∅ if S = ∅

yields f(S) ∈ W([n+ 1]), and g : P ([n+ 1]) → W([n+ 1]) defined by

g(S) =

{
s1 s2 s2 s3 s3 · · · sk sk s1 if S = {s1 < s2 < · · · < sk}
∅ if S = ∅
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yields g(S) ∈ W([n+ 1]).

Proof. If S = ∅, then f(∅) and g(∅) return the output ∅, which is an element of

W([n+ 1]). We order the elements of S as s1 < s2 < s3 < · · · < sk, where k = |S|.
Then f(S) = s1 s1 s2 s2 · · · sk sk and g(S) = s1 s2 s2 · · · sk sk s1 are unique

outputs of these functions. These are words with letters in [n+ 1], each appearing

twice. Thus, the words have length 2k and are elements of W([n+ 1]). Thus, f(S)

and g(S) are both in W([n+ 1]).

Proposition 1. Let h be as defined in Lemma 2, and f , g be as defined in Lemma

3. Let π = π0 |π1 | · · · |πm ∈ ΠB
n and, for each 0 ≤ i ≤ m, let πi = NiPi be as in

Definition 2. For each π ∈ ΠB
n , the function φ : ΠB

n → flat(Qn+1) defined by

φ(π) = g(h(P0))f(h(N1))g(h(P1)) · · · f(h(Nm))g(h(Pm)) (1)

yields φ(π) ∈ flat(Qn+1).

Proof. By Lemmas 2 and 3 we know the output of φ(π) is unique. Moreover, by the

definition of π = π1 |π2 | · · · |πm, we know that the numbers [0, n] appear exactly

once in π, some of which might have bars. Furthermore, for each i ∈ [m], we have

that πi = NiPi where Ni consists of the barred/negative elements in πi and Pi

consists of the positive values in πi. Note that applying the function h to Ni (for

all 1 ≤ i ≤ m) and to Pi (for all 0 ≤ i ≤ m), returns all of the numbers in [n + 1]

and each number appears exactly once. Applying g and f as described in Equation

(1) ensures that the output φ(π) is a word of length 2(n+1) in which the numbers

in [n+ 1] appear exactly twice.

It suffices to show that φ(π) is a Stirling permutation of order n+ 1, which sat-

isfies the flattened condition1. We do this in that order.

Step 1. Showing φ(π) is in Qn+1.

To show that φ(π) ∈ Qn+1, fix i ∈ [n + 1] to be arbitrary. There are two cases

to consider:

Case 1: i appears in an outcome of the form f(h(Nj)) for some 1 ≤ j ≤ m. In

this case i i appears in φ(π) with no values in between the repeated instances of i,

which satisfies the needed condition for a Stirling permutation.

Case 2: i appears in an outcome of the form g(h(Pj)) for some 0 ≤ j ≤ m.

In which case, if i = min(Pj), then we have that i appears as the first and last

letters in the subword g(h(Pj)). All values between the repeated instances of i (if

any) are larger than i, which satisfied the condition for a Stirling permutation. If

i ̸= min(Pj), then we have that i i appears in φ(π) with no values in between the

1For the interested reader, we provide Example 4 illustrating this part of the proof.
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repeated instance of i. We also note that i is larger than min(Pi). Thus, φ(π) is a

Stirling permutation.

Step 2. Showing that φ(π) is flattened.

Recall from Notation 1, that we ordered the blocks of π based on the minimum

positive values and placed the zero-block at the start. Moreover, each block was

then ordered by placing any negative values within a block at the start of the block

in decreasing order followed by the positive values in increasing order (Step 5 in

Notation 1).

We begin by claiming that no run can be started within a subword f(h(Ni)),

for any 1 ≤ i ≤ m. To establish this, note that since every element in h(Ni) is

larger than min(h(Pi)), and min(h(Pi−1)) < min(h(Pi)), we have that the subword

g(h(Pi−1)) will always end with the minimum of Pi−1. Then f(h(Ni)) (which is

written in weakly increasing order) will never start a run.

