

RAINBOW-FREE COLORINGS AND RAINBOW NUMBERS FOR $x - y = z^k$

Katie Ansaldi

Department of Mathematics and Computer Science, Wabash College, Crawfordsville, Indiana ansaldik@wabash.edu

> Gabriel Cowley Wabash College, Crawfordsville, Indiana gabecowley@gmail.com

> Eric Green Wabash College, Crawfordsville, Indiana greenaeric@gmail.com

> Kihyun Kim Wabash College, Crawfordsville, Indiana

> **JT Rapp** Wabash College, Crawfordsville, Indiana

Received: 6/13/23, Revised: 7/9/24, Accepted: 11/13/24, Published: 12/9/24

Abstract

An exact r-coloring of a set S is a surjective function $c : S \to \{1, 2, ..., r\}$. A rainbow solution to an equation over S is a solution such that all components are a different color. We prove that every 3-coloring of \mathbb{N} with an upper density greater than $(4^s - 1)/(3 \cdot 4^s)$ contains a rainbow solution to $x - y = z^k$. The rainbow number for an equation in the set S is the smallest integer r such that every exact r-coloring has a rainbow solution. We compute the rainbow numbers of \mathbb{Z}_p for the equation $x - y = z^k$, where p is prime and $k \geq 2$.

1. Introduction

Given a set S, a coloring is a function that assigns a color to each element of S. While Ramsey theory is the study of the existence of monochromatic subsets, anti-Ramsey theory is the study of rainbow subsets. A subset $X \subseteq S$ is a *rainbow* subset if each element in X is assigned a distinct color. For example, in the equation

DOI: 10.5281/zenodo.14339876

 $x_1 + x_2 = x_3$, a rainbow solution is a solution $\{a, b, a + b\}$ in a set, for instance \mathbb{Z} or \mathbb{Z}_n , such that each of a, b, a + b are assigned a distinct color. A coloring is said to be rainbow-free for an equation if no rainbow solutions exist. Several papers have looked at the existence of rainbow-free 3-colorings for linear equations over \mathbb{Z} and \mathbb{Z}_n in [2], [8], [9], and [10]. In [14], Zhan studied the existence of rainbow-free colorings for the equation $x - y = z^2$ over \mathbb{Z} with certain density conditions.

The rainbow number of S for eq, denoted $\operatorname{rb}(S, \operatorname{eq})$, is the smallest number of colors such that for every exact $\operatorname{rb}(S, \operatorname{eq})$ -coloring of S, there exists a rainbow solution to eq. Several papers have looked at rainbow numbers over \mathbb{Z}_n . For instance, the authors in [5] looked at anti-van der Waerden numbers over both \mathbb{Z} and \mathbb{Z}_n . The rainbow numbers of the equation $x_1 + x_2 = kx_3$ in \mathbb{Z}_p were studied in [3], and rainbow numbers of linear equations $a_1x_1 + a_2x_2 + a_3x_3 = b$ over \mathbb{Z}_n were computed in [1]. In [7], the authors consider rainbow numbers of $x_1 + x_2 = x_3$ over subsets $[m] \times [n]$ of $\mathbb{Z} \times \mathbb{Z}$.

In this paper, we generalize the results of Zhan in [14] to classify rainbow-free 3-colorings for the equation $x - y = z^k$ for $k \ge 2$. We also compute the rainbow number of \mathbb{Z}_n for $x - y = z^k$.

In Section 2, we establish some preliminary notation and prove results on rainbow solutions to the equation $x - y = z^k$ in a 3-coloring of the natural numbers. The first result extends Theorem 1 of [14] to equations of the form $x - y = z^k$ for $k \ge 2$. In Section 3 we show the existence of rainbow solutions to the equation $x - y = z^k$ in three-colorings of the natural numbers that satisfy a density condition on the sizes of the color classes. In Section 4, we consider the modular case. We establish bounds on the color classes in rainbow-free colorings of \mathbb{Z}_n . We then establish a connection between rainbow-free colorings and the function digraph for the function $f(x) = x^k$ whose edges are of the form (x, x^k) . Using these digraphs, we compute the rainbow numbers of \mathbb{Z}_p for $x - y = z^k$ when k is prime.

2. Rainbow-Free 3-Colorings of $x - y = z^k$ in \mathbb{N}

In this section, we employ the same approach as Zhan to extend [14] Theorem 1 for the quadratic equation $x - y = z^2$ to equations of the form $x - y = z^k$, where $k \ge 2$.

An exact r-coloring of a set S is a surjective function $c: S \to [r]$. Throughout this section, let $c: \mathbb{N} \to \{R, B, G\}$ be an exact 3-coloring of the set of natural numbers. The coloring induces a partition into three disjoint color classes, which we call \mathcal{R} \mathcal{B}, \mathcal{G} color classes of red, blue, and green, respectively, where $\mathcal{R} = \{i \mid c(i) = R\}$. For any subset S of N and any $n \in \mathbb{N}$, define $S(n) = |[n] \cap S|$; hence $\mathcal{R}(n) = |[n] \cap \mathcal{R}|$. We define $\mathcal{B}(n)$ and $\mathcal{G}(n)$ in a similar way. A rainbow solution in N to the equation $x - y = z^k$ is a solution (a_1, a_2, a_3) so that $\{c(a_1), c(a_2), c(a_3)\} = \{R, G, B\}$; that is, each component of the solution has a different color. We say that c is rainbow-free

INTEGERS: 24 (2024)

for $x - y = z^k$ if there is no rainbow solution to the equation $x - y = z^k$ with respect to c.

A string of length ℓ at position *i* consists of numbers *i*, i + 1, i + 2, ..., $i + \ell - 1$ where $i, \ell \in \mathbb{N}$. A string is *monochromatic* if it contains only one color. Similarly a string is *bichromatic* if it contains exactly two colors. Observe that a color is *dominant* if every bichromatic string contains that color. Note that if a dominant color exists for a 3-coloring it must be unique and nondominant colors cannot be adjacent. A string is an *R*-monochromatic string of length ℓ at position *i* if c(i) = Rfor $i \leq j \leq i+\ell-1$ and $c(i-1), c(i+\ell) \neq R$. We similarly define *B*-monochromatic strings and *G*-monochromatic strings.

The following lemmas are direct extensions of [14] to the equation $x - y = z^k$. We include their proofs here for completeness.

Lemma 1. Let $c : \mathbb{N} \to [r]$ be an exact rainbow-free coloring for $x - y = z^k$. Then c(1) is dominant.

Proof. Without loss of generality, assume c(1) is red. It suffices to show that if $c(i) \neq c(i+1)$, then either c(i) = R or c(i+1) = R. Since (i+1, i, 1) is a solution to $x - y = z^k$, either c(i) = R or c(i+1) = R. Thus, red is a dominant color, as desired.

