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Abstract

A [k, ℓ]-integer is a natural number that is both k-full and ℓ-free. Using an elemen-
tary method, an asymptotic ratio of the set of odd [k, ℓ]-integers to that of even
[k, ℓ]-integer is derived.

1. Introduction and Results

Let k and ℓ be two fixed integers such that 2 ≤ k < ℓ. A natural number n is called

ℓ-free if for all primes p dividing n, we have that pℓ does not divide n. A natural

number n is called k-full if for all primes p dividing n, we have pk | n. A natural

number nk,ℓ is called [k, ℓ]-integer if for all primes p dividing n, we have pk | n
but pℓ ∤ n. Let Nk,ℓ denote the set of all [k, ℓ]-integers, and let Nk,ℓ(x) denote the

number of integers that are in Nk,ℓ and that do not exceed x. In 1995, Kra̋tzel [5]

and Seibold [9] studied the asymptotic behavior of Nk,ℓ(x) and showed that

Nk,ℓ(x) =

min{2k,ℓ}−1∑
n=k

c
(n)
k,ℓx

1/n +∆(x), (1)

where

c
(n)
k,ℓ = Res

s=1/n

Fk,ℓ(s)

s
, Fk,ℓ(s) =

∏
p

(
1 +

ℓ−1∑
v=k

p−vs
)
,
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and ∆(x) is the error term. The distribution of these numbers nk,ℓ attracted the

attention of many authors; see [5, 6, 9, 11, 12, 13].

In 2008 Scott [8] conjectured that one third of the square-free numbers are even

and this was proven by Jameson in [3]. He proved that

lim
x→∞

So(x)

Se(x)
= 2, (2)

where So(x) and Se(x) denote the number of all odd and even square-free numbers

that do not exceed x, respectively. In 2020 Srichan [10] used an elementary method

to prove that

lim
x→∞

No(x)

Ne(x)
= 2−

√
2, (3)

where No(x) and Ne(x) denote the number of all odd and even square-full numbers

that do not exceed x, respectively. One year later, Puttasontiphot and Srichan [7]

considered this for the case of cube-full numbers and proved that,

lim
x→∞

Co(x)

Ce(x)
= 2− 22/3, (4)

where Co(x) and Ce(x) denote the number of all odd and even cube-full numbers

that do not exceed x, respectively. In 2021, Jameson [4] reproved his result in [3]

by using the same method as in [10]. Thus, it is interesting to use the elementary

method in [10] to generalize this to the case of [k, ℓ]-integers.

We will use the following notation. For a given set A and x > 1, A(x) denotes

the number of elements in A that do not exceed x. Here, for two fixed integers k

and ℓ such that 2 ≤ k < ℓ < ∞, we denote by Ok,ℓ and Ek,ℓ the set of all odd and

even [k, ℓ]-integers, respectively. The symbol f(x) ∼ g(x) means lim
x→∞

f(x)
g(x) = 1, and

we say that f(x) is asymptotic to g(x) as x → ∞. The notation ⌊x⌋ denotes the

greatest integer not exceeding real x.

Here we prove the following results.

Theorem 1. As x → ∞, we have

Ok,ℓ(x)

Ek,ℓ(x)
∼ 2− 21−(1/k)

1− 21−(ℓ/k)
.

Should the preceding definition and notation be allowed for k = 1, then 1-full

numbers are merely positive integers and generalized ℓ-free integers are just [1, ℓ]-

integers. The following corollary generalizes (2).

Corollary 1. As x → ∞, we have

O1,ℓ(x)

E1,ℓ(x)
∼ 2ℓ

2ℓ − 2
.
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Moreover, we note that, for x large enough and 2 ≤ k < x, all [k, ⌊x⌋]-integers
not exceeding x are k-full integers. Thus, Theorem 1 recovers (3) and (4). Namely,

we obtain the following corollary.

Corollary 2. As x → ∞, we have

Ok,⌊x⌋(x)

Ek,⌊x⌋(x)
=

Ko(x)

Ke(x)
∼ 2− 21−(1/k),

where Ko(x) and Ke(x) denote the number of all odd and even k-full numbers that

do not exceed x, respectively.

Proof. This follows immediately from the fact that

lim
x→∞

2− 21−(1/k)

1− 21−(⌊x⌋/k) = 2− 21−(1/k).

2. Proof of Theorem 1

We now prove Theorem 1.