Fix 1 ≤ i ≤ m. We now consider the following exhaustive cases:

1. If |Pi| = 1 and Ni = ∅, then g(h(Pi)) does not begin a new run because the

min(Pi−1) < min(Pi).

2. If |Pi| = 1 and Ni ̸= ∅, then f(h(Ni))g(h(Pi)) is equal to

(|n1|+1) (|n1|+1) (|n2|+1) (|n2|+1) · · · (|n|Ni||+1) (|n|Ni||+1) (p1+1) (p1+1),

where Ni = {n1 > n2 > · · · > n|Ni|}, Pi = {p1}, and pi < |n|Ni|| + 1. Thus,

the first instance of p1 + 1 = min(Pi) + 1 begins a new run, and the second

instance continues this same run.

3. If |Pi| > 1 and Ni = ∅, then f(h(Ni))g(h(Pi)) = g(h(Pi)) is equal to

(p1 + 1) (p2 + 1) (p2 + 1) · · · (p|Pi| + 1) (p|Pi| + 1) (p1 + 1),

Thus, the first occurrence of p1+1 = min(Pi)+1 is greater than min(Pi−1)+1

and hence continues the previous run (if any) and the second instance of p1 +

1 = min(Pi) + 1 begins a new run.

4. If |Pi| > 1 and Ni ̸= ∅, then f(h(Ni))g(h(Pi)) is equal to

(|n1|+ 1) (|n1|+ 1) · · · (|n|Ni||+ 1) (|n|Ni||+ 1) (p1 + 1) (p2 + 1) (p2 + 1) · · · (p|Pi| + 1) (p|Pi| + 1) (p1 + 1),

where Pi = {p1 < p2 < · · · < p|Pi|} and Ni = {n1 > n2 > · · · > n|Ni|}. Thus,

each instance of p1+1 = min(Pi)+1 begins a new run since |n|Ni||+1 > p1+1

and p|Pi| + 1 > p1 + 1.

For the case where i = 0, note that N0 is empty and

g(h(P0)) =

{
11 if P0 = {1}
1 p2 p2 · · · pk pk 1 if P0 = {1 < p2 < p3 < · · · < pk}, with k ≥ 2.
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This ensures that φ(π) begins with 11 or that the first two runs begin with the

value 1.

Note that by Step 3 in Notation 1, we know that min(P0) < min(P1) < · · · <
min(Pm), which ensures that (min(P0)+1) < (min(P1)+1) < · · · < (min(Pm)+1).

As the only locations at which runs may begin are at values equal to min(Pi) + 1

(for some i), we have that φ(π) satisfies the flattened condition. Thus, φ(π) is a

flattened Stirling permutation.

We illustrate the proof technique for Proposition 1 below.

Example 4. Continuing Example 3, if

π = 0︸︷︷︸
P0

| ∅︸︷︷︸
N1

1︸︷︷︸
P1

| 8̄︸︷︷︸
N2

27︸︷︷︸
P2

| 9̄(1̄0)︸ ︷︷ ︸
N3

356︸︷︷︸
P3

| ∅︸︷︷︸
N4

4︸︷︷︸
P4

then

φ(π) = 11︸︷︷︸
g(h(P0))

22︸︷︷︸
g(h(P1))

99︸︷︷︸
f(h(N2))

3883︸︷︷︸
g(h(P2))

(10)(10)(11)(11)︸ ︷︷ ︸
f(h(N3))

466774︸ ︷︷ ︸
g(h(P3))

55︸︷︷︸
g(h(P4))

.

Note that φ(π) is an element of flat(Q11) and has five runs.

We now prove that the function defined in Proposition 1 is a bijection.

Theorem 3. The function φ : ΠB
n → flat(Qn+1) defined in Proposition 1 is a bi-

jection.