Throughout the rest of the paper we will assume that R is a dominant color. Here we establish that that B- or G-monochromatic strings remain monochromatic after moving j^k positions.

Lemma 2. Let $c : \mathbb{N} \to \{R, G, B\}$ be rainbow-free for $x - y = z^k$ with dominant color R. If c(j) = B, then for any monochromatic string at position i of length ℓ of color G, the string of position $i \pm j^k$ of length ℓ is monochromatic of color either B or G.

Proof. Suppose c(j) = B and $c(i) = c(i+1) = \ldots = c(i+\ell-1) = G$. For all $0 \le h \le \ell - 1$, $(i+h+j^k, i+h, j)$ is a solution to $x - y = z^k$, and so $c(i+h+j^k) \in \{B,G\}$. As B and G are nondominant colors, the string at position $i+j^k$ of length ℓ must be monochromatic of either blue or green. Since $(i+h, i+h-j^k, j)$ is a solution to $x - y = z^k$, a similar argument shows that the strings at position $i-j^k$ of length ℓ are monochromatic of color either B or G.

Lemma 3 ([14]). Suppose some set $S \subset \mathbb{N}$ satisfies $\lim_{n \to \infty} \sup(S(n) - \frac{n}{n_0}) = \infty$ for some integer $n_0 \geq 2$. then there exists a $d \leq n_0 - 1$ such that for any *i*, there exists j > i such that *j* and j + d are both elements of *S*.

Lemma 4. Let $c : \mathbb{N} \to \{R, G, B\}$ be rainbow-free for $x - y = z^k$ such that

$$\limsup_{n \to \infty} \left(\min\{\mathcal{R}(n), \mathcal{B}(n), \mathcal{G}(n)\} - \frac{n}{n_0} \right) = \infty$$

for some integer $n_0 \geq 2$. Then the length of every nondominant monochromatic string is bounded above.

Proof. Since the upper density of every color class is finite, there cannot be any monochromatic strings of infinite length.

Suppose that R is the dominant color in c. Let $i_0 = \min\{i \in \mathbb{N} | c(i) = B\}$. Assume, for the sake of contradiction, that there exist G-monochromatic strings of arbitrary length. Suppose there exists a G-monochromatic string at position $j \ge i_0$ of length ℓ such that $\ell \ge i_0^k$. Without loss of generality, let j be the first green element in the string so that c(j-1) = R. Then $c(j+i_0^k-1) = G$. It follows that $(j+i_0^k-1, j-1, i_0)$ is a rainbow solution to the equation $x - y = z^k$, which is a contradiction. Hence, the lengths of nondominant monochromatic strings in c are bounded above. \Box

An infinite arithmetic progression with initial term i and common difference d is monochromatic if c(i) = c(i + hd) for all $h \in \mathbb{N}$. An element $j \in \mathbb{N}$ has the *A*-property if c(j) is nondominant and there exists a monochromatic infinite arithmetic progression of the other nondominant color with common difference j^k .

Lemma 5. Let $c : \mathbb{N} \to \{R, G, B\}$ be rainbow-free for $x - y = z^k$ with dominant color R. If $c(j_1) = c(j_2) \neq R$ and $gcd(j_1, j_2) = 1$, then at most one of j_1 and j_2 has the A-property.

Proof. Suppose j_1 and j_2 satisfy $gcd(j_1, j_2) = 1$ and $c(j_1) = c(j_2) = G$. Furthermore, assume by way of contradiction that both j_1 and j_2 have the A-property. Then there exist two B-monochromatic infinite arithmetic progressions, one with initial term i_1 and common difference j_1^k and the other with initial term i_2 and common difference j_2^k .

Suppose the *B*-monochromatic string at position i_1 has length ℓ_0 . By Lemma 2, there exist *B*-monochromatic strings of length ℓ_0 at all integers of the form $i_1 + mj_1^k$ and $i_2 + mj_1^k$ for all non-negative integers m. Since $gcd(j_1^k, j_2^k) = 1$, there exist positive integers u_1, u_2 such that $u_1j_1^k - u_2j_2^k = i_2 - i_1$, and so $i_1 + u_1j_1^k = i_2 + u_2j_2^k$. This gives a common value in both arithmetic progressions; call this common value $i_3 = i_1 + u_1j_1^k = i_2 + u_2j_2^k$.

Consider the *B*-monochromatic string at position i_3 of length ℓ_1 . Since i_3 is part of both *B*-monochromatic arithmetic progressions, by Lemma 2 there exist *B*-monochromatic strings of length ℓ_1 at positions $i_3 + mj_1^k$ and $i_3 + mj_2^k$ for all non-negative *m*. Since $gcd(j_1, j_2) = 1$, there exist integers v_1 and v_2 such that $v_1j_1^k - v_2j_2^k = 1$. Thus, $(i_3 + v_1j_1^k) - (i_3 + v_2j_2^k) = 1$, so $i_3 + v_1j_1^k = 1 + i_3 + v_2j_2^k$, and $c(i_3 + v_1j_1^k) = c(i_3 + v_2j_2^k) = B$.

Applying Lemma 2 again, there exists a *B*-monochromatic string of length ℓ_1 at position $i_3 + v_2 j_2^k$. Since $i_3 + v_1 j_1^k = 1 + i_3 + v_2 j_2^k$, there exists a *B*-monochromatic string of length $\ell_1 + 1$ at $i_3 + v_1 j_1^k$. This process can be repeated to obtain arbitrarily

long *B*-monochromatic strings, contradicting Lemma 4. Therefore, j_1 and j_2 cannot both have the *A*-property.

Again following the approach of [14], we introduce some notation here that will be used in the following lemma. Define the magnitude function M(u, v, w, i, D) = $i + ud_1^k + vd_2^k + wd_3^k$, where $u, v, w, i \in \mathbb{Z}$ and $D = (d_1, d_2, d_3)$. Let *m* be the length of the lattice path $P = \{(a_{p,1}, b_{p,1}), (a_{p_2}, b_{p_2}), \ldots, (a_{p,m}, b_{p,m}).$

The following theorem gives that when each nondominant color class contains a pair of relatively prime elements, a rainbow solution must exist.

Theorem 1. Let $c : \mathbb{N} \to \{R, G, B\}$ be a coloring with a dominant color R, satisfying the density condition of Lemma 4. Assume that there exist $i, i_1 \in \mathcal{B}$ contains a pair of integers i, i_1 such that $gcd(i, i_1) = 1$ and there exist $j, j_1 \in \mathcal{G}$ such that $gcd(j, j_1) = 1$. Then c contains a rainbow solution to $x - y = z^k$.

