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Abstract

An exact r-coloring of a set S is a surjective function c : S → {1, 2, . . . , r}. A
rainbow solution to an equation over S is a solution such that all components are a
different color. We prove that every 3-coloring of N with an upper density greater
than (4s−1)/(3·4s) contains a rainbow solution to x−y = zk. The rainbow number
for an equation in the set S is the smallest integer r such that every exact r-coloring
has a rainbow solution. We compute the rainbow numbers of Zp for the equation
x− y = zk, where p is prime and k ≥ 2.

1. Introduction

Given a set S, a coloring is a function that assigns a color to each element of

S. While Ramsey theory is the study of the existence of monochromatic subsets,

anti-Ramsey theory is the study of rainbow subsets. A subset X ⊆ S is a rainbow

subset if each element in X is assigned a distinct color. For example, in the equation
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x1 + x2 = x3, a rainbow solution is a solution {a, b, a + b} in a set, for instance Z
or Zn, such that each of a, b, a+ b are assigned a distinct color. A coloring is said

to be rainbow-free for an equation if no rainbow solutions exist. Several papers

have looked at the existence of rainbow-free 3-colorings for linear equations over Z
and Zn in [2], [8], [9], and [10]. In [14], Zhan studied the existence of rainbow-free

colorings for the equation x− y = z2 over Z with certain density conditions.

The rainbow number of S for eq, denoted rb(S, eq), is the smallest number of

colors such that for every exact rb(S, eq)-coloring of S, there exists a rainbow solu-

tion to eq. Several papers have looked at rainbow numbers over Zn. For instance,

the authors in [5] looked at anti-van der Waerden numbers over both Z and Zn.

The rainbow numbers of the equation x1 + x2 = kx3 in Zp were studied in [3], and

rainbow numbers of linear equations a1x1+a2x2+a3x3 = b over Zn were computed

in [1]. In [7], the authors consider rainbow numbers of x1 + x2 = x3 over subsets

[m]× [n] of Z× Z.
In this paper, we generalize the results of Zhan in [14] to classify rainbow-free

3-colorings for the equation x − y = zk for k ≥ 2. We also compute the rainbow

number of Zn for x− y = zk.

In Section 2, we establish some preliminary notation and prove results on rainbow

solutions to the equation x − y = zk in a 3-coloring of the natural numbers. The

first result extends Theorem 1 of [14] to equations of the form x− y = zk for k ≥ 2.

In Section 3 we show the existence of rainbow solutions to the equation x− y = zk

in three-colorings of the natural numbers that satisfy a density condition on the

sizes of the color classes. In Section 4, we consider the modular case. We establish

bounds on the color classes in rainbow-free colorings of Zn. We then establish a

connection between rainbow-free colorings and the function digraph for the function

f(x) = xk whose edges are of the form (x, xk). Using these digraphs, we compute

the rainbow numbers of Zp for x− y = zk when k is prime.

2. Rainbow-Free 3-Colorings of x − y = zk in N

In this section, we employ the same approach as Zhan to extend [14] Theorem 1 for

the quadratic equation x−y = z2 to equations of the form x−y = zk, where k ≥ 2.

An exact r-coloring of a set S is a surjective function c : S → [r]. Throughout this

section, let c : N → {R,B,G} be an exact 3-coloring of the set of natural numbers.

The coloring induces a partition into three disjoint color classes, which we call R
B,G color classes of red, blue, and green, respectively, where R = {i | c(i) = R}. For
any subset S of N and any n ∈ N, define S(n) = |[n] ∩ S|; hence R(n) = |[n] ∩ R|.
We define B(n) and G(n) in a similar way. A rainbow solution in N to the equation

x−y = zk is a solution (a1, a2, a3) so that {c(a1), c(a2), c(a3)} = {R,G,B}; that is,
each component of the solution has a different color. We say that c is rainbow-free
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for x−y = zk if there is no rainbow solution to the equation x−y = zk with respect

to c.

A string of length ℓ at position i consists of numbers i, i+ 1, i+ 2, . . . , i+ ℓ− 1

where i, ℓ ∈ N. A string is monochromatic if it contains only one color. Similarly

a string is bichromatic if it contains exactly two colors. Observe that a color is

dominant if every bichromatic string contains that color. Note that if a dominant

color exists for a 3-coloring it must be unique and nondominant colors cannot be

adjacent. A string is an R-monochromatic string of length ℓ at position i if c(i) = R

for i ≤ j ≤ i+ℓ−1 and c(i−1), c(i+ℓ) ̸= R. We similarly define B-monochromatic

strings and G-monochromatic strings.

The following lemmas are direct extensions of [14] to the equation x − y = zk.

We include their proofs here for completeness.

Lemma 1. Let c : N → [r] be an exact rainbow-free coloring for x− y = zk. Then

c(1) is dominant.

Proof. Without loss of generality, assume c(1) is red. It suffices to show that if

c(i) ̸= c(i+ 1), then either c(i) = R or c(i+ 1) = R. Since (i+ 1, i, 1) is a solution

to x − y = zk, either c(i) = R or c(i + 1) = R. Thus, red is a dominant color, as

desired.

Throughout the rest of the paper we will assume that R is a dominant color.

Here we establish that that B- or G-monochromatic strings remain monochromatic

after moving jk positions.

