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Abstract

Given an alphabet [k], we obtain generating functions for pairs of non-intersecting

words of any length and in particular for pairs of words of the same length. We

then consider pairs of words which may contain the same letters and track the total

number of letters in the second word that were also used in the first word. These

generating functions are also specialized to account for pairs of weakly decreasing

words.

1. Introduction

Historically, pairs of partitions and compositions have been considered in the sense

of tracking certain properties of the pair by means of generating functions. See

for example [8], where Wilf produced a generating function tracking the number

of pairs of non-intersecting partitions of positive integers. Also see [4] where one

of the current authors and others tracked pairs of compositions of positive integers

having the same number of parts. The latter was generalized and extended in [2].

In this context, we consider pairs of words over the alphabet [k] and discuss

firstly (in Section 3) when these have no parts in common and secondly (in Section

4) when they do have parts in common. For the latter, we provide a generating

function for the number of parts in the second word which have already appeared

in the first of the pair.

In Sections 5 and 6, we switch attention to pairs of words which are weakly

decreasing and adjust the methods of Section 3 and 4 to study non-overlapping
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pairs and then overlapping pairs of the decreasing type.

There is an interesting difference between the overlapping cases of different types

of pairs. Both Theorem 2 and Theorem 4 use the Temperley method, also known

colloquially as “adding a slice”, in its proof. Usually, this slice is added either at

the beginning or the end of the model leading to the generating function. In the

case of Theorem 2, it is added at the end. But as described in the proof of Theorem

4, the multi-part slice is added at various uniquely defined positions in the model

which may be anywhere in the slice. This allows the case modeled to grow by

multiple parts. The current authors and others have previously used a variant of

a non-conventional type of adaptation in one example (see [1]), although this has

been rare. There are countless examples of more conventional uses of the method

in [5]. And as far as we are aware, adding multiple parts as in this case constitutes

a new type of approach, which can only work in specific problems such as this one.

2. Generating Function for Words over the Alphabet [k] Using All of j
Letters

We require the following standard results.

The generating function for words over the alphabet [j] using all of j letters,

whose number of parts is tracked by x, is given in [7], by

P0(x, j) :=
j!xj∏j

i=1(1− ix)
=

∞∑
n=0

j!Sn,jx
n, (1)

where Sn,j denotes the Stirling numbers of the second kind, i.e., the number of set

partitions of n into j blocks.

On the other hand, the generating function for non-empty words over the alpha-

bet [j], made up of some or all of these letters, and whose length (number of parts)

is tracked by x, is given by
jx

1− jx
.

3. Pairs of Non-Intersecting Words

We let the number of parts in the first word be tracked by x and the number of

parts in the second word be tracked by y. Suppose that the first word uses a total of

j distinct letters, some of which may occur a multiple number of times. We define a

bijection between the set of words using these j distinct letters and words over the

alphabet [j] as follows. First put these letters in numerical order and map the ith

letter to the letter i in the alphabet. By so mapping each of the constituent letters,
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we extend this mapping from a word of length n onto a word of length n over the

alphabet [j]. This bijection preserves the number of words of any particular length

from its domain to its range.

Using the bijection already described, if the second word in the pair has no parts

in common to the first, then the number of such words with length tracked by y is

counted by
(k − j)y

1− (k − j)y
.

We note that the number of choices for the j distinct letters in the first word is

given by
(
k
j

)
. Hence, we have proved the following theorem.

Theorem 1. The generating function tracking all pairs of non-intersecting words

over the alphabet k is given by

fk(x, y) =

k−1∑
j=1

(
k

j

)
j!

xj∏j
k=1(1− kx)

(k − j)y

1− (k − j)y

=

∞∑
n=1

k−1∑
j=1

(
k

j

)
j!Sn,jx

n (k − j)y

1− (k − j)y
, (2)

where x and y track the number of parts in the first and second word of the pair,

respectively.

Example 1. When k = 4, the series given by Equation (2) begins

f4(x, y) = x
(
12y + 36y2 + 108y3 + 324y4 + 972y5

)
+ x2

(
36y + 84y2 + 204y3 + 516y4 + 1356y5

)
+ x3

(
108y + 204y2 + 420y3 + 924y4 + 2148y5

)
+ x4

(
324y + 516y2 + 924y3 + 1812y4 + 3804y5

)
+ x5

(
972y + 1356y2 + 2148y3 + 3804y4 + 7332y5

)
+ · · · . (3)

We illustrate the term 420x3y3 above. Firstly, if word one uses a single letter three

times, then there are
(
4
1

)
13 = 4 choices for word one and 33 choices for word two,

giving a total of 108 words. Secondly, if word one uses two distinct letters, then

there are
(
4
2

)
6 = 36 choices for word one and 23 choices for word two, giving a

total of 288 words. Finally, if word one uses three distinct letters, then there are(
4
3

)
3! = 24 choices for word one and 13 choices for word two, giving a total of 24

words. Altogether there are 108+288+24=420 non-intersecting word pairs of length

3.