Proof. For injectivity, assume that π = π0 |π1 |π2 | · · · |πm and τ = τ0 | τ1 | τ2 | · · · | τk
are distinct elements of ΠB

n . Further, suppose that the first index at which π and

τ differ is i. Namely, πj = τj for all 0 ≤ j < i and πi ̸= τi. Let πi = NiPi

and τi = N ′
iP

′
i be as in Definition 2. If Ni ̸= N ′

i , then h(Ni) ̸= h(N ′
i). Hence

f(h(Ni)) ̸= f(h(N ′
i)), and so φ(π) ̸= φ(τ). If Ni = N ′

i , then it must be that

Pi ̸= P ′
i , hence h(Pi) ̸= h(P ′

i ). Hence g(h(Pi)) ̸= g(h(P ′
i )), and so φ(π) ̸= φ(τ).

Thus φ is injective.

For surjectivity,1 let w = w1 w2 . . . w2n ∈ flat(Qn). We will construct the sub-

words N∗
i and P ∗

i as follows.

1. Start at the right end of w, and consider the value w2n.

2. Find the smallest index 1 ≤ j ≤ 2n − 1 for which wj = w2n. Note wj is the

left most occurrence of the value w2n. Label the subword beginning at wj and

ending at w2n, which we denote with wj · · ·w2n, as P
∗
1 .

3. Look at wj−1.

1For the interested reader, we provide Example 5 illustrating this part of the proof.
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(a) If wj−1 < wj , then N∗
1 = ∅

(b) If wj−1 > wj , then find the longest contiguous subword wj−m · · ·wj−1

such that wx > wj for all j−m ≤ x ≤ j−1. Label the subword beginning

at wj−m and ending at wj−1, which we denote with wj−m · · ·wj−1, as

N∗
1 .

4. Repeat this process to construct P ∗
2 and N∗

2 , starting at the next available

letter, wj−m−1, which is not included in N∗
1P

∗
1 . Continue constructing P ∗

i and

N∗
i in this way, until you have labeled all of w in this manner and included

w1 in some P ∗
k for some k ≥ 1.

Note that since w ∈ flat(Qn), we will end after k ≥ 1 iterations of the steps above.

We end with P ∗
k which is a subword that begins and ends with the value 1. We now

have a partitioning of w into the subwords

w = P ∗
kN

∗
k−1P

∗
k−1 · · ·N∗

1P
∗
1 .

Create a type B set partition from these subwords as follows:

5. Start at P ∗
k . Delete the rightmost occurrence of each letter. Replace each

remaining letter, wi, with (wi − 1). Draw a divider to the right of these

letters. Label this subword as π0 = P0.

6. If k > 1, then consider N∗
k−1P

∗
k−1.

(a) If N∗
k−1 = ∅, then write N1 = ∅.

(b) If N∗
k−1 ̸= ∅, delete the rightmost occurrence of each letter. Replace each

remaining letter, wi, with (wi − 1). Label this subword as N1.

(c) For each letter in P ∗
k−1, delete the rightmost occurrence of each letter.

Replace each remaining letter, wi, with wi − 1. Label this subword as

P1.

(d) Draw a divider to the right of P1, and label as π1 = N1P1.

7. Repeat this process until N∗
1P

∗
1 has been relabeled as πk−1 = Nk−1Pk−1,

omitting the part where the divider is added at the end.

This yields the partition

π = π0 |π1 |π2 | · · · |πk−1,

which we now show is a type B set partition.

Having begun with w ∈ Qn and being precise with the construction of π, we

ensure that (in absolute value) every number i ∈ [0, n] appears exactly once in π.

In addition, we can ensure that π0 is the 0-block, since 1 was contained in P ∗
k , as
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w is a flattened Stirling permutation. Based on Notation 1, this is sufficient to be

a type B set partition of [−n, n] as desired.