Lemma 2. Let c : N → {R,G,B} be rainbow-free for x − y = zk with dominant

color R. If c(j) = B, then for any monochromatic string at position i of length ℓ of

color G, the string of position i± jk of length ℓ is monochromatic of color either B

or G.

Proof. Suppose c(j) = B and c(i) = c(i + 1) = . . . = c(i + ℓ − 1) = G. For all

0 ≤ h ≤ ℓ− 1, (i+h+ jk, i+h, j) is a solution to x− y = zk, and so c(i+h+ jk) ∈
{B,G}. As B and G are nondominant colors, the string at position i+ jk of length

ℓ must be monochromatic of either blue or green. Since (i + h, i + h − jk, j) is a

solution to x− y = zk, a similar argument shows that the strings at position i− jk

of length ℓ are monochromatic of color either B or G.

Lemma 3 ([14]). Suppose some set S ⊂ N satisfies lim
n→∞

sup(S(n)− n

n0
) = ∞ for

some integer n0 ≥ 2. then there exists a d ≤ n0 − 1 such that for any i, there exists

j > i such that j and j + d are both elements of S.

Lemma 4. Let c : N → {R,G,B} be rainbow-free for x− y = zk such that

lim sup
n→∞

(
min{R(n),B(n),G(n)} − n

n0

)
= ∞
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for some integer n0 ≥ 2. Then the length of every nondominant monochromatic

string is bounded above.

Proof. Since the upper density of every color class is finite, there cannot be any

monochromatic strings of infinite length.

Suppose that R is the dominant color in c. Let i0 = min{i ∈ N | c(i) = B}.
Assume, for the sake of contradiction, that there exist G-monochromatic strings of

arbitrary length. Suppose there exists a G-monochromatic string at position j ≥ i0
of length ℓ such that ℓ ≥ ik0 . Without loss of generality, let j be the first green

element in the string so that c(j − 1) = R. Then c(j + ik0 − 1) = G. It follows that

(j + ik0 − 1, j − 1, i0) is a rainbow solution to the equation x − y = zk, which is a

contradiction. Hence, the lengths of nondominant monochromatic strings in c are

bounded above.

An infinite arithmetic progression with initial term i and common difference d

is monochromatic if c(i) = c(i + hd) for all h ∈ N. An element j ∈ N has the A-

property if c(j) is nondominant and there exists a monochromatic infinite arithmetic

progression of the other nondominant color with common difference jk.

Lemma 5. Let c : N → {R,G,B} be rainbow-free for x − y = zk with dominant

color R. If c(j1) = c(j2) ̸= R and gcd(j1, j2) = 1, then at most one of j1 and j2 has

the A-property.

Proof. Suppose j1 and j2 satisfy gcd(j1, j2) = 1 and c(j1) = c(j2) = G. Further-

more, assume by way of contradiction that both j1 and j2 have the A-property.

Then there exist two B-monochromatic infinite arithmetic progressions, one with

initial term i1 and common difference jk1 and the other with initial term i2 and

common difference jk2 .

Suppose the B-monochromatic string at position i1 has length ℓ0. By Lemma 2,

there exist B-monochromatic strings of length ℓ0 at all integers of the form i1+mjk1
and i2 + mjk1 for all non-negative integers m. Since gcd(jk1 , j

k
2 ) = 1, there exist

positive integers u1, u2 such that u1j
k
1 −u2j

k
2 = i2− i1, and so i1+u1j

k
1 = i2+u2j

k
2 .

This gives a common value in both arithmetic progressions; call this common value

i3 = i1 + u1j
k
1 = i2 + u2j

k
2 .

Consider the B-monochromatic string at position i3 of length ℓ1. Since i3 is

part of both B-monochromatic arithmetic progressions, by Lemma 2 there exist

B-monochromatic strings of length ℓ1 at positions i3 + mjk1 and i3 + mjk2 for all

non-negative m. Since gcd(j1, j2) = 1, there exist integers v1 and v2 such that

v1j
k
1 − v2j

k
2 = 1. Thus, (i3 + v1j

k
1 )− (i3 + v2j

k
2 ) = 1, so i3 + v1j

k
1 = 1 + i3 + v2j

k
2 ,

and c(i3 + v1j
k
1 ) = c(i3 + v2j

k
2 ) = B.

Applying Lemma 2 again, there exists a B-monochromatic string of length ℓ1 at

position i3 + v2j
k
2 . Since i3 + v1j

k
1 = 1+ i3 + v2j

k
2 , there exists a B-monochromatic

string of length ℓ1+1 at i3+v1j
k
1 . This process can be repeated to obtain arbitrarily
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long B-monochromatic strings, contradicting Lemma 4. Therefore, j1 and j2 cannot

both have the A-property.

Again following the approach of [14], we introduce some notation here that will

be used in the following lemma. Define the magnitude function M(u, v, w, i,D) =

i+ udk1 + vdk2 +wdk3 , where u, v, w, i ∈ Z and D = (d1, d2, d3). Let m be the length

of the lattice path P = {(ap,1, bp,1), (ap2
, bp2

), . . . , (ap,m, bp,m).

The following theorem gives that when each nondominant color class contains a

pair of relatively prime elements, a rainbow solution must exist.