Remark 1. Note the symmetry, fk(x, y) = fk(y, x). This follows because the bi-

jection mapping any pair of words to the same pair in reverse order (also reversing

the pair order) ensures that these objects are equinumerous.
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The coefficent of yn in the generating function (k−j)y
1−(k−j)y is (k−j)n. By extracting

the coefficient [xnyn] from Equation (2), we obtain the following corollary.

Corollary 1. The generating function tracking all pairs of non-intersecting words

with the same number of parts n over the alphabet k is given by

gk(x) =

∞∑
n=1

k−1∑
j=1

(
k

j

)
j!Sn,j(k − j)nxn, (4)

where x now tracks the number of parts in each of the first and second words of the

pair.

Next, we extract [xn] from Equation (4) and obtain our next corollary.

Corollary 2. The number of pairs of non-intersecting words with the same number

of parts n over the alphabet k is given by

hk(n) =

k−1∑
j=1

(
k

j

)
j!Sn,j(k − j)n. (5)

Combinatorially, we might obtain the above equation as follows. Firstly, we let

j be the number of different letters used in the first of the pair. There is a choice

of
(
k
j

)
such letters out of the k available in the alphabet. Since the second word is

non-intersecting, there are a total of (k − j)n such words. Once the j letters have

been chosen, we must ensure that all these letters have in fact been used. This can

be done in j!Sn,j ways.

Example 2. In the case of Equation (4) where k = 4, the series obtained begins

g4(x) = 12x+ 84x2 + 420x3 + 1812x4 + 7332x5 + 28884x6 + 112740x7 + 439572x8,

which concurs with the diagonal terms in Equation (3) as expected. Using Equation

(5) we find, for example, that h4(5) = 7332.

4. Pairs of Words Where the Number of Overlaps of the Second Word
with the First Is Tracked

As in the previous section, we let [k] be the alphabet for both words, track the

number of parts in the first by x, and let the number of distinct letters used in the

first word be given by j. We use the same bijection as that given in the previous

section and therefore the generating function for the number of such first words is
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given by Equation (1). Now let Pr(x, q, j) be the generating function for all pairs

of words using j distinct letters in the first word, whose length is tracked by x, and

having r letters in the second word where the total number of these r letters that

have already been used in the first is tracked by q. By adding a column to the right

of any such word, we obtain the following recursion for r ≥ 1 :

Pr(x, q, j) = Pr−1(x, q, j)(qj + (k − j))

where P0(x, q, j) := P0(x, j) is given by Equation (1). Repeatedly iterating this

equation, we obtain

Pr(x, q, j) = (qj + (k − j))r
∞∑

n=1

j!Sn,jx
n. (6)

Next we define

P (x, y, q, j) :=

∞∑
r=1

Pr(x, q, j)y
r,

multiply each Pr(x, q, j) in Equation (6) by yr and sum over r to obtain

P (x, y, q, j) =

∞∑
r=1

(qj + (k − j))ryr
∞∑

n=1

j!Sn,jx
n

=
(qj + k − j)y

1− (qj + k − j)y

∞∑
n=1

j!Sn,jx
n.

Finally, for each choice of j letters making up the first word, there are
(
k
j

)
possi-

bilities. Hence the generating function P (x, y, q; k) for all such word pairs over the

alphabet [k] is given by the following theorem.

Theorem 2. The generating function for the number of repeats (tracked by q) of

letters in the second of a pair of words over the alphabet [k] is given by

P (x, y, q; k) :=

k∑
j=1

(
k

j

)
P (x, y, q, j) =

k∑
j=1

(
k

j

)
(qj + k − j)y

1− (qj + k − j)y

∞∑
n=1

j!Sn,jx
n, (7)

where x and y track the number of parts in the first and second of the pair of words,

respectively. The index j is the number of distinct letters used in the first word.

Remark 2. By putting q = 0 above, we recover Theorem 1.