Proof of Theorem 1. Let k and ℓ be two fixed integers such that 2 ≤ k < ℓ. Recall

that Nk,ℓ denotes the set of all [k, ℓ]-integers and Ok,ℓ and Ek,ℓ denote the set of all

odd and even [k, ℓ]-integers, respectively. Assume that, as x → ∞,

Ok,ℓ(x) ∼ ax1/k and Ek,ℓ(x) ∼ bx1/k, for some a, b ∈ R+. (5)

We will show that, as x → ∞,

a

b
=

2− 21−(1/k)

1− 21−(ℓ/k)
. (6)

For 0 ≤ i ≤ ℓ − k − 1, we define Ai = {n ∈ Ek,ℓ : n = 2k+im, m ∈ Ok,ℓ}. By this

definition, we have Ai(x) = Ok,ℓ

(
x

2k+i

)
, for 0 ≤ i ≤ ℓ− k − 1. Thus, we have

Ek,ℓ(x) =

ℓ−k−1∑
i=0

Ok,l

( x

2k+i

)
. (7)

In view of (5) and (7), we have

bx1/k =

ℓ−k−1∑
i=0

a
( x

2k+i

)1/k

.
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This proves (6).

Now it remains to prove the existence of a and b. In view of (7), we write

Nk,ℓ(x) = Ok,ℓ(x) + Ek,ℓ(x) = Ok,ℓ(x) +

ℓ−k−1∑
i1=0

Ok,ℓ

( x

2k+i1

)
. (8)

For 0 ≤ i2 ≤ ℓ − k − 1, we replace x in (8) by x
2k+i2

and then sum that equation

over all i2. Thus,

ℓ−k−1∑
i2=0

Nk,ℓ

( x

2k+i2

)
=

ℓ−k−1∑
i2=0

Ok,ℓ

( x

2k+i2

)
+

ℓ−k−1∑
i2=0

ℓ−k−1∑
i1=0

Ok,ℓ

( x

22k+i1+i2

)
. (9)

In view of (8) and (9), we have

Nk,ℓ(x)−
ℓ−k−1∑
i2=0

Nk,ℓ

( x

2k+i2

)
= Ok,ℓ(x)−

ℓ−k−1∑
i2=0

ℓ−k−1∑
i1=0

Ok,ℓ

( x

22k+i1+i2

)
. (10)

We redo this process and get

ℓ−k−1∑
i2=0

ℓ−k−1∑
i1=0

Nk,ℓ

( x

22k+i1+i2

)
=

ℓ−k−1∑
i2=0

ℓ−k−1∑
i1=0

Ok,ℓ

( x

22k+i1+i2

)

+

ℓ−k−1∑
i3=0

ℓ−k−1∑
i2=0

ℓ−k−1∑
i1=0

Ok,ℓ

( x

23k+i1+i2+i3

)
. (11)

In view of (10) and (11), we have

Nk,ℓ(x)−
ℓ−k−1∑
i2=0

Nk,ℓ

( x

2k+i2

)
+

ℓ−k−1∑
i2=0

ℓ−k−1∑
i1=0

Nk,ℓ

( x

22k+i1+i2

)

= Ok,ℓ(x) +

ℓ−k−1∑
i3=0

ℓ−k−1∑
i2=0

ℓ−k−1∑
i1=0

Ok,ℓ

( x

23k+i1+i2+i3

)
.

Repeating this, we have, for v ≥ 2,

Nk,ℓ(x)−
ℓ−k−1∑
i1=0

Nk,ℓ

( x

2k+i1

)
+

ℓ−k−1∑
i1=0

ℓ−k−1∑
i2=0

Nk,ℓ

( x

22k+i1+i2

)
+ . . .

+ · · ·+ (−1)v
ℓ−k−1∑
i1=0

ℓ−k−1∑
i2=0

· · ·
ℓ−k−1∑
iv=0

Nk,ℓ

( x

2vk+i1+i2+···+iv

)

=Ok,ℓ(x) + (−1)v
ℓ−k−1∑
i1=0

ℓ−k−1∑
i2=0

· · ·
ℓ−k−1∑
iv+1=0

Ok,ℓ

( x

2(v+1)k+i1+i2+···+iv+1

)
. (12)
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In view of (1), we have Nk,ℓ(x) ∼ cx1/k for some c ∈ R+. For ϵ > 0, we take x0

such that (c− ϵ)x1/k ≤ Nk,ℓ(x) ≤ (c+ ϵ)x1/k, for all x > x0. For x > x0, we choose

an odd positive integer v such that xk
0 > x

2v(k−1) and x0 < x
2(ℓ−1)v . From (12), we

have, for x > x02
(ℓ−1)v,

Ok,ℓ(x) ≥(c− ϵ)x1/k − (c+ ϵ)x1/k
ℓ−k−1∑
i1=0

(
1

2k+i1

)1/k

+ (c− ϵ)x1/k
ℓ−k−1∑
i1=0

ℓ−k−1∑
i2=0

(
1

22k+i1+i2

)1/k

+ . . .