Theorem 1. Let c : N → {R,G,B} be a coloring with a dominant color R, satis-

fying the density condition of Lemma 4. Assume that there exist i, i1 ∈ B contains

a pair of integers i, i1 such that gcd(i, i1) = 1 and there exist j, j1 ∈ G such that

gcd(j, j1) = 1. Then c contains a rainbow solution to x− y = zk.

Proof. Assume by contradiction that c is a rainbow-free coloring for x − y = zk.

Suppose that i, i1 ∈ B with gcd(i, i1) = 1 and j, j1 ∈ G with gcd(j, j1) = 1.

According to Lemma 5, at most one of i and i1 have the A-property, and at most

one of j and j1 have the A-property. Without loss of generality, assume that i and

j do not have the A-property. Since gcd(i1, i, j) = 1, there exist integers u0, v0,

w0 such that u0 > 0 and v0, w0 < 0 such that u0i
k
1 + v0i

k + w0j
k = −1. Let

D = (i1, i, j).

Choose i2 such that c(i2) ̸= R and i2 > max{−v0i
k,−w0j

k} ≥ i. Let ℓ be the

length of the nondominant monochromatic string at position i2. Construct a lattice

path as follows: let (α0, β0) = (0, 0) and recursively define (αt, βt) by

(αt+1, βt+1) =

{
(αt + 1, βt) if c(M(αt, 0, βt, i2, D)) = G

(αt, βt + 1) if c(M(αt, 0, βt, i2, D)) = B.

By Lemma 2, at each M(αt, 0, βt, i2, D) there exists a nondominant monochromatic

string of length ℓ. Suppose that αt < u0 for all t. Then for some t, the string

of βt must increase infinitely many times consecutively, so M(αt, 0, βt, i2, D) =

i2 + αti
k
1 + βtj

k are all blue for t sufficiently large. This gives an infinitely long

blue monochromatic sequence with common difference of M(αt+1, 0, βt+1, i2, D) −
M(αt, 0, βt, i2, D) = jk. Since c(j) = G, this contradicts that j does not have has

the A-property. Therefore, there exists some t0 such that αt0 = u0. Let q1 = βt0

and so we consider the point (αt0 , βt0) = (u0, v0) in the uw-plane. By Lemma

2, there exists a monochromatic nondominant string of length ℓ′ ≥ ℓ at position

M(u0, 0, q1, i2, D) = i2 + u0i
k
1 + q1j

k.

Construct another lattice path in the wv-plane P0 as follows. Let (vP0,1, wP0,1) =

(0, q1). Recursively define (vP0,t, wP0,t) by
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(vP0,t+1, wP0,t+1) =

{
(vP0,t + 1, wP0,t) if c(M(u0, vP0,t, wP0,t, i2, D)) = G

(vP0,t, wP0,t − 1) if c(M(u0, vP0,t, wP0,t, i2, D)) = B.

By construction of P0 and Lemma 2, there exist monochromatic nondominant

strings of length ℓ′ at all M(u0, vP0,t, wP0,t, i2, D). Since i does not have the A-

property, there does not exist an infinite green arithmetic progression with com-

mon difference ik. Therefore, there does not exist t′ such that for all t > t′,
(vP0,t+1, wP0,t+1) = (vP0,t + 1, wP0,t). Thus, there must exist q1 − w0 integers t

such that (vP0,t+1, wP0,t+1) = (vP0,t, wP0,t − 1). Therefore, there exists some point

(vP0,m0 , wP0,m0) on P0 where wP0,m0 = w0. We terminate P0 at this point. Note

that for all 1 ≤ t ≤ m0, we have M(u0, vP0,t, wP0,t, i2, D) = i2 + u0i
k
1 + vP0,ti

k +

wP0,tj
k > 0, since u0, > 0, vP0,t ≥ 0 and i2 + wP0,tj

k ≥ i2 + w0j
k ≥ 0 by construc-

tion of P0 and choice of i2. Then by Lemma 2 and our construction of P0, there

are nondominant strings of length ℓ′ at each position M(u0, vP0,t, wP0,t, i2, D) for

1 ≤ t ≤ m0.

We construct another path P ′
0 as follows. Let (vP ′

0,1
, wP ′

0,1
) = (0, q1). Recursively

define

(vP ′
0,t+1, wP ′

0,t+1) =

{
(vP ′

0,t
− 1, wP ′

0,t
) if c(M(u0, vP ′

0,t
, wP ′

0,t
, i2, D)) = G

(vP ′
0,t
, wP ′

0,t
+ 1) if c(M(u0, vP ′

0,t
, wP ′

0,t
, i2, D)) = B.

We again use Lemma 2 to conclude that there exists a nondominant string of

length at least ℓ′ at all positions of the form M(u0, vP ′
0,t
, wP ′

0,t
, i2, D) whenever

M(u0, vP ′
0,t
, wP ′

0,t
, i2, D) > 0 which will be satisfied as long as vP ′

0,t
> v0. Since j

does not have the A-property, at some point m′
0, we have vP ′

0,m
′
0
= v0. Terminate

P ′
0 at the point (vP ′

0,m
′
0
, wP ′

0,m
′
0
).