Furthermore, φ(π) is defined as the concatenation

φ(π) = g(h(P0))f(h(N1))g(h(P1)) · · · f(h(Nk−1))g(h(Pk−1)) (2)

where g(h(P0)) = P ∗
k and f(h(Ni))g(h(Pi)) = N∗

k−iP
∗
k−i as described above. Hence,

Equation (2) is precisely the description of w, which implies that φ(π) = w.

The statement of Theorem 2 follows immediately from Theorem 3.

In the proof of Theorem 3, surjectivity was a complicated process. We present

the following example to illustrate the steps in that part of the proof.

Example 5. Consider the following element of flat(Q11):

w = 1122993883(10)(10)(11)(11)46677455.

To construct the pairs N∗
i and P ∗

i , we first label the subwords (from right to left)

as in Steps (1)-(4) in Theorem 3:

11︸︷︷︸
P∗

5

22︸︷︷︸
P∗

4

99︸︷︷︸
N∗

3

3883︸︷︷︸
P∗

3

(10)(10)(11)(11)︸ ︷︷ ︸
N∗

2

466774︸ ︷︷ ︸
P∗

2

55︸︷︷︸
P∗

1

.

Next, we create the pairs Nk−i and Pk−i for the set partition as in Steps (5) - (7)

in Theorem 3:

π = 0︸︷︷︸
P0

| 1︸︷︷︸
P1

| 8︸︷︷︸
N2

2 7︸︷︷︸
P2

| 9 (10)︸ ︷︷ ︸
N3

3 5 6︸︷︷︸
P3

| 4︸︷︷︸
P4

.

We can verify that φ(π) = w, as desired.

Example 6. Below we provide all of the type B3 set partitions and the correspond-

ing flattened Stirling permutations given by Theorem 3.

φ(0|1|2|3) = 11223344, φ(0|1|23) = 11223443, φ(0|2̄1|3) = 11332244,
φ(02|1|3) = 13312244, φ(0|13|2) = 11244233, φ(03|1|2) = 14412233,
φ(0|12|3) = 11233244, φ(0|3̄1|2) = 11442233, φ(0|1|3̄2) = 11224433,
φ(01|2|3) = 12213344, φ(01|3̄2) = 12214433, φ(012|3) = 12233144,
φ(01|23) = 12213443, φ(0|123) = 11233442, φ(02|13) = 13312442,
φ(023|1) = 13344122, φ(0|2̄13) = 11332442, φ(02|3̄1) = 13314422,
φ(0|2̄3̄1) = 11334422, φ(03|2̄1) = 14413322, φ(013|2) = 12244133,
φ(03|12) = 14412332, φ(0|3̄12) = 11442332, φ(0123) = 12233441.

Recall that the Dowling numbers (OEIS A007405) enumerate type B set parti-

tions [1, Statement 6]. Thus, Theorem 2 readily implies the following.

Corollary 1. If n ≥ 1, then |flat(Qn+1)| = Dn, where Dn is the nth Dowling

number.

In Subsection 4.3, we provide a formula for the Dowling numbers (Corollary 3).

https://oeis.org/A007405
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4. Enumerating Flattened Stirling Permutations

In this section, we present enumerative results related to flattened Stirling permu-

tations.

4.1. Enumerating Runs

We begin by giving a formula for the number of runs in a flattened Stirling permu-

tation and follow this with a formula for the maximum number of runs in a flattened

Stirling permutation.

Lemma 4. Let w ∈ flat(Qn) and π = π0 |π1 | · · · |πk be its corresponding partition

in ΠB
n−1 (as in Theorem 3), with πi = NiPi (as in Definition 2) for all 0 ≤ i ≤ k.

Then

1 + |{Ni : |Ni| ≥ 1}|+ |{Pi : |Pi| ≥ 2}|

is the number of runs in w.