Proof. Assume by contradiction that c is a rainbow-free coloring for $x - y = z^k$. Suppose that $i, i_1 \in \mathcal{B}$ with $gcd(i, i_1) = 1$ and $j, j_1 \in \mathcal{G}$ with $gcd(j, j_1) = 1$. According to Lemma 5, at most one of i and i_1 have the A-property, and at most one of j and j_1 have the A-property. Without loss of generality, assume that i and j do not have the A-property. Since $gcd(i_1, i, j) = 1$, there exist integers $u_0, v_0,$ w_0 such that $u_0 > 0$ and $v_0, w_0 < 0$ such that $u_0i_1^k + v_0i^k + w_0j^k = -1$. Let $D = (i_1, i, j)$.

Choose i_2 such that $c(i_2) \neq R$ and $i_2 > \max\{-v_0 i^k, -w_0 j^k\} \geq i$. Let ℓ be the length of the nondominant monochromatic string at position i_2 . Construct a lattice path as follows: let $(\alpha_0, \beta_0) = (0, 0)$ and recursively define (α_t, β_t) by

$$(\alpha_{t+1}, \beta_{t+1}) = \begin{cases} (\alpha_t + 1, \beta_t) & \text{if } c(M(\alpha_t, 0, \beta_t, i_2, D)) = G\\ (\alpha_t, \beta_t + 1) & \text{if } c(M(\alpha_t, 0, \beta_t, i_2, D)) = B \end{cases}$$

By Lemma 2, at each $M(\alpha_t, 0, \beta_t, i_2, D)$ there exists a nondominant monochromatic string of length ℓ . Suppose that $\alpha_t < u_0$ for all t. Then for some t, the string of β_t must increase infinitely many times consecutively, so $M(\alpha_t, 0, \beta_t, i_2, D) =$ $i_2 + \alpha_t i_1^k + \beta_t j^k$ are all blue for t sufficiently large. This gives an infinitely long blue monochromatic sequence with common difference of $M(\alpha_{t+1}, 0, \beta_{t+1}, i_2, D) M(\alpha_t, 0, \beta_t, i_2, D) = j^k$. Since c(j) = G, this contradicts that j does not have has the A-property. Therefore, there exists some t_0 such that $\alpha_{t_0} = u_0$. Let $q_1 = \beta_{t_0}$ and so we consider the point $(\alpha_{t_0}, \beta_{t_0}) = (u_0, v_0)$ in the uw-plane. By Lemma 2, there exists a monochromatic nondominant string of length $\ell' \geq \ell$ at position $M(u_0, 0, q_1, i_2, D) = i_2 + u_0 i_1^k + q_1 j^k$.

Construct another lattice path in the *wv*-plane P_0 as follows. Let $(v_{P_0,1}, w_{P_0,1}) = (0, q_1)$. Recursively define $(v_{P_0,t}, w_{P_0,t})$ by

$$(v_{P_0,t+1}, w_{P_0,t+1}) = \begin{cases} (v_{P_0,t}+1, w_{P_0,t}) & \text{if } c(M(u_0, v_{P_0,t}, w_{P_0,t}, i_2, D)) = G\\ (v_{P_0,t}, w_{P_0,t}-1) & \text{if } c(M(u_0, v_{P_0,t}, w_{P_0,t}, i_2, D)) = B. \end{cases}$$

By construction of P_0 and Lemma 2, there exist monochromatic nondominant strings of length ℓ' at all $M(u_0, v_{P_0,t}, w_{P_0,t}, i_2, D)$. Since *i* does not have the *A*property, there does not exist an infinite green arithmetic progression with common difference i^k . Therefore, there does not exist *t'* such that for all t > t', $(v_{P_0,t+1}, w_{P_0,t+1}) = (v_{P_0,t} + 1, w_{P_0,t})$. Thus, there must exist $q_1 - w_0$ integers *t* such that $(v_{P_0,t+1}, w_{P_0,t+1}) = (v_{P_0,t}, w_{P_0,t} - 1)$. Therefore, there exists some point $(v_{P_0,m_0}, w_{P_0,m_0})$ on P_0 where $w_{P_0,m_0} = w_0$. We terminate P_0 at this point. Note that for all $1 \le t \le m_0$, we have $M(u_0, v_{P_0,t}, w_{P_0,t}, i_2, D) = i_2 + u_0 i_1^k + v_{P_0,t} i^k + w_{P_0,t} j^k > 0$, since $u_0, > 0, v_{P_0,t} \ge 0$ and $i_2 + w_{P_0,t} j^k \ge i_2 + w_0 j^k \ge 0$ by construction of P_0 and choice of i_2 . Then by Lemma 2 and our construction of P_0 , there are nondominant strings of length ℓ' at each position $M(u_0, v_{P_0,t}, w_{P_0,t}, i_2, D)$ for $1 \le t \le m_0$.

We construct another path P'_0 as follows. Let $(v_{P'_0,1}, w_{P'_0,1}) = (0, q_1)$. Recursively define

$$(v_{P'_0,t+1}, w_{P'_0,t+1}) = \begin{cases} (v_{P'_0,t} - 1, w_{P'_0,t}) & \text{if } c(M(u_0, v_{P'_0,t}, w_{P'_0,t}, i_2, D)) = G\\ (v_{P'_0,t}, w_{P'_0,t} + 1) & \text{if } c(M(u_0, v_{P'_0,t}, w_{P'_0,t}, i_2, D)) = B. \end{cases}$$

We again use Lemma 2 to conclude that there exists a nondominant string of length at least ℓ' at all positions of the form $M(u_0, v_{P'_0,t}, w_{P'_0,t}, i_2, D)$ whenever $M(u_0, v_{P'_0,t}, w_{P'_0,t}, i_2, D) > 0$ which will be satisfied as long as $v_{P'_0,t} > v_0$. Since j does not have the A-property, at some point m'_0 , we have $v_{P'_0,m'_0} = v_0$. Terminate P'_0 at the point $(v_{P'_0,m'_0}, w_{P'_0,m'_0})$.

Let P_1 be the union of P_0 and P'_0 . The path P_1 is connected, since $(0, q_1)$ is on both paths and has length $m_0 + m'_0 - 1$. Define $(v_{P_1,1}, w_{P_1,1}) = (v_{P'_0,m'_0}, w_{P'_0,m'_0})$ so that $(v_{P_1,m_0+m'_0-1}, w_{P_1,m_0+m'_0-1}) = (v_{P_0,m_0}, w_{P_0,m_0})$. Define P'_1 to be the path in the *vw*-plane satisfying $(v_{P'_1,t}, w_{P'_1,t}) = (v_{P_1,t} - v_0, w_{P_1,t} - w_0)$. Note that $(v_{P'_1,1}, w_{P'_1,1}) = (0, w_{P'_0,m'_0} - w_0)$ and $(v_{P'_1,t}, w_{P'_1,t}) = (v_{P_0,m_0} - v_0, 0)$.