Example 3. The series expansion when k = 7 for Equation (7) begins

P (x, y, q; 7) = x
(
7(6 + q)y + 7(6 + q)2y2 + 7(6 + q)3y3

)
+ x2

(
7(36 + 13q)y + 7

(
186 + 132q + 25q2

)
y2 + 49

(
138 + 144q + 54q2 + 7q3

)
y3
)

+ x3
(
7(216 + 127q)y + 49

(
138 + 156q + 49q2

)
y2 + · · ·

)
+ · · · .
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We illustrate [q2x3y2]P (x, y, q; 7) = 492 = 2401 : Firstly, the case where word one

uses one letter has 7 choices for the letter, and one case for word two to match that

letter, leads to 7q2 cases. Secondly, word one uses two letters. If word two uses

both those letters, this leads to
(
7
2

)
× 6 × 2q2 = 252q2 cases. On the other hand,

if word two uses one of the letters twice, this leads again to
(
7
2

)
× 6× 2q2 = 252q2

cases. Finally, word one uses three letters and word two uses two out of these

three letters, which leads to
(
7
3

)
× 3!×

(
3
2

)
× 2q2 = 1260q2 cases. Instead, word two

may use one of the three letters used in word one, twice; then we have an addi-

tional
(
7
3

)
×3!×

(
3
1

)
q2 = 630q2 cases. Summing all these cases together yields 2401q2.

Let us consider pairs of words of equal length. We therefore amend Equation (7)

by replacing the generating function for the second word with an arbitrary number

of parts by that for the second word with n parts, and thereafter replace the tracker

y by x. By doing this, we have proved the following corollary.

Corollary 3. The generating function P (x, q; k) for the number of repeats (tracked

by q) of letters in the second word in a pair of words of equal length, over the alphabet

[k], is given by

P (x, q; k) =

k∑
j=1

(
k

j

) ∞∑
n=1

j!Sn,j(qj + k − j)nx2n,

where x tracks the number of parts in each of the pair of words. The index j is the

number of distinct letters used in the first word.

Once again, we provide a combinatorial explanation for the above corollary:
(
k
j

)
is again the number of choices for the j letters in the first word. Now we allow

intersections in the second word. The letters may be chosen from the original j,

in which case each use is tracked with a q, or the letters come from the remaining

non-intersecting letters of which there are k − j. So the generating function for all

n letters in the second word is (qj + k − j)n. To ensure that we use all j letters in

the first word, we again have the factor j!Sn,j .

Remark 3. By differentiating Equation (3) with respect to q and setting q = 1,

we obtain the generating function for the total number of repeats of parts in the

second of a pair of words of equal length relative to those appearing in the first.

This is
k∑

j=1

∞∑
n=1

(
k

j

)
jj!Sn,jjk

n−1nx2n.
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5. Pairs of Weakly Decreasing Non-Intersecting Words

Here we consider pairs of weakly decreasing words. As already explained in Section

3, we let the number of parts in the first word be tracked by x and suppose that

the first word uses a total of j distinct letters, some of which may occur a multiple

number of times. As before, we let the number of parts in the second word be

tracked by y. And we again use the bijection explained in Section 3, which means

we use the alphabet [j] as the set for the parts in the first word and use this to obtain

a generating function accounting for the number of all such decreasing first words,

while using the set [k − j] to obtain a generating function accounting (bijectively)

for all such second words whose parts come from [k − j]. We note that the second

word does not necessarily use all the elements of [k − j].

According to the analysis in [3], choosing (allowing replacement of) p objects

from n different objects without regard to the order of choice is called a combination

with repetition. The number of possible such combinations is a basic and elementary

statistic. Indeed, choosing a combination of j objects with repetition from a set

of n objects can be done in
(
n+j−1

j

)
ways. By definition, such a combination is

of the form {c1, c2, . . . , cj} where 1 ≤ c1 ≤ c2 ≤ · · · ≤ cj ≤ n. In other words, a

combination is by definition (in reverse order) a weakly decreasing word of arbitrary

length. We let card(π) denote the cardinality of the combination π of [n], let Cn be

the set of all such combinations of arbitrary length, and let Pn(p) be the generating

function for the number of combinations π of [n] with repetition according to the

statistics card tracked by p:

Pn(p) :=
∑
π∈Cn

pcard(π).

Since each combination of [n] either contains n or not, we have

Pn(p) = Pn−1(p) + Pn(p|n), (8)

where Pn(p|i) is defined to be the generating function for such combinations ending

in i. We consider the two cases of cardinality 1 or larger (where the last two columns

are jn) and therefore obtain:

Pn(p|n) = p+ p

n∑
j=1

Pj(p|j), (9)

which implies

Pn−1(p|n− 1) = p+ p

n−1∑
j=1

Pj(p|j) (10)

with P1(p|1) = P1(p) =
p

1−p . Subtracting Equation (10) from (9), we obtain
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Pn(p|n) =
Pn−1(p|n− 1)

1− p
,

which we iterate n− 1 times to obtain

Pn(p|n) =
p

(1− p)n
.