Proof. Let w ∈ flat(Qn) and let runs(w) denote the number of runs in w, where

runs(w) = des(w) + 1. Let π = π0 |π1 | . . . |πk be the type B set partition cor-

responding to w as given by Theorem 3. Recall that for all 0 ≤ i ≤ k, we write

πi = NiPi where Ni and Pi are as in Definition 2. We claim that every index i

satisfying |Ni| ≥ 1 and every index j satisfying |Pj | ≥ 2 in π encodes a distinct

descent of w.

Case 1: If Pi = {p1} and Ni = ∅, then f(h(Ni))g(h(Pi)) = p1p1 creates no

descents in w.

Case 2: Suppose Ni = ∅ and Pi = {p1 − 1 < p2 − 1 < · · · < pj − 1} where

|Pi| ≥ 2. Then g(h(Pi)) = p1 p2 p2 · · · pj pj p1. By construction, pj p1 creates a

descent since p1 < pj . Therefore, any Pi in π satisfying |Pi| ≥ 2 contributes a

descent to w, which in turn begins a new run.

Case 3: Suppose Ni ̸= ∅. Recall that by construction, we have that Pi ̸= ∅,
and the elements in Ni satisfy min(h(Ni)) > min(h(Pi)). Then f(h(Ni))g(h(Pi))

has the property that the last value in f(h(Ni)) is max(h(Ni)), and the first value

in g(h(Pi)) is min(h(Pi)). As max(h(Ni)) > min(h(Pi)), we note this contributes a

descent to w. Therefore, any Ni in π satisfying |Ni| ≥ 1 contributes a descent to

w, which in turn begins a new run.

Thus, the number of runs in w is given by

runs(w) = des(w) + 1 = 1 + |{Ni : |Ni| ≥ 1}|+ |{Pi : |Pi| ≥ 2}|.

We now provide a formula for the maximum number of runs in a flattened Stirling

permutation.

Lemma 5. The maximum number of runs in an element of flat(Qn) is ⌈ 2n
3 ⌉.
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Proof. Let w ∈ flat(Qn) and π ∈ ΠB
n−1 be its corresponding type B set partition.

By Lemma 4, the total number of runs is given by

1 + |{Pi : |Pi| ≥ 2}|+ |{Ni : |Ni| ≥ 1}|.

To maximize the number of runs, we must maximize the number of blocks, πi =

NiPi with |Pi| = 2 and |Ni| = 1. Suppose Pi = {p1−1 < p2−1} and Ni = {n1−1}.
Then the subword f(h(Ni))g(h(Pi)) has the form

n1 n1 p1 p2 p2 p1

with n1 > p1 and p2 > p1. Hence, this contributes two descents, which are three

letters apart in the subword. As w consists of 2n letters, the maximum number of

descents being contributed by blocks with |Ni| = 1 and |Pi| = 2 is given by 2n
3 .

Starting at the beginning of the word, we can create a descent at every third letter.

This creates no more than 2n
3 − 1 descents, where the “−1” accounts for the fact

that the first possible index at which a descent may occur is index three.

To maximize the number of descents, we would construct π to have descents at

indices 3k with 1 ≤ k ≤ ⌊ 2n−1
3 ⌋, where the numerator 2n−1 accounts for not being

able to have a descent at the last index. Since runs(w) = des(w) + 1, we have

established that the maximum number of runs is given by ⌊ 2n−1
3 ⌋+ 1 = ⌈ 2n

3 ⌉.

We now illustrate Lemma 5 with the following example.

Example 7. We consider n = 6, 7, 8 as these integers are congruent to 0, 1, 2

mod 3, respectively, and account for every case of Lemma 5. For each n = 6, 7, 8,

we construct a flattened Stirling permutation having a maximal number of runs.