Finally, construct a path P_2 defined as follows. Let $(v_{P_2,1}, w_{P_2,1}) = (0,0)$. Recursively define $(v_{P_0,t}, w_{P_0,t})$ by

$$(v_{P_2,t+1}, w_{P_2,t+1}) = \begin{cases} (v_{P_2,t}+1, w_{P_2,t}) & \text{if } c(M(0, v_{P_2,t}, w_{P_2,t}, i_2, D)) = G\\ (v_{P_2,t}, w_{P_2,t}+1) & \text{if } c(M(0, v_{P_2,t}, w_{P_2,t}, i_2, D)) = B. \end{cases}$$

Again by Lemma 2, there exists a monochromatic nondominant string of length at least ℓ' at all positions of the form $M(0, v_{P_2,t}, w_{P_2,t}, i_2, D)$.

As Figure 1 illustrates, by construction of P'_1 and P_2 , there must be a point of intersection of the two paths, say (v'_0, w'_0) with $v'_0, w'_0 > 0$. Consider the corresponding

Figure 1: Paths P_1, P'_1 , and P_2

point $(v'_0 + v_0, w'_0 + w_0)$ on P_1 which corresponds to magnitude

$$M(u_0, v'_0 + v_0, w'_0 + w_0, i_2, D) = i_2 + u_0 i_1^k + v'_0 i^k + v_0 i^k + w'_0 j^k + w_0 j^k.$$

On P_2 the point (v'_0, w'_0) corresponds to magnitude $M(0, v'_0, w'_0, i_0, D) = i_2 + v'_0 i^k + w'_0 j^k$. Subtracting the two magnitudes gives $u_0 i_1^k + v_0 i^k + w_0 j^k = -1$ by choice of u_0, v_0, w_0 . Therefore, $M(u_0, v'_0 + v_0, w'_0 + w_0, i_2, D)$ and $M(0, v'_0, w'_0, i_0, D)$ are adjacent, positive, and each has a nondominant string of length at least ℓ' in the nondominant color. Thus, a string of length at least $\ell' + 1$ exists at $M(u_0, v'_0 + v_0, w'_0 + w_0, i_2, D)$, which allows us to generate arbitrarily long nondominant monochromatic strings, contradicting Lemma 4. Thus, we conclude that c contains a rainbow solution to $x - y = z^k$.

3. A Density Condition for Rainbow- Free Colorings over \mathbb{N}

Using Theorem 1, we show that 3-colorings of \mathbb{N} satisfying a certain density condition contain rainbow solutions to $x - y = z^k$. When k = 2, the upper density is $\frac{1}{4}$

as in [14].

We use the following generalization of the Frobenius coin problem in the proof of Lemma 6.

Theorem 2. Suppose two integers i and j satisfy gcd(i, j) = k. Then there exists an integer n_0 such that all numbers greater than n_0 divisible by k can be written in the form ui + vj for non-negative integers u and v.

In the following lemma, we use the stronger density condition to generalize [14, Lemma 7].

Lemma 6. Let $c : \mathbb{N} \to \{R, G, B\}$ be rainbow-free for $x - y = z^k$ such that

$$\limsup_{n \to \infty} \left(\min\{\mathcal{R}(n), \mathcal{B}(n), \mathcal{G}(n)\} - \frac{4^s - 1}{3 \cdot 4^s} \right) = \infty$$

where $s = \lfloor \frac{k}{2} \rfloor$ and R is the dominant color. Then both \mathcal{B} and \mathcal{G} must contain a pair of relatively prime integers.

Proof. Suppose \mathcal{B} and \mathcal{G} contain no pairs of consecutive integers. Since R is a dominant color, for all i, c(i) = R or c(i+1) = R. Then for all $n, |\mathcal{R}(n)| \ge n/2$ and so

$$\liminf_{n \to \infty} (\mathcal{R}(n) - (4^s - 1)/(3 \cdot 4^s)) \ge \liminf_{n \to \infty} (n/2 - (4^s - 1)/(3 \cdot 4^s)) \ge 0.$$

Therefore,

$$\limsup_{n \to \infty} (\min \{ \mathcal{B}(n), \mathcal{G}(n) \} - (4^s - 1)/(3 \cdot 4^s)) \le 0,$$

a contradiction. Therefore, there exists an i such that i and i + 1 must be in \mathcal{B} or \mathcal{G} . Without loss of generality, suppose i and i + 1 are in B. Then B contains a pair of relatively prime integers.

Assume \mathcal{G} does not have a pair of relatively prime integers. Let d be the minimum difference between any two elements in \mathcal{G} . Since $(4^s - 1)/(3 \cdot 4^s) \ge 1/4$, \mathcal{G} satisfies the conditions of Lemma 3 with $n_0 = 4$, so we have that $d \le 3$. Therefore, there exists a j such that $j, j + d \in \mathcal{G}$.

First consider d = 2. Since j and j + 2 are not relatively prime, gcd(j, j + 2) = 2. There exists a B-monochromatic string at position i of length $\ell \ge 2$. By Theorem 2, there exists an integer n_0 such that all integers greater than n_0 that are divisible by $gcd(j^k, (j + 2)^k) = 2^k$ can be expressed in the form $j^k u + (j + 2)^k v$ for some non-negative integers u and v. Hence, all integers greater than $i + n_0$ that are congruent to $i \mod 2^k$ can be expressed in the form $i + j^k u + (j + 2)^k v$, and so there exist B-monochromatic strings at positions $i + j^k$ and $i + (j + 2)^k$ of length at least 2 by Lemma 2. By induction, for any non-negative u and v, there exist Bmonochromatic strings at $i + j^k u + (j + 2)^k v$ of length at least 2. Thus, at some n_1 , there exists a blue string at of length at least 2 at all integers of the form $n_1 + 2^k m$. Consider a string of length 2^k at position $n_1 + 2^k m$. By our assumption $c(n_1 + 2^k m) = c(n_1 + 2^k m + 1) = B$. By Lemma 1, $c(n_1 + 2^k m + 2) \neq G$ and $c(n_1 + 2^k (m) + 2^k - 1) \neq G$. Since d = 2, every green element is followed by a red element, so

$$|\mathcal{G} \cap [n_1 + 2^k m, n_1 + 2^k (m+1) - 1]\}| \le |\mathcal{R} \cap [n_1 + 2^k m, n_1 + 2^k (m+1) - 1]\}| - 1.$$

When k is even, one has that $\frac{4^s-1}{3\cdot 4^s} = \frac{2^k-1}{3\cdot 2^k}$. Thus, by the density condition for m sufficiently large, we have that

$$\begin{aligned} |\mathcal{G} \cap [n_1 + 2^k m, n_1 + 2^k (m+1) - 1]\}| &> \frac{2^k - 1}{3}, \\ |\mathcal{R} \cap [n_1 + 2^k m, n_1 + 2^k (m+1) - 1]\}| &> \frac{2^k - 1}{3} + 1, \\ |\mathcal{B} \cap [n_1 + 2^k m, n_1 + 2^k (m+1) - 1]\}| &> \frac{2^k - 1}{3}, \end{aligned}$$

a contradiction. When k is odd, $\frac{4^s-1}{3\cdot 4^s} = \frac{2^k-2}{3\cdot 2^k}$. By a similar argument we get a contradiction here.