So from Equation (8),

Pn(p) = Pn−1(p) +
p

(1− p)n
.

Again, we iterate the latter equation to obtain

Pn(p) = p

n∑
j=1

1

(1− p)j
= (1− p)−n − 1.

So, in the case of word two, where y tracks the number of parts, we have the

generating function P2,n(y) given by

P2,n(y) = (1− y)−n − 1.

In the case of word one, every letter from [j] must appear at least once in decreasing

order. Again in decreasing order, all the cases of the repeats of these letters slot

into the first occurrences of the first elements from [j], each in a unique position.

Thus, in the case of word one, where x tracks the number of parts, the generating

function is given by

P1,j(x) = xj(1− x)−j .

In the case of P2,n(y), we put n = k− j representing the fact that the parts of word

two belong to the alphabet [k], but have no intersection with the parts of word one.

Hence, we have proved the following theorem.

Theorem 3. The generating function tracking all pairs of non-intersecting weakly

decreasing words over the alphabet [k] is given by

fw,k(x, y) =

k−1∑
j=1

(
k

j

)
xj(1− x)−j

(
(1− y)−(k−j) − 1

)
, (11)

where x and y track the number of parts in the first and second word of the pair,

respectively, and the index j tracks the number of distinct letters in the first word.
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Example 4. The series expansion when k = 4 for Equation (11) begins

fw,4(x, y) = x
(
12y + 24y2 + 40y3 + 60y4 + 84y5

)
+ x2

(
24y + 42y2 + 64y3 + 90y4 + 120y5+

)
+ x3

(
40y + 64y2 + 92y3 + 124y4 + 160y5

)
+ x4

(
60y + 90y2 + 124y3 + 162y4 + 204y5

)
+ x5

(
84y + 120y2 + 160y3 + 204y4 + 252y5

)
+ · · · , (12)

from the extension of which we extract the diagonal series beginning

12xy + 42(xy)2 + 92(xy)3 + 162(xy)4 + 252(xy)5 + 362(xy)6 + 492(xy)7.

This is sequence A005901 in [6]. However it is a new interpretation of this sequence.

We illustrate the bold coefficient from Equation (12) above . Firstly, the case

where word one uses one letter has 4 choices for the letter and one case for word

two to have one letter (3 choices) which leads to 12 cases. Or, word two uses two

letters, which leads to 4
(
3
2

)
×3 cases. The last possibility for this case is where word

two uses three letters leading to 4 × 3 cases. Secondly, word one uses two letters,

which leads to
(
4
2

)
× 3 possibilities for this word. If word two uses one letter, this

leads to
(
4
2

)
× 3×

(
2
1

)
choices. If word two uses two letters, this leads to

(
4
2

)
× 3× 3

cases. Finally, word one using three letters leads to
(
4
3

)
× 3 possibilities for this

word. Word two then has one possibility. Summing all these cases yields 162x4y4.

By using the binomial theorem, the above theorem may be expressed in a nicer

form given in the next corollary.

Corollary 4. The generating function tracking all pairs of non-intersecting weakly

decreasing words over the alphabet [k] is given by

fw,k(x, y) =

(
x

1− x
+

1

1− y

)k

−
(

1

1− x

)k

−
(

1

1− y

)k

+ 1,

where x and y track the number of parts in the first and second word of the pair,

respectively.

Below, we extract the diagonal coefficients from Equation (11). We see that

[(xy)n]fw,k(x, y) =

k−1∑
j=1

(
k

j

)(
n− 1

j − 1

)(
n+ k − j − 1

n

)
.

So we have proved the following corollary.

Corollary 5. The generating function counting pairs of non-intersecting weakly

decreasing words of equal length over the alphabet [k] is given by

∞∑
n=1

k−1∑
j=1

(
k

j

)(
n− 1

j − 1

)(
n+ k − j − 1

n

)
zn
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where z tracks the length of each word in the pair.

For the final time we give a combinatorial explanation of the above corollary.

Firstly, choose the j distinct letters in the first word in
(
k
j

)
ways. Since this is a

weakly decreasing word, there are
(
n−1
j−1

)
choices of position where there is a left-

to-right strict decrease after the largest letter goes into the first position. These

are all placed in decreasing order. All the positions other than these j − 1 are

where the letter to its left are repeated (i.e., a weak decrease). The second word

(weakly decreasing, non-intersecting) is constituted from a subset of the remaining

k− j letters and is counted by
(
n+k−j−1

n

)
which is the number of combinations with

repetition.