Let P1 be the union of P0 and P ′
0. The path P1 is connected, since (0, q1) is on

both paths and has length m0 +m′
0 − 1. Define (vP1,1, wP1,1) = (vP ′

0,m
′
0
, wP ′

0,m
′
0
) so

that (vP1,m0+m′
0−1, wP1,m0+m′

0−1) = (vP0,m0
, wP0,m0

). Define P ′
1 to be the path

in the vw-plane satisfying (vP ′
1,t
, wP ′

1,t
) = (vP1,t − v0, wP1,t − w0). Note that

(vP ′
1,1

, wP ′
1,1

) = (0, wP ′
0,m

′
0
− w0) and (vP ′

1,t
, wP ′

1,t
) = (vP0,m0

− v0, 0).

Finally, construct a path P2 defined as follows. Let (vP2,1, wP2,1) = (0, 0). Re-

cursively define (vP0,t, wP0,t) by

(vP2,t+1, wP2,t+1) =

{
(vP2,t + 1, wP2,t) if c(M(0, vP2,t, wP2,t, i2, D)) = G

(vP2,t, wP2,t + 1) if c(M(0, vP2,t, wP2,t, i2, D)) = B.

Again by Lemma 2, there exists a monochromatic nondominant string of length at

least ℓ′ at all positions of the form M(0, vP2,t, wP2,t, i2, D).

As Figure 1 illustrates, by construction of P ′
1 and P2, there must be a point of in-

tersection of the two paths, say (v′0, w
′
0) with v′0, w

′
0 > 0. Consider the corresponding
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⟨v′0 + v0, w
′
0 + w0⟩

v

w

⟨v0, wP ′
0,m

′
0
⟩

P1

⟨0, q1⟩

⟨vP0,m0 , w0⟩

⟨0, wP ′
0,m

′
0
− w0⟩

P ′
1

⟨vP0,m0 − v0, 0⟩

⟨v′0, w′
0⟩

P2

Figure 1: Paths P1, P
′
1, and P2

point (v′0 + v0, w
′
0 + w0) on P1 which corresponds to magnitude

M(u0, v
′
0 + v0, w

′
0 + w0, i2, D) = i2 + u0i

k
1 + v′0i

k + v0i
k + w′

0j
k + w0j

k.

On P2 the point (v′0, w
′
0) corresponds to magnitude M(0, v′0, w

′
0, i0, D) = i2+v′0i

k+

w′
0j

k. Subtracting the two magnitudes gives u0i
k
1+v0i

k+w0j
k = −1 by choice of u0,

v0, w0. Therefore, M(u0, v
′
0+v0, w

′
0+w0, i2, D) and M(0, v′0, w

′
0, i0, D) are adjacent,

positive, and each has a nondominant string of length at least ℓ′ in the nondominant

color. Thus, a string of length at least ℓ′+1 exists at M(u0, v
′
0+v0, w

′
0+w0, i2, D),

which allows us to generate arbitrarily long nondominant monochromatic strings,

contradicting Lemma 4. Thus, we conclude that c contains a rainbow solution to

x− y = zk.

3. A Density Condition for Rainbow- Free Colorings over N

Using Theorem 1, we show that 3-colorings of N satisfying a certain density condi-

tion contain rainbow solutions to x − y = zk. When k = 2, the upper density is 1
4
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as in [14].

We use the following generalization of the Frobenius coin problem in the proof

of Lemma 6.

Theorem 2. Suppose two integers i and j satisfy gcd(i, j) = k. Then there exists

an integer n0 such that all numbers greater than n0 divisible by k can be written in

the form ui+ vj for non-negative integers u and v.

In the following lemma, we use the stronger density condition to generalize [14,

Lemma 7].

Lemma 6. Let c : N → {R,G,B} be rainbow-free for x− y = zk such that

lim sup
n→∞

(
min{R(n),B(n),G(n)} − 4s − 1

3 · 4s
)

= ∞

where s =
⌊
k
2

⌋
and R is the dominant color. Then both B and G must contain a

pair of relatively prime integers.

Proof. Suppose B and G contain no pairs of consecutive integers. Since R is a

dominant color, for all i, c(i) = R or c(i + 1) = R. Then for all n, |R(n)| ≥ n/2

and so

lim inf
n→∞

(R(n)− (4s − 1)/(3 · 4s)) ≥ lim inf
n→∞

(n/2− (4s − 1)/(3 · 4s)) ≥ 0.

Therefore,

lim sup
n→∞

(min{B(n),G(n)} − (4s − 1)/(3 · 4s)) ≤ 0,

a contradiction. Therefore, there exists an i such that i and i+ 1 must be in B or

G. Without loss of generality, suppose i and i+1 are in B. Then B contains a pair

of relatively prime integers.

Assume G does not have a pair of relatively prime integers. Let d be the minimum

difference between any two elements in G. Since (4s − 1)/(3 · 4s) ≥ 1/4, G satisfies

the conditions of Lemma 3 with n0 = 4, so we have that d ≤ 3. Therefore, there

exists a j such that j, j + d ∈ G.
First consider d = 2. Since j and j+2 are not relatively prime, gcd(j, j+2) = 2.