− (c+ ϵ)x1/k
ℓ−k−1∑
i1=0

· · ·
ℓ−k−1∑
iv=0

(
1

2vk+i1+i2+···+iv

)1/k

+

ℓ−k−1∑
i1=0

· · ·
ℓ−k−1∑
iv+1=0

Ok,ℓ

( x

2(v+1)k+i1+i2+···+iv+1

)
.

From the fact that Ok,ℓ(x) ≥ 0 for all x > 0, it follows that

Ok,ℓ(x) ≥(c− ϵ)x1/k − (c+ ϵ)x1/k
ℓ−k−1∑
i1=0

(
1

2k+i1

)1/k

+ (c− ϵ)x1/k
ℓ−k−1∑
i1=0

ℓ−k−1∑
i2=0

(
1

22k+i1+i2

)1/k

+ . . .

− (c+ ϵ)x1/k
ℓ−k−1∑
i1=0

· · ·
ℓ−k−1∑
iv=0

(
1

2vk+i1+i2+···+iv

)1/k

=
(
c
(1 + (

A
2

)v+1

1 + A
2

)
− ϵ

(1− (
A
2

)v+1

1− A
2

))
x1/k, (13)

where A =
∑ℓ−k−1

i=0 2−i/k. Now we consider the upper bound of Ok,ℓ(x),

Ok,ℓ(x) ≤(c+ ϵ)x1/k − (c− ϵ)x1/k
ℓ−k−1∑
i1=0

(
1

2k+i1

)1/k

+ (c+ ϵ)x1/k
ℓ−k−1∑
i1=0

ℓ−k−1∑
i2=0

(
1

22k+i1+i2

)1/k

+ . . .

− (c− ϵ)x1/k
ℓ−k−1∑
i1=0

· · ·
ℓ−k−1∑
iv=0

(
1

2vk+i1+i2+···+iv

)1/k

+

ℓ−k−1∑
i1=0

· · ·
ℓ−k−1∑
iv+1=0

Ok,ℓ

( x

2(v+1)k+i1+i2+···+iv+1

)
.
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Thus,

Ok,ℓ(x) ≤
(
c
(1 + (

A
2

)v+1

1 + A
2

)
+ ϵ

(1− (
A
2

)v+1

1− A
2

))
x1/k

+

ℓ−k−1∑
i1=0

· · ·
ℓ−k−1∑
iv+1=0

Ok,ℓ

( x

2(v+1)k+i1+i2+···+iv+1

)
. (14)

From (7) and choosing v such that xk
0 > x

2v(k−1) , we have

ℓ−k−1∑
i1=0

· · ·
ℓ−k−1∑
iv+1=0

Ok,ℓ

( x

2vk+k+i1+···+iv+1

)
=

ℓ−k−1∑
i1=0

· · ·
ℓ−k−1∑
iv=0

Ek,ℓ

( x

2(vk+i1+···+iv

)

<

ℓ−k−1∑
i1=0

· · ·
ℓ−k−1∑
iv=0

x

2vk+i1+···+iv

<
xk
0

2v

ℓ−k−1∑
i1=0

· · ·
ℓ−k−1∑
iv=0

1

2i1+···+iv

=
xk
0

2v

( ℓ−k−1∑
i=0

1

2i

)v

< xk
0

< xk
0

(1− (
A
2

)v+1

1− A
2

))
. (15)

In view of (14) and (15), we have, for x >
xk2

0

ϵk
,

Ok,ℓ(x) ≤
(
c
(1 + (

A
2

)v+1

1 + A
2

)
+ 2ϵ

(1− (
A
2

)v+1

1− A
2

))
x1/k. (16)

From (13) and (16), we have

(
c
( 1 +

(
A
2

)v+1

1 + A
2

)
− ϵ

( 1 −
(

A
2

)v+1

1 − A
2

))
x
1/k ≤ Ok,ℓ(x) ≤

(
c
( 1 +

(
A
2

)v+1

1 + A
2

)
+ 2ϵ

( 1 −
(

A
2

)v+1

1 − A
2

))
x
1/k

.

This inequality proves the existence of a and from (8) the existence of b follows

from the existence a. □
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