• Let n = 6 and note ⌈ 2n
3 ⌉ = 4. To construct w1 ∈ flat(Q6) with four runs,

we must maximize the number of blocks, πi = NiPi with |Pi| = 2 and

|Ni| = 1. One such option is given by π = 13 | 425 | 6. Then φ(π) = w1 =

13 3 1 4 4 2 5 5 2 6 6, which has four runs.

• Let n = 7 and note ⌈ 2n
3 ⌉ = 5. To construct w2 ∈ flat(Q7) with five runs,

we must maximize the number of blocks, πi = NiPi with |Pi| = 2 and

|Ni| = 1. One such option is given by π = 13 | 4 2 5 | 7 6. Then φ(π) = w2 =

13 3 1 4 4 2 5 5 2 7 7 6 6, which has five runs.

• Let n = 8 and note ⌈ 2n
3 ⌉ = 6. To construct w3 ∈ flat(Q8) with six runs, we

must maximize the number of blocks, πi = NiPi with |Pi| = 2 and |Ni| =
1. One such option is given by π = 13 | 4 2 5 | 7 6 8. Then φ(π) = w3 =

13 3 1 4 4 2 5 5 2 7 7 6 8 8 6, which has six runs.

We remark that flattened Stirling permutations with a maximal number of runs

are yet to be enumerated, and we pose this as an open problem in Section 5.
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4.2. Flattened Stirling Permutations with a Small Number of Runs

We now give formulas for the number of flattened Stirling permutations with one

and two runs.

Proposition 2. If n ≥ 1, then

1. |flat1(Qn)| = 1, and

2. |flat2(Qn+1)| = 2|flat2(Qn)|+ 2n− 1, with |flat2(Q1)| = 0.

Proof. For (1): We note that

w = 11 2 2 · · · (n− 1) (n− 1)nn

is the only flattened Stirling permutation with one run.

For (2): We now construct the elements of flat2(Qn+1) from those in flat1(Qn) and

flat2(Qn).

Case 1: The set flat1(Qn) has a unique flattened Stirling permutation with form

w = 1122 · · ·nn. There are two distinct ways of inserting (n + 1)(n + 1) into w to

create a flattened Stirling permutation of order n+ 1 with exactly two runs.

(i) For all j ∈ [n] insert (n+ 1)(n+ 1) between the repeated value j to build the

Stirling permutation

1 1 2 2 · · · j (n+ 1) (n+ 1) j · · · nn.

The result of this insertion is a flattened Stirling permutation of order n+ 1

with two runs.

(ii) For all j ∈ [n − 1] insert the (n + 1)(n + 1) after the repeated values jj to

build the Stirling permutation

1 1 2 2 · · · j j (n+ 1) (n+ 1) (j + 1) (j + 1) · · ·nn.

The result of this insertion is a flattened Stirling permutation of order n+ 1

with two runs.

This process exhausts all ways in which we can create flattened Stirling permutations

with two runs out of the flattened Stirling permutation with a single run. If n+ 1

element is inserted anywhere else, it will create a Stirling permutation that is not

flattened. Subcases (i) gives n elements and (ii) yields n−1 elements of flat2(Qn+1),

contributing a total of 2n− 1 elements in flat2(Qn+1).

Case 2: Take any element w = w1w2 · · ·w2n ∈ flat2(Qn). By definition, there

exists a unique index i ∈ [2n − 1] such that wi > wi+1. Inserting (n + 1)(n + 1)
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immediately after wi creates an element of flat2(Qn+1). Inserting (n + 1)(n + 1)

immediately after the last value w2n of w creates an element of flat2(Qn+1). This

process exhausts all the ways in which we can create flattened Stirling permutations

with two runs in flat2(Qn+1) out of the flattened Stirling permutation with two runs

in flat2(Qn). If you attempt to insert the n+1 element anywhere else, it will create

a Stirling permutation that is not flattened. Hence, there are 2|flat2(Qn)| ways to
create a new element in flat2(Qn+1).