There exists a B-monochromatic string at position i of length ℓ ≥ 2. By Theorem

2, there exists an integer n0 such that all integers greater than n0 that are divisible

by gcd(jk, (j + 2)k) = 2k can be expressed in the form jku + (j + 2)kv for some

non-negative integers u and v. Hence, all integers greater than i + n0 that are

congruent to i mod 2k can be expressed in the form i + jku + (j + 2)kv, and so

there exist B-monochromatic strings at positions i + jk and i + (j + 2)k of length

at least 2 by Lemma 2. By induction, for any non-negative u and v, there exist B-

monochromatic strings at i+ jku+(j+2)kv of length at least 2. Thus, at some n1,

there exists a blue string at of length at least 2 at all integers of the form n1+2km.
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Consider a string of length 2k at position n1 + 2km. By our assumption c(n1 +

2km) = c(n1 + 2km + 1) = B. By Lemma 1, c(n1 + 2km + 2) ̸= G and c(n1 +

2k(m)+2k−1) ̸= G. Since d = 2, every green element is followed by a red element,

so

|G ∩ [n1 + 2km,n1 + 2k(m+ 1)− 1]}| ≤ |R ∩ [n1 + 2km,n1 + 2k(m+ 1)− 1]}| − 1.

When k is even, one has that 4s−1
3·4s = 2k−1

3·2k . Thus, by the density condition for m

sufficiently large, we have that

|G ∩ [n1 + 2km,n1 + 2k(m+ 1)− 1]}| >2k − 1

3
,

|R ∩ [n1 + 2km,n1 + 2k(m+ 1)− 1]}| >2k − 1

3
+ 1,

|B ∩ [n1 + 2km,n1 + 2k(m+ 1)− 1]}| >2k − 1

3
,

a contradiction. When k is odd, 4s−1
3·4s = 2k−2

3·2k . By a similar argument we get a

contradiction here.

Now suppose d = 3. Since j and j+3 are not relatively prime, gcd(j, j+3) = 3.

There is a monochromatic blue string of length 2 at position i. By Corollary 2,

there exists an integer n2 such that all integers greater than n2 that are divisible

by gcd(jk, (j + 3)k) = 3k can be expressed in the form jku+ (j + 3)kv. As above,

there is an integer n3 such that there exists a blue string of length at least 2 at all

numbers of the form n3 + 3km. Since every green element is followed by at least

two red elements since d = 3, the density condition on each color class cannot hold,

a contradiction.

Therefore, there exists a relatively prime pair of integers colored green.

Theorem 3. Let s = ⌊k/2⌋. Every exact 3-coloring of the set of natural numbers

with the upper density of each color class greater than (4s − 1)/(3 · 4s) contains a

rainbow solution to x− y = zk.

Proof. Suppose that there is a rainbow-free 3-coloring c of N for the equation

x − y = zk satisfying the density condition above. By Lemma 1, there exists a

dominant color, say red. Since red is dominant, by Lemma 6, B and G each contain

a pair of relatively prime integers. By Theorem 1, c contains a rainbow-solution, a

contradiction.

4. Rainbow Numbers of Zn for x − y = zk

Using the results in the previous sections on rainbow colorings over Z, we compute

rainbow numbers for x− y = zk over Zp.
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Note rainbow-free 3-coloring of Zn yield rainbow-free 3-coloring of N.

Lemma 7. If c : Zn → {R,G,B} is rainbow-free for x− y = zk, then the coloring

c : N → {R,G,B} given by c(i) = c(i mod n) where i ≡ j mod n is rainbow-free

for x− y = zk.

The following lemma is used to find pairs of relatively prime pairs in N in non-

dominant colors. The proof in [14] does not depend on the equation.

Lemma 8 ([14]). Let c : Zn → {R,G,B} be an exact 3-coloring of Zn and let

c : N → {R,G,B} be defined by c(i) = c(i mod n). If two integers i1 and i2 in N
satisfy gcd(|i1 − i2|, n) = 1, then there exists a pair of relatively prime integers j1
and j2 where c(i1) = c(j1), c(i2) = c(j2), and |i1 − i2| = |j1 − j2|.

The following theorem generalizes [14, Theorem 14].

Theorem 4. Let n be odd and let r1 be the smallest prime factor of n. Let c : Zn →
{R,G,B} be an exact 3-coloring of Zn with corresponding color classes R,B,G. If

c is rainbow-free for x− y = zk, then min{|R|, |B|, |G|} ≤ n
r1
.

Proof. Define c : N → {R,G,B} by c(i) = c(i mod n). By Lemma 7, c is rainbow-

free for x − y = zk. Denote the corresponding color classes of c as R′, G′, and
B′. By Lemma 1, there exists a dominant color, say R. Suppose by contradiction

that min{|R|, |B|, |G|} > n
r1
. Since lim supn′→∞

(
B′(n′)− n′

r1

)
= ∞, there exists

an i1 and k1 ≤ r1 − 1 such that i1, i1 + k1 ∈ B′ by Lemma 3. By Lemma 8,

there exists a pair of relatively prime integers j1, j2 where c(j1) = c(i1) = B and

c(j2) = c(i1 + k1) = B. Similarly there exists a pair of relatively prime integers in

G. By Theorem 1, c is not rainbow-free for x− y = zk, a contradiction.

For primes, we immediately get the following corollary.