Now suppose d = 3. Since j and j + 3 are not relatively prime, gcd(j, j + 3) = 3. There is a monochromatic blue string of length 2 at position i. By Corollary 2, there exists an integer n_2 such that all integers greater than n_2 that are divisible by $gcd(j^k, (j + 3)^k) = 3^k$ can be expressed in the form $j^k u + (j + 3)^k v$. As above, there is an integer n_3 such that there exists a blue string of length at least 2 at all numbers of the form $n_3 + 3^k m$. Since every green element is followed by at least two red elements since d = 3, the density condition on each color class cannot hold, a contradiction.

Therefore, there exists a relatively prime pair of integers colored green. \Box

Theorem 3. Let $s = \lfloor k/2 \rfloor$. Every exact 3-coloring of the set of natural numbers with the upper density of each color class greater than $(4^s - 1)/(3 \cdot 4^s)$ contains a rainbow solution to $x - y = z^k$.

Proof. Suppose that there is a rainbow-free 3-coloring c of \mathbb{N} for the equation $x - y = z^k$ satisfying the density condition above. By Lemma 1, there exists a dominant color, say red. Since red is dominant, by Lemma 6, \mathcal{B} and \mathcal{G} each contain a pair of relatively prime integers. By Theorem 1, c contains a rainbow-solution, a contradiction.

4. Rainbow Numbers of \mathbb{Z}_n for $x - y = z^k$

Using the results in the previous sections on rainbow colorings over \mathbb{Z} , we compute rainbow numbers for $x - y = z^k$ over \mathbb{Z}_p .

Note rainbow-free 3-coloring of \mathbb{Z}_n yield rainbow-free 3-coloring of \mathbb{N} .

Lemma 7. If $\overline{c} : \mathbb{Z}_n \to \{R, G, B\}$ is rainbow-free for $x - y = z^k$, then the coloring $c : \mathbb{N} \to \{R, G, B\}$ given by $c(i) = \overline{c}(i \mod n)$ where $i \equiv j \mod n$ is rainbow-free for $x - y = z^k$.

The following lemma is used to find pairs of relatively prime pairs in \mathbb{N} in nondominant colors. The proof in [14] does not depend on the equation.

Lemma 8 ([14]). Let $\overline{c} : \mathbb{Z}_n \to \{R, G, B\}$ be an exact 3-coloring of \mathbb{Z}_n and let $c : \mathbb{N} \to \{R, G, B\}$ be defined by $c(i) = \overline{c}(i \mod n)$. If two integers i_1 and i_2 in \mathbb{N} satisfy $gcd(|i_1 - i_2|, n) = 1$, then there exists a pair of relatively prime integers j_1 and j_2 where $c(i_1) = c(j_1), c(i_2) = c(j_2), and |i_1 - i_2| = |j_1 - j_2|$.

The following theorem generalizes [14, Theorem 14].

Theorem 4. Let n be odd and let r_1 be the smallest prime factor of n. Let $\overline{c} : \mathbb{Z}_n \to \{R, G, B\}$ be an exact 3-coloring of \mathbb{Z}_n with corresponding color classes $\mathcal{R}, \mathcal{B}, \mathcal{G}$. If \overline{c} is rainbow-free for $x - y = z^k$, then $\min\{|\mathcal{R}|, |\mathcal{B}|, |\mathcal{G}|\} \leq \frac{n}{r_1}$.

Proof. Define $c : \mathbb{N} \to \{R, G, B\}$ by $c(i) = \overline{c}(i \mod n)$. By Lemma 7, c is rainbowfree for $x - y = z^k$. Denote the corresponding color classes of c as $\mathcal{R}', \mathcal{G}'$, and \mathcal{B}' . By Lemma 1, there exists a dominant color, say R. Suppose by contradiction that $\min\{|\mathcal{R}|, |\mathcal{B}|, |\mathcal{G}|\} > \frac{n}{r_1}$. Since $\limsup_{n'\to\infty} \left(\mathcal{B}'(n') - \frac{n'}{r_1}\right) = \infty$, there exists an i_1 and $k_1 \leq r_1 - 1$ such that $i_1, i_1 + k_1 \in \mathcal{B}'$ by Lemma 3. By Lemma 8, there exists a pair of relatively prime integers j_1, j_2 where $c(j_1) = c(i_1) = B$ and $c(j_2) = c(i_1 + k_1) = B$. Similarly there exists a pair of relatively prime integers in \mathcal{G} . By Theorem 1, c is not rainbow-free for $x - y = z^k$, a contradiction.

For primes, we immediately get the following corollary.

Corollary 1. Let p be prime. Let $\overline{c} : \mathbb{Z}_n \to \{R, G, B\}$ be an exact 3-coloring of \mathbb{Z}_p with corresponding color classes $\mathcal{R}, \mathcal{B}, \mathcal{G}$. If \overline{c} is rainbow-free for $x - y = z^k$, then $\min\{|\mathcal{R}|, |\mathcal{B}|, |\mathcal{G}|\} = 1$.

For the remainder of the section, we determine the structure of 3-colorings of \mathbb{Z}_p that are rainbow-free for $x - y = z^k$ for p an odd prime.

When p is prime and $a \neq 0$, the set $0, a^k, 2a^k, \ldots, (p-1)a^k$ forms a complete residue system for \mathbb{Z}_p . We generalize the notion of a dominant color to this complete residue system. We say that a a^k string of length ℓ at position ia^k consists of numbers $ia^k, (i+1)a^k, \ldots, (i+\ell-1)a^k$, where $i, \ell \in \mathbb{Z}_p$. An a^k -string is bichromatic if it contains exactly two colors. A color is a^k -dominant if every bichromatic string contains that color. As with dominant colors, if an a^k -dominant color exists for a 3coloring it must be unique for the complete residue system $0, a^k, 2a^k, \ldots, (p-1)a^k$. Here we generalize Lemma 1 to a^k -dominant colors. INTEGERS: 24 (2024)

Lemma 9. If $c : \mathbb{Z}_p \to \{R, G, B\}$ is an exact rainbow-free 3-coloring for $x - y = z^k$, then c(a) is a^k -dominant.