Note that in Case 1, the constructed flattened Stirling permutations of order

n+ 1 has the numbers 1 through n appearing in order from left to right. However,

in Case 2, the constructed flattened Stirling permutations of order n+1 has unique

values i, j satisfying 1 ≤ i < j ≤ n with at least one j appearing to the left of at

least one i. Thus, the set of elements in flat2(Qn+1) created in Case 1 and Case

2 are disjoint. Moreover, these are the only options to consider. Thus, the total

number of elements of flat2(Qn+1) is given by

|flat2(Qn+1)| = 2|flat2(Qn)|+ 2n− 1,

as desired.

We now give a closed formula for |flat2(Qn)|, which aligns with OEIS A050488.

Corollary 2. If n ≥ 1, then |flat2(Qn+1)| = 3(2n − 1)− 2n.

Proof. This follows from observing that 3(2n − 1)− 2n satisfies the recurrence and

initial condition in Proposition 2.

4.3. Enumeration of |flat(Qn)|

We are now ready to provide a formula for the total number of flattened Stirling

permutations of order n.

Theorem 4. If n ≥ 0, then

|flat(Qn+1)| =
n∑

i=0

(
n

i

) n−i∑
k=0

2n−i−kS(n− i, k),

where S(a, b) denote the Stirling numbers of the second kind with S(a, 0) = 0 for all

a ≥ 0.

Proof. By Theorem 2, we know |ΠB
n | = |flat(Qn+1)|. Hence, we prove this result by

constructing and thereby enumerating all π which are type B set partitions in ΠB
n .

To begin we construct a zero-block. Suppose that there are i+1 elements in the

zero-block. One of those elements is required to be zero. Thus, there are
(
n
i

)
ways

to construct the zero-block so that it has size i + 1. We note that the zero-block

https://oeis.org/A050488
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always contains only positive elements, so, as i ranges from 0 to n, this construction

yields all possible π0.

We now construct all type B set partitions with a fixed zero-block π0 of size

i + 1. Suppose we have k + 1 total blocks in π. We construct the remaining k

blocks, π1, π2, . . . , πk, out of the remaining n − i elements (which are not in π0).

That is, first we must partition the set [0, n] \ π0 of size n − i into k nonempty

subsets. There are S(n− i, k) ways to do this.

Once we know what elements are in each block, then in each of the k blocks,

the minimal element must remain positive. However, the other n− i− k remaining

elements in the blocks π1, π2, . . . , πk may be positive or negative. There are 2n−i−k

ways in which to select the signs for those remaining values. Note we vary k from

0 to n − i, and thus there are
∑n−i

k=0 2
n−i−kS(n − i, k) ways to build a type B set

partition for a fixed π0.

Finally, we must vary over 0 ≤ i ≤ n, which yields

n∑
i=0

(
n

i

) n−i∑
k=0

2n−i−kS(n−i, k),

as desired.

Theorems 2 and 4 imply the following result.

Corollary 3. If n ≥ 1, then the nth Dowling number is given by

Dn =

n∑
i=0

(
n

i

) n−i∑
k=0

2n−i−kS(n− i, k)

and has exponential generating function exp(x+ (exp(2x)− 1)/2).

5. Open Problems and Future Directions

In our work, we were able to give a recursive formula for the total number of flattened

Stirling permutations of order n (Theorem 4) and for the number of flattened Stirling

permutations of order n with exactly k = 2 runs (Proposition 2). When k = 3, we

have the following conjecture, which was computationally verified for 1 ≤ n ≤ 12.

Conjecture 1. The number of Stirling permutations of order n with exactly three

runs is

|flat3(Qn)| =2

n−1∑
k=1

(
n− 1

k

)n−1−k∑
j=2

(
n− 1− k

j

)
+

n−1∑
k=2

(
n− 1

k

)n−1−k∑
j=2

(
n− 1− k

j

)+

n−1∑
k=3

(2k−1 − 2)

(
n− 1

k

)
.
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Open Problem 1. Give a formula for the number of flattened Stirling permuta-

tions of order n with exactly k runs.