Corollary 1. Let p be prime. Let c : Zn → {R,G,B} be an exact 3-coloring of Zp

with corresponding color classes R,B,G. If c is rainbow-free for x − y = zk, then

min{|R|, |B|, |G|} = 1.

For the remainder of the section, we determine the structure of 3-colorings of Zp

that are rainbow-free for x− y = zk for p an odd prime.

When p is prime and a ̸= 0, the set 0, ak, 2ak, . . . , (p − 1)ak forms a complete

residue system for Zp. We generalize the notion of a dominant color to this complete

residue system. We say that a ak string of length ℓ at position iak consists of

numbers iak, (i+1)ak, . . . , (i+ℓ−1)ak, where i, ℓ ∈ Zp. An ak-string is bichromatic

if it contains exactly two colors. A color is ak-dominant if every bichromatic string

contains that color. As with dominant colors, if an ak-dominant color exists for a 3-

coloring it must be unique for the complete residue system 0, ak, 2ak, . . . , (p− 1)ak.

Here we generalize Lemma 1 to ak-dominant colors.



INTEGERS: 24 (2024) 11

Lemma 9. If c : Zp → {R,G,B} is an exact rainbow-free 3-coloring for x−y = zk,

then c(a) is ak-dominant.

Proof. Without loss of generality, assume c(a) = R. It suffices to show that if

c(iak) ̸= c
(
(i+ 1)ak

)
, then either c(iak) = R or c

(
(i+ 1)ak

)
= R. Since c is

rainbow-free for x − y = zk and
(
(i+ 1)ak, iak, a

)
is a solution to x − y = zk, we

get the desired conclusion.

Lemma 10. If c : Zp → {R,G,B} is an exact rainbow-free 3-coloring for x−y = zk

then c(a) = c(−a).

Proof. Let a ̸= 0. If k is even, ak = (−a)k. By Lemma 9, c(a) is ak- dominant and

c(−a) is ak-dominant. Since ak-dominant colors are unique, c(a) = c(−a). Now

consider k odd. Note that if R is an ak-dominant color for 0, ak, 2ak, . . . , (p− 1)ak,

it is also (−a)k-dominant for 0, (−a)k, . . . , (p − 1)ak, since the latter is the former

in reverse. Since dominant colors are unique, c(a) = c(−a).

The following corollary follows immediately from Corollary 1 and Lemma 10.

Corollary 2. Let c : Zp → {R,G,B} be an exact rainbow-free coloring for x− y =

zk. If c(0) = B, then B = {0}. That is, 0 is the only element in its color class.

To finalize our classification of rainbow-free 3-colorings for x − y = zk over

Zp, we consider the associated digraph from powers modulo p. For any function

f : Zm → Zm, we construct a digraph that has the elements of Zm as vertices and

a directed edge (a, b) if and only if f(a) ≡ b mod m.

In some cases, the digraph associated to a function f(x) gives additional structure

on rainbow-free colorings for the equation x− y = f(x). If c is a coloring of Zn and

D a component of G, let c(D) = {c(a)|a ∈ D}. A component D is monochromatic

if |c(D)| = 1.

Lemma 11. Let G be a digraph associated to a function f(x) on Zn and let D be

a component of G. Let c : Zn → [t] be a rainbow-free exact t-coloring of Zn for the

equation x− y = f(x). Suppose that c(0) ̸∈ c(D). Then D is monochromatic.

Proof. Suppose that D is not monochromatic. Then there exists two adjacent ver-

tices a and f(a) in D such that c(a) ̸= c((f(a)). Since c(0) ̸∈ c(D), (f(a), 0, a) is a

rainbow solution to x− y = f(x).

Throughout the rest of the section let Gk
p be the digraph associated to the func-

tion f(x) = xk mod p. The structure of such digraphs has been well-studied in [4],

[6], [11], [12], and [13]. For example, when k = 2 and p = 10, we have the digraph

as shown in Figure 2.

We use digraphs to classify exact 3-colorings of Zp that are rainbow-free for

x− y = zk.
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Figure 2: Function digraph for f(x) = x2 over Z11

Theorem 5. Let c : Zp → {R,G,B} be an exact 3-coloring. Then c is rainbow-free

for x− y = zk if and only if the following hold:

1. 0 is the only element in its color class

2. every component of Gk
p is monochromatic

3. c(a) = c(−a) for all a ∈ Zp.

Proof. Suppose c is rainbow-free for x − y = zk. Then by Corollary 2, 0 is in its

own color class. By Lemma 11 and since 0 is not in any other component, every

component of Gk
p is monochromatic. By Lemma 10, c(a) = c(−a) for all a ∈ Zp.

Now suppose that 0 is the only element in its color class, every component of Gk
p

is monochromatic, and c(a) = c(−a) for all a ∈ Zp. We show that c is rainbow-free.

Let (a1, a2, a3) be a rainbow solution to x−y = zk. Then one of a1, a2, a3 is 0, since

0 is the only element in its color class. If a3 = 0 then a1 = a2, contradicting that a1
and a2 are distinct colors. If a2 = 0, a1 = ak3 , so there is a directed edge (a3, a1) in

the digraph Gk
p, a contradiction, since the components of Gk

p are monochromatic.