Proof. Without loss of generality, assume c(a) = R. It suffices to show that if $c(ia^k) \neq c((i+1)a^k)$, then either $c(ia^k) = R$ or $c((i+1)a^k) = R$. Since c is rainbow-free for $x - y = z^k$ and $((i+1)a^k, ia^k, a)$ is a solution to $x - y = z^k$, we get the desired conclusion.

Lemma 10. If $c : \mathbb{Z}_p \to \{R, G, B\}$ is an exact rainbow-free 3-coloring for $x - y = z^k$ then c(a) = c(-a).

Proof. Let $a \neq 0$. If k is even, $a^k = (-a)^k$. By Lemma 9, c(a) is a^k -dominant and c(-a) is a^k -dominant. Since a^k -dominant colors are unique, c(a) = c(-a). Now consider k odd. Note that if R is an a^k -dominant color for $0, a^k, 2a^k, \ldots, (p-1)a^k$, it is also $(-a)^k$ -dominant for $0, (-a)^k, \ldots, (p-1)a^k$, since the latter is the former in reverse. Since dominant colors are unique, c(a) = c(-a).

The following corollary follows immediately from Corollary 1 and Lemma 10.

Corollary 2. Let $c : \mathbb{Z}_p \to \{R, G, B\}$ be an exact rainbow-free coloring for $x - y = z^k$. If c(0) = B, then $\mathcal{B} = \{0\}$. That is, 0 is the only element in its color class.

To finalize our classification of rainbow-free 3-colorings for $x - y = z^k$ over \mathbb{Z}_p , we consider the associated digraph from powers modulo p. For any function $f: \mathbb{Z}_m \to \mathbb{Z}_m$, we construct a digraph that has the elements of \mathbb{Z}_m as vertices and a directed edge (a, b) if and only if $f(a) \equiv b \mod m$.

In some cases, the digraph associated to a function f(x) gives additional structure on rainbow-free colorings for the equation x - y = f(x). If c is a coloring of \mathbb{Z}_n and D a component of G, let $c(D) = \{c(a) | a \in D\}$. A component D is monochromatic if |c(D)| = 1.

Lemma 11. Let G be a digraph associated to a function f(x) on \mathbb{Z}_n and let D be a component of G. Let $c : \mathbb{Z}_n \to [t]$ be a rainbow-free exact t-coloring of \mathbb{Z}_n for the equation x - y = f(x). Suppose that $c(0) \notin c(D)$. Then D is monochromatic.

Proof. Suppose that D is not monochromatic. Then there exists two adjacent vertices a and f(a) in D such that $c(a) \neq c((f(a)))$. Since $c(0) \notin c(D)$, (f(a), 0, a) is a rainbow solution to x - y = f(x).

Throughout the rest of the section let G_p^k be the digraph associated to the function $f(x) = x^k \mod p$. The structure of such digraphs has been well-studied in [4], [6], [11], [12], and [13]. For example, when k = 2 and p = 10, we have the digraph as shown in Figure 2.

We use digraphs to classify exact 3-colorings of \mathbb{Z}_p that are rainbow-free for $x - y = z^k$.

Figure 2: Function digraph for $f(x) = x^2$ over \mathbb{Z}_{11}

Theorem 5. Let $c : \mathbb{Z}_p \to \{R, G, B\}$ be an exact 3-coloring. Then c is rainbow-free for $x - y = z^k$ if and only if the following hold:

- 1. 0 is the only element in its color class
- 2. every component of G_n^k is monochromatic
- 3. c(a) = c(-a) for all $a \in \mathbb{Z}_p$.

Proof. Suppose c is rainbow-free for $x - y = z^k$. Then by Corollary 2, 0 is in its own color class. By Lemma 11 and since 0 is not in any other component, every component of G_p^k is monochromatic. By Lemma 10, c(a) = c(-a) for all $a \in \mathbb{Z}_p$.

Now suppose that 0 is the only element in its color class, every component of G_p^k is monochromatic, and c(a) = c(-a) for all $a \in \mathbb{Z}_p$. We show that c is rainbow-free. Let (a_1, a_2, a_3) be a rainbow solution to $x - y = z^k$. Then one of a_1, a_2, a_3 is 0, since 0 is the only element in its color class. If $a_3 = 0$ then $a_1 = a_2$, contradicting that a_1 and a_2 are distinct colors. If $a_2 = 0$, $a_1 = a_3^k$, so there is a directed edge (a_3, a_1) in the digraph G_p^k , a contradiction, since the components of G_p^k are monochromatic. Finally, suppose that $a_1 = 0$. Then $-a_2 = a_3^k$. There is a directed edge $(a_3, -a_2)$, so $c(a_3) = c(-a_2) = c(a_2)$, a contradiction. Thus, the coloring c is rainbow-free. \Box

As repeated iteration of $f(x) = x^k$ leads to cycles, G_p^k has the following property.

Lemma 12 ([11]). Let G_p^k be the digraph associated to the function $f(x) = x^k \mod p$, where p is prime. Every component of G_p^k contains exactly one cycle.

The following theorem determines the number of components in the digraph G_p^k . In [11], Lucheta, Miller, and Reiter consider digraphs whose vertices include only nonzero residues. We restate the theorems here for digraphs whose vertices are the elements of \mathbb{Z}_p . **Theorem 6** ([11]). Let p be an odd prime. Let p - 1 = wt, where t is the largest factor of p - 1 relatively prime to k. Let $c \neq 0$ be a nonzero vertex of G_p^k . The vertex a is a cycle vertex of G_p^k if and only if $\operatorname{ord}_p a|t$.

It follows as in [11, Corollary 16] that there are precisely t + 1 vertices in cycles. Let p and t be as in Theorem 6. Then G_p^k has exactly 2 components if and only if t = 1. Using the proposition, the prime factorizations of k and p - 1 determine the number of components of G_p^k

Proposition 1. Let k be even. If $k = 2^{\alpha_0} q_1^{\alpha_1} q_2^{\alpha_2} \dots q_{\ell}^{\alpha_{\ell}}$, q_i prime for $1 \leq i \leq \ell$, $\alpha_i \geq 1$, then the digraph G_p^k has two components if and only if $p - 1 = 2^{\beta_0} q_1^{\beta_1} q_2^{\beta_2} \dots q_{\ell}^{\beta_{\ell}}$ where $\beta_i \geq 0$.

Proof. As a result of [11, Corollary 16], the number of cycle vertices in G_p^k is the t as in the statement of Theorem 6. It follows from that theorem that t = 1 if and only if $p - 1 = 2^{\beta_0} q_1^{\beta_1} q_2^{\beta_2} \dots q_{\ell}^{\beta_{\ell}}$.