Remark 4. The k values 4 and 54 in Corollary 5 correspond to Sequences A005901

and A0035879, respectively, in [6]. Other k values between 4 and 54 correspond to

other sequence numbers between the above two extremes. The non-intersecting

word interpretation are all new instances of these sequences and the original se-

quences from [6] all describe a different but inter-related problem, which we invite

the interested reader to explore.

Remark 5. As explained in Remark 1, we have the symmetry, fw,k(x, y) = fw,k(y, x).

6. Pairs of Decreasing Words where the Number of Overlaps of the Sec-
ond Word with the First Is Tracked

Here, we will use a variant on the method of adding a slice. The variation is as

follows. Firstly, instead of adding one part at a time, we add r parts simultaneously

which is enabled because each of the r parts fits into the existing second of the pair

of decreasing words in a uniquely defined position. Moreover, each of these parts

has an identical effect on the existing generating function for the non-intersecting

parts. Secondly, the more conventional treatment adds the new slice either at the

beginning or end of the existing word, but this particular problem enables the r

new slices to fit in at some other uniquely defined positions.

Our starting point will be to use Theorem 3, which gives the generating function

tracking pairs of non-intersecting weakly decreasing words over the alphabet [k].

For each r ≥ 1, we will additionally track r extra parts in the second of the pair,

all of which have already occurred in the first of the pair. As stated in the second

paragraph of Section 5, for each r, there are
(
r+j−1

r

)
choices (in weakly decreasing

order) for the r repeated parts from the j distinct letters in the first word. We track

the occurrence of each overlap with variable q and, as before, each (additional) part

by y. Hence, the generating function given by Equation (11) needs to be modified

to allow the part of it tracking the non-overlapping parts of the second word in the

pair (i.e., (1− y)−(k−j) − 1) to also track the overlapping additional r parts in the
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second of the pair, where each of these overlapping parts in the second word is placed

exactly in the unique rightmost possible position to ensure that the second word

remains weakly decreasing. Note that the generating function
(
(1− y)−(k−j) − 1

)
excludes the empty case but the additional r parts are allowed to be appended to

the empty case for which the generating function is (1−y)−(k−j)
∑∞

r=1

(
r+j−1

r

)
qryr.

Altogether the term (1− y)−(k−j) − 1 in Equation (11) needs to be replaced by

(1− y)−(k−j) − 1 + (1− y)−(k−j)
∞∑
r=1

(
r + j − 1

r

)
qryr.

Thus we have proved the following theorem.

Theorem 4. The generating function gw,k(x, y, q) tracking all pairs of weakly de-

creasing words over the alphabet [k] is given by

k−1∑
j=1

(
k

j

)
xj(1− x)−j

(
(1− y)−(k−j) − 1 + (1− y)−(k−j)

∞∑
r=1

(
r + j − 1

r

)
qryr

)

=

k−1∑
j=1

(
k

j

)
xj(1− x)−j

(
−1 + (1− y)−(k−j)(1− qy)−j

)
, (13)

where x and y track the number of parts in the first and second word of the pair,

respectively, the index j tracks the number of distinct letters in the first word and q

tracks the number of overlaps in the second word.

Remark 6. By putting q = 0 above, we recover Theorem 3.

Example 5. The series expansion when k = 7 for Equation (13) begins

x
(
7(6 + q)y + 7(21 + q(6 + q))y2 + 7

(
56 + q

(
21 + 6q + q2

))
y3
)

+ x2
(
49(3 + q)y + 14

(
33 + 18q + 5q2

)
y2 + 7

(
161 + 111q + 51q2 + 13q3

)
y3
)

+ x3
(
196(2 + q)y + 49

(
23 + 18q + 7q2

)
y2 + 21

(
122 + 117q + 72q2 + 25q3

)
y3
)

+ · · · .

We illustrate 21× 25x3y3q3 from the above series:

If word 1 uses one letter there are seven choices, and word 2 must use that letter

three times, for a total 7q3 possibilities.

If word 1 uses two letters, there are
(
7
2

)
× 2 choices for word 1. Then word 2 can

use one of them three times, with two choices, or both of them, so two choices, for

a total of
(
7
2

)
× 2× 4q3 possibilities.

Finally, if word 1 has three letters, there are
(
7
3

)
choices for word 1. Next if word

2 uses one out of the three, there are three choices, or two out of the three gives

3×2 choices, or three out of three so one choice. This gives a total of
(
7
3

)
(3+6+1)q3

possibilities.

Summing all possibilities together yields 525x3y3q3 as indicated in the series.
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