Finally, suppose that a1 = 0. Then −a2 = ak3 . There is a directed edge (a3,−a2), so

c(a3) = c(−a2) = c(a2), a contradiction. Thus, the coloring c is rainbow-free.

As repeated iteration of f(x) = xk leads to cycles, Gk
p has the following property.

Lemma 12 ([11]). Let Gk
p be the digraph associated to the function f(x) = xkmodp,

where p is prime. Every component of Gk
p contains exactly one cycle.

The following theorem determines the number of components in the digraph Gk
p.

In [11], Lucheta, Miller, and Reiter consider digraphs whose vertices include only

nonzero residues. We restate the theorems here for digraphs whose vertices are the

elements of Zp.
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Theorem 6 ([11]). Let p be an odd prime. Let p − 1 = wt, where t is the largest

factor of p − 1 relatively prime to k. Let c ̸= 0 be a nonzero vertex of Gk
p. The

vertex a is a cycle vertex of Gk
p if and only if ordp a|t.

It follows as in [11, Corollary 16] that there are precisely t+ 1 vertices in cycles.

Let p and t be as in Theorem 6. Then Gk
p has exactly 2 components if and only

if t = 1. Using the proposition, the prime factorizations of k and p − 1 determine

the number of components of Gk
p

Proposition 1. Let k be even. If k = 2α0qα1
1 qα2

2 . . . qαℓ

ℓ , qi prime for 1 ≤ i ≤ ℓ, αi ≥
1, then the digraph Gk

p has two components if and only if p − 1 = 2β0qβ1

1 qβ2

2 . . . qβℓ

ℓ

where βi ≥ 0.

Proof. As a result of [11, Corollary 16], the number of cycle vertices in Gk
p is the t

as in the statement of Theorem 6. It follows from that theorem that t = 1 if and

only if p− 1 = 2β0qβ1

1 qβ2

2 . . . qβℓ

ℓ .

Suppose t > 1. The digraph Gk
p has at least 3 cycle vertices. Since 0k = 0 and

1k = 1, there are at least 2 cycles of length 1, so there must be at least one vertex

on a different cycle. Thus, Gk
p has more than 2 components.

If t = 1, the only cycles are the length 1 cycles formed by 0 and 1 so Gk
p has two

components.

Proposition 2. Let k ≥ 3 be odd and let k = qα1
1 qα2

2 . . . qαℓ

ℓ , qi > 2 prime for

1 ≤ i ≤ ℓ, αi ≥ 1. The digraph Gk
p has exactly three components if and only if

p− 1 = 2qβ1

1 qβ2

2 . . . qβℓ

ℓ where βi ≥ 0.

Proof. It follows from [11, Corollary 16] that the number of cycle vertices in Gk
p

is t, as in the statement of Theorem 6. We see that t = 2 if and only if p − 1 =

2qβ1

1 qβ2

2 . . . qβℓ

ℓ where βi ≥ 0.

Suppose t > 2. By Theorem 6, Gk
p has at least 4 cycle vertices. Since 0k = 0,

(−1)k = −1, and 1k = 1, there are at least 3 cycles of length 1, so there must be at

least one vertex on a different cycle. Thus, Gk
p has more than 3 components.

If t = 2, the only cycles are the length 1 cycles formed by 0, 1, and −1 so Gk
p has

three components.

When k is odd, −a may not be in the same component as a, but the components

are symmetric.

When an even digraph has at least three components in Zp, we can give a

rainbow-free 3-coloring of Zp by coloring the component with 0 using one color,

the component with 1 a second color, and coloring everything else a third color.

For instance, in the digraph in Figure 2, the coloring c(0) = R, c(1) = c(10) = B,

and c(2) = . . . = c(9) = G gives a rainbow-free coloring of Z11 for x− y = z2.

We now compute the rainbow number when k is even.
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Theorem 7. Suppose k = 2α0qα1
1 qα2

2 . . . qαℓ

ℓ , qi prime for 1 ≤ i ≤ ℓ, αi ≥ 1. Then

we have

rb(Zp, x− y = zk) =

{
3 if p− 1 = 2β0qβ1

1 qβ2

2 . . . qβℓ

ℓ where βi ≥ 0,

4 otherwise.

Proof. Let k = 2α0qα1
1 qα2

2 . . . qαℓ

ℓ , qi prime for 1 ≤ i ≤ ℓ, αi ≥ 1. Suppose p − 1 =

2β0qβ1

1 qβ2

2 . . . qβℓ

ℓ . By Corollary 1, the digraph Gk
p has exactly two components. Let

c : Zp → {R,G,B} be an exact 3-coloring. Since the components of Gk
p are not

monochromatic, by Theorem 5, c contains a rainbow solution to x− y = zk. Thus,

rb(Zp, x− y = zk) = 3.

Now suppose p − 1 ̸= 2β0qβ1

1 qβ2

2 . . . qβℓ

ℓ . By Corollary 1, the digraph Gk
p has at

least 3 components. Define a 3-coloring c : Zp → {R,G,B} as follows:

c(a) =


R if a = 0,

B if a is in the same component as 1,

G otherwise.

Since k is even, (a, ak) and (−a, ak) are edges in Gk
p. Thus, a and −a are in

the same component for all a. Since each component is monochromatic, 0 is in its

own color class, and c(a) = c(−a) for all a, it follows by Theorem 5 that c does not

contain a rainbow-solution to x− y = zk. Thus, rb(Zp, x− y = zk) ≥ 4.