Suppose t > 1. The digraph G_p^k has at least 3 cycle vertices. Since $0^k = 0$ and $1^k = 1$, there are at least 2 cycles of length 1, so there must be at least one vertex on a different cycle. Thus, G_p^k has more than 2 components.

If t = 1, the only cycles are the length 1 cycles formed by 0 and 1 so G_p^k has two components.

Proposition 2. Let $k \geq 3$ be odd and let $k = q_1^{\alpha_1} q_2^{\alpha_2} \dots q_{\ell}^{\alpha_{\ell}}$, $q_i > 2$ prime for $1 \leq i \leq \ell$, $\alpha_i \geq 1$. The digraph G_p^k has exactly three components if and only if $p-1=2q_1^{\beta_1}q_2^{\beta_2}\dots q_{\ell}^{\beta_{\ell}}$ where $\beta_i \geq 0$.

Proof. It follows from [11, Corollary 16] that the number of cycle vertices in G_p^k is t, as in the statement of Theorem 6. We see that t = 2 if and only if $p - 1 = 2q_1^{\beta_1}q_2^{\beta_2}\dots q_\ell^{\beta_\ell}$ where $\beta_i \geq 0$.

Suppose t > 2. By Theorem 6, G_p^k has at least 4 cycle vertices. Since $0^k = 0$, $(-1)^k = -1$, and $1^k = 1$, there are at least 3 cycles of length 1, so there must be at least one vertex on a different cycle. Thus, G_p^k has more than 3 components.

If t = 2, the only cycles are the length 1 cycles formed by 0, 1, and -1 so G_p^k has three components.

When k is odd, -a may not be in the same component as a, but the components are symmetric.

When an even digraph has at least three components in \mathbb{Z}_p , we can give a rainbow-free 3-coloring of \mathbb{Z}_p by coloring the component with 0 using one color, the component with 1 a second color, and coloring everything else a third color. For instance, in the digraph in Figure 2, the coloring c(0) = R, c(1) = c(10) = B, and $c(2) = \ldots = c(9) = G$ gives a rainbow-free coloring of \mathbb{Z}_{11} for $x - y = z^2$.

We now compute the rainbow number when k is even.

Theorem 7. Suppose $k = 2^{\alpha_0} q_1^{\alpha_1} q_2^{\alpha_2} \dots q_{\ell}^{\alpha_{\ell}}$, q_i prime for $1 \le i \le \ell$, $\alpha_i \ge 1$. Then we have

$$\operatorname{rb}(\mathbb{Z}_p, x - y = z^k) = \begin{cases} 3 & \text{if } p - 1 = 2^{\beta_0} q_1^{\beta_1} q_2^{\beta_2} \dots q_\ell^{\beta_\ell} \text{ where } \beta_i \ge 0, \\ 4 & \text{otherwise.} \end{cases}$$

Proof. Let $k = 2^{\alpha_0} q_1^{\alpha_1} q_2^{\alpha_2} \dots q_{\ell}^{\alpha_{\ell}}$, q_i prime for $1 \leq i \leq \ell$, $\alpha_i \geq 1$. Suppose $p-1 = 2^{\beta_0} q_1^{\beta_1} q_2^{\beta_2} \dots q_{\ell}^{\beta_{\ell}}$. By Corollary 1, the digraph G_p^k has exactly two components. Let $c : \mathbb{Z}_p \to \{R, G, B\}$ be an exact 3-coloring. Since the components of G_p^k are not monochromatic, by Theorem 5, c contains a rainbow solution to $x - y = z^k$. Thus, $\operatorname{rb}(\mathbb{Z}_p, x - y = z^k) = 3$.

Now suppose $p - 1 \neq 2^{\beta_0} q_1^{\beta_1} q_2^{\beta_2} \dots q_{\ell}^{\beta_{\ell}}$. By Corollary 1, the digraph G_p^k has at least 3 components. Define a 3-coloring $c : \mathbb{Z}_p \to \{R, G, B\}$ as follows:

$$c(a) = \begin{cases} R & \text{if } a = 0, \\ B & \text{if } a \text{ is in the same component as } 1, \\ G & \text{otherwise.} \end{cases}$$

Since k is even, (a, a^k) and $(-a, a^k)$ are edges in G_p^k . Thus, a and -a are in the same component for all a. Since each component is monochromatic, 0 is in its own color class, and c(a) = c(-a) for all a, it follows by Theorem 5 that c does not contain a rainbow-solution to $x - y = z^k$. Thus, $\operatorname{rb}(\mathbb{Z}_p, x - y = z^k) \ge 4$.

Suppose $c : \mathbb{Z}_p \to \{R, B, G, Y\}$ is an exact 4-coloring. Suppose that 0 is red. Define an exact 3-coloring $\overline{c} : \mathbb{Z}_p \to \{B, G, Y\}$ by combining the color class that contains 0 with another color class. Since 0 is not in its own color class in \overline{c} , by Theorem 5, \overline{c} contains a rainbow solution to $x - y = z^k$. By construction, c also contains a rainbow solution and so every exact 4-coloring contains a rainbow solution. Thus, $\operatorname{rb}(\mathbb{Z}_p, x - y = z^k) \leq 4$.

It follows that the rainbow number of \mathbb{Z}_p for $x - y = z^2$ is 3 if and only if p is a Fermat prime.

When an odd digraph has at least three components in \mathbb{Z}_p , we can give a rainbowfree 3-coloring of \mathbb{Z}_p by coloring the component with 0 using one color, the components containing 1 and p-1 with a second color, and coloring everything else a third color.

Theorem 8. Suppose $k = q_1^{\alpha_1} q_2^{\alpha_2} \dots q_{\ell}^{\alpha_{\ell}}$, $q_i \ge 3$ prime for $1 \le i \le \ell$, $\alpha_i \ge 1$, with $k \ge 3$. Then

$$\operatorname{rb}(\mathbb{Z}_p, x - y = z^k) = \begin{cases} 3 & \text{if } p - 1 = 2q_1^{\beta_1} q_2^{\beta_2} \dots q_\ell^{\beta_\ell} \text{ where } \beta_i \ge 0, \\ 4 & \text{otherwise.} \end{cases}$$

Proof. Let $k = q_1^{\alpha_1} q_2^{\alpha_2} \dots q_{\ell_{\alpha}}^{\alpha_{\ell}}$, q_i prime for $1 \le i \le \ell$ and $\alpha_i \ge 1$.