One small step toward solving Open Problem 1 is to consider the case where

k = ⌈ 2n
3 ⌉ is the maximum number of runs.

Open Problem 2. Let flatmax(Qn) denote the set of flattened Stirling permuta-

tions of order n with a maximal number of runs. Give a formula for the cardinality

of the set flatmax(Qn), for all n ≥ 1.

Moreover, one could consider restricting to having runs of equal length. In which

case we ask.

Open Problem 3. Given d a divisor of n, let flatd, equal(Qn) denote the set of

flattened Stirling permutations with d runs all of equal length n/d. What is the

cardinality of the set flat
d,equal(Qn) in terms of n and d?

A starting point for Open Problem 3 is to consider the case d = 2 where there

are two runs of equal length.

Another way to generalize our study is to consider the set of m-Stirling permuta-

tions of order n on the multiset {1m, 2m, . . . , nm}, which are permutations with each

integer in [n] appearing with multiplicity m, and the values between every repeated

instance of i are larger than i. We let Qm
n , denote the set of m-Stirling permuta-

tions of order n. Table 2 provides data on the number of elements in flat(Qm
n ) for

1 ≤ n ≤ 7 and 1 ≤ m ≤ 5. When possible, we give the OEIS sequence with which

these values seem to agree. Based on that data, we give the following conjecture.

n \m 2 3 4 5

1 1 1 1 1
2 2 3 4 5
3 6 12 20 30
4 24 63 128 225
5 116 405 1008 2075
6 648 3024 9280 22500
7 4088 25515 96704 276875

OEIS A007405 A355164 A355167 No OEIS hit

Table 2: Number of flattened m-Stirling permutations of order n.

Conjecture 2. If m ≥ 2 and n ≥ 1, then

|flat(Qm
n )| = e−1/m

∑
k≥0

(mk + (m− 1))n

k!mk
,

https://oeis.org/A007405
https://oeis.org/A355164
https://oeis.org/A355167


INTEGERS: 24 (2024) 19

satisfies the recurrence relation

|flat(Qm
n )| = (m− 1)|flat(Qm

n−1)|+
n∑

k=1

(
n− 1

k − 1

)
mk−1|flat(Qm

n−k)|,

with |flat(Qm
0 )| = 1, and has exponential generating function exp((m−1)z+(emz−

1)/m).

Conjecture 2 motivates our next open problem.

Open Problem 4. Prove Conjecture 2 in the affirmative or establish a correct

formula for the number of elements in flat(Qm
n ). If possible, also give formulas for

the number of elements in flat(Qm
n ) with exactly k runs.

Remark 1. Since the submission of this article, Shankar [11] has provided a proof

of all of the conjectures and open problems in this section with the exception of

Open Problem 3.
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[1] V. È. Adler, Set partitions and integrable hierarchies, Teoret. Mat. Fiz. 187 (2016)(3), 455–
486.

[2] G.-H. Duh, Y.-C. R. Lin, S.-M. Ma, and Y.-N. Yeh, Some statistics on Stirling permutations
and Stirling derangements, Discrete Math. 341 (2018)(9), 2478–2484.

[3] J. Elder, P. E. Harris, Z. Markman, I. Tahir, and A. Verga, On flattened parking functions,
J. Integer Seq. 26 (2023)(5), Art. 23.5.8, 34.

[4] S. Elizalde, Descents on quasi-Stirling permutations, J. Combin. Theory Ser. A 180 (2021),
Paper No. 105429, 35.

[5] S. Elizalde, Descents on nonnesting multipermutations, European J. Combin. 121 (2024),
Paper No. 103846.

[6] I. Gessel and S. P. Stanley, Stirling polynomials, J. Combinatorial Theory Ser. A 24 (1978)(1),
24–33.
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