Suppose c : Zp → {R,B,G, Y } is an exact 4-coloring. Suppose that 0 is red.

Define an exact 3-coloring c : Zp → {B,G, Y } by combining the color class that

contains 0 with another color class. Since 0 is not in its own color class in c,

by Theorem 5, c contains a rainbow solution to x − y = zk. By construction, c

also contains a rainbow solution and so every exact 4-coloring contains a rainbow

solution. Thus, rb(Zp, x− y = zk) ≤ 4.

It follows that the rainbow number of Zp for x− y = z2 is 3 if and only if p is a

Fermat prime.

When an odd digraph has at least three components in Zp, we can give a rainbow-

free 3-coloring of Zp by coloring the component with 0 using one color, the com-

ponents containing 1 and p− 1 with a second color, and coloring everything else a

third color.

Theorem 8. Suppose k = qα1
1 qα2

2 . . . qαℓ

ℓ , qi ≥ 3 prime for 1 ≤ i ≤ ℓ, αi ≥ 1, with

k ≥ 3. Then

rb(Zp, x− y = zk) =

{
3 if p− 1 = 2qβ1

1 qβ2

2 . . . qβℓ

ℓ where βi ≥ 0,

4 otherwise.
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Proof. Let k = qα1
1 qα2

2 . . . qαℓ

ℓ , qi prime for 1 ≤ i ≤ ℓ and αi ≥ 1.

Suppose p − 1 = 2qβ1

1 qβ2

2 . . . qβℓ

ℓ where βi ≥ 0. By Corollary 2, the digraph

Gk
p has 3 components. Since 1 and −1 are both cycle vertices in Gk

p, 1 and −1

are in distinct components. Let c : Zp → {R,G,B} be an exact 3-coloring. If

the components are monochromatic, each component must be a distinct color. In

particular, c(1) ̸= c(−1), so Theorem 5 shows that there exists a rainbow solution

to x− y = zk in c. Otherwise, the components are not chromatic, and again there

is a rainbow solution to x− y = zk. Thus, rb(Zp, x− y = zk) = 3.

Now suppose p − 1 ̸= 2qβ1

1 qβ2

2 . . . qβℓ

ℓ . By Corollary 2, the digraph Gk
p has at

least 4 components and 1 and −1 are in distinct components. Define a 3-coloring

c : Zp → {R,G,B} as follows:

c(a) =


R if a = 0,

B if a is in the same component as 1 or -1,

G otherwise.

Suppose that (a, ak) is an edge in the component containing 1. Then (−a,−ak)

is an edge in the component containing −1. Thus, c(a) = c(−a) for all a ∈ Zp.

Furthermore, each component is monochromatic, and 0 is in its own color class. It

follows by Theorem 5 that c does not contain a rainbow-solution to x − y = zk.

Thus, rb(Zp, x− y = zk) ≥ 4.

Let c : Zp → {R,B,G, Y } be an exact 4-coloring. Suppose that c(0) = R. Define

an exact 3-coloring c : Zp → {R,B,G} by combining the red and yellow color

classes. That is, c(i) = c(i) if c(i) ∈ {R,B,G}, and c(i) = R if c(i) = Y . Since

0 is not in its own color class in c, according to Theorem 5, c contains a rainbow

solution to x− y = zk.

By construction, c also contains a rainbow solution. Therefore, we conclude that

every exact 4-coloring contains a rainbow solution, and thus, rb(Zp, x−y = zk) ≤ 4.

Hence, we have shown that rb(Zp, x− y = zk) = 4.

5. Conclusion

The technique of using graphs to study rainbow numbers could be applied to other

families of equations when we know that 0 is the only element in its color class in

every rainbow-free 3-coloring of Zp.

For example, consider the equation a1x1 + a2x2 + a3x3 = 0. If we take the

union of the three digraphs obtained by setting each xi = 0, we get digraphs

f(xi) = −aj/aixj . The associated graph has exactly 2 components precisely

when |⟨d1, d2, . . . , d6⟩| = p − 1, where d1 = −a3a
−1
1 , d2 = −a2a

−1
1 , d3 = −a1a

−1
2 ,

d4 = −a3a
−1
2 , d5 = −a1a

−1
3 , and d6 = −a2a

−1
3 , recovering the result of [8, Corollary

8].
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We can extend these concepts to equations of the form x − y = mzk. Many

of the results in Section 2 can be generalized to this equation. By investigating

the function digraphs for f(x) = mxk, we can determine the rainbow numbers for

this equation over Zp. Through a similar approach, we conjecture that the rainbow

numbers rb(Zp, x− y = zk) and rb(Zp, x+ y = zk) are equal.

Lastly, when n is composite, it would be intriguing to compute the rainbow

numbers for x − y = zk in Zn. Considerable knowledge exists about function

digraphs Gk
n. The presence of nonlinearity complicates the computation of the

rainbow number for Zpq when p and q are prime compared to the linear equations

case explored in [1].
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[9] V. Jungić, J. Licht, M. Mahdian, J. Nes̆etril, and R. Radoic̆ić, Rainbow arithmetic progressions
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