Suppose $p-1 = 2q_1^{\beta_1}q_2^{\beta_2} \dots q_\ell^{\beta_\ell}$ where $\beta_i \ge 0$. By Corollary 2, the digraph G_p^k has 3 components. Since 1 and -1 are both cycle vertices in G_p^k , 1 and -1 are in distinct components. Let $c : \mathbb{Z}_p \to \{R, G, B\}$ be an exact 3-coloring. If the components are monochromatic, each component must be a distinct color. In particular, $c(1) \neq c(-1)$, so Theorem 5 shows that there exists a rainbow solution to $x - y = z^k$ in c. Otherwise, the components are not chromatic, and again there is a rainbow solution to $x - y = z^k$. Thus, $\operatorname{rb}(\mathbb{Z}_p, x - y = z^k) = 3$.

Now suppose $p - 1 \neq 2q_1^{\beta_1}q_2^{\beta_2} \dots q_\ell^{\beta_\ell}$. By Corollary 2, the digraph G_p^k has at least 4 components and 1 and -1 are in distinct components. Define a 3-coloring $c : \mathbb{Z}_p \to \{R, G, B\}$ as follows:

$$c(a) = \begin{cases} R & \text{if } a = 0, \\ B & \text{if } a \text{ is in the same component as 1 or -1}, \\ G & \text{otherwise.} \end{cases}$$

Suppose that (a, a^k) is an edge in the component containing 1. Then $(-a, -a^k)$ is an edge in the component containing -1. Thus, c(a) = c(-a) for all $a \in \mathbb{Z}_p$. Furthermore, each component is monochromatic, and 0 is in its own color class. It follows by Theorem 5 that c does not contain a rainbow-solution to $x - y = z^k$. Thus, $\operatorname{rb}(\mathbb{Z}_p, x - y = z^k) \geq 4$.

Let $c: \mathbb{Z}_p \to \{R, B, G, Y\}$ be an exact 4-coloring. Suppose that c(0) = R. Define an exact 3-coloring $\overline{c}: \mathbb{Z}_p \to \{R, B, G\}$ by combining the red and yellow color classes. That is, $\overline{c}(i) = c(i)$ if $c(i) \in \{R, B, G\}$, and $\overline{c}(i) = R$ if c(i) = Y. Since 0 is not in its own color class in \overline{c} , according to Theorem 5, \overline{c} contains a rainbow solution to $x - y = z^k$.

By construction, c also contains a rainbow solution. Therefore, we conclude that every exact 4-coloring contains a rainbow solution, and thus, $\operatorname{rb}(\mathbb{Z}_p, x-y=z^k) \leq 4$. Hence, we have shown that $\operatorname{rb}(\mathbb{Z}_p, x-y=z^k) = 4$.

5. Conclusion

The technique of using graphs to study rainbow numbers could be applied to other families of equations when we know that 0 is the only element in its color class in every rainbow-free 3-coloring of \mathbb{Z}_p .

For example, consider the equation $a_1x_1 + a_2x_2 + a_3x_3 = 0$. If we take the union of the three digraphs obtained by setting each $x_i = 0$, we get digraphs $f(x_i) = -a_j/a_ix_j$. The associated graph has exactly 2 components precisely when $|\langle d_1, d_2, \ldots, d_6 \rangle| = p - 1$, where $d_1 = -a_3a_1^{-1}$, $d_2 = -a_2a_1^{-1}$, $d_3 = -a_1a_2^{-1}$, $d_4 = -a_3a_2^{-1}$, $d_5 = -a_1a_3^{-1}$, and $d_6 = -a_2a_3^{-1}$, recovering the result of [8, Corollary 8].

We can extend these concepts to equations of the form $x - y = mz^k$. Many of the results in Section 2 can be generalized to this equation. By investigating the function digraphs for $f(x) = mx^k$, we can determine the rainbow numbers for this equation over \mathbb{Z}_p . Through a similar approach, we conjecture that the rainbow numbers $\operatorname{rb}(\mathbb{Z}_p, x - y = z^k)$ and $\operatorname{rb}(\mathbb{Z}_p, x + y = z^k)$ are equal.

Lastly, when n is composite, it would be intriguing to compute the rainbow numbers for $x - y = z^k$ in \mathbb{Z}_n . Considerable knowledge exists about function digraphs G_n^k . The presence of nonlinearity complicates the computation of the rainbow number for \mathbb{Z}_{pq} when p and q are prime compared to the linear equations case explored in [1].

References

- [1] K. Ansaldi, H. El Turkey, J. Hamm, A. Nu'Man, N. Warnberg, and M. Young, Rainbow numbers of \mathbb{Z}_n for $a_1x_1 + a_2x_2 + a_3x_3 = b$, Integers **20** (2020), #A51.
- [2] M. Axenovich and D. Fon-Der-Flaass, On rainbow arithmetic progressions, *Electron. J. Com*bin 11 (2004), 7 pp.
- [3] E. Bevilacqua, S. King, J. Kritschgau, M. Tait, S. Tebon, and M. Young, Rainbow numbers for $x_1 + x_2 = kx_3$, Integers **20** (2020), #A50.
- [4] E. Blanton, S. Hurd, and J. McCranie. On a digraph defined by squaring modulo n, Fibonacci Quart. 30(4) (1992), 322-334.
- [5] S. Butler, C. Erickson, L. Hogben, K. Hogenson, L. Kramer, R. Kramer, J. Lin, R. Martin, D. Stolee, N. Warnberg, and M. Young, Rainbow arithmetic progressions, J. Comb. 7 (2016), 595-626.
- [6] G. Dresden and W. Tu, Finding cycles in the k-th power digraphs over the integers modulo a prime, *Involve* 11 (2) (2018), 181-194.
- [7] K. Fallon, E. Manhart, J. Miller, H. Rehm, N. Warnberg, and L. Zinnel, Rainbow numbers of $[m] \times [n]$ for $x_1 + x_2 = x_3$, Integers **23** (2023), #A47.
- [8] M. Huicochea and A. Montejano, The structure of rainbow-free colorings for linear equations on three variables in \mathbb{Z}_p , Integers **15A** (2015), #A8.
- [9] V. Jungić, J. Licht, M. Mahdian, J. Nešetril, and R. Radoičić, Rainbow arithmetic progressions and anti-Ramsey results, *Combin. Probab. Comput.* **12** (5-6) (2003), 599-620.
- [10] B. Llano and A. Montejano, Rainbow free colorings for x + y = cz in \mathbb{Z}_p , Discrete Math. **312** (17) (2012), 2566-2573.
- [11] C. Lucheta, E. Miller, and C. Reiter. Digraphs from powers modulo p, Fibonacci Quart. 34(3) (1996), 226-239.
- [12] L. Somer and M. Křížek, The structure of digraphs associated with the congruence $x^k \equiv y \pmod{n}$, Czechoslovak. Math. J. **61** (136)(2) (2011), 337-358.
- [13] B. Wilson, Power digraphs modulo n, Fibonacci Quart. 36(3) (1998), 229-239.
- [14] T. Zhan, On rainbow solutions to an equation with a quadratic term, Integers 9 (2009), #A49.