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Abstract

Pak and Kang showed that if a multiplicative function f satisfies f(p+ q) + f(p−
q) = 2f(p) + 2f(q) for all primes p and q, then f is uniquely determined assuming
Goldbach’s conjecture. In this paper, we prove that if a multiplicative function f
satisfies f(m2+n2)+f(m2−n2) = 2f(m2)+2f(n2) for all positive integers m > n,
then there are three solutions for f . If f(4) ̸= 0, then f is uniquely determined to
be f(n) = n2.

1. Introduction

A function f : N → C is called multiplicative if f(1) = 1 and f(mn) = f(m) f(n)

for all positive integers m and n with gcd(m,n) = 1. Let S be a set of multiplicative

functions and E be a set of positive integers. If f ∈ S is uniquely determined under

the condition f(m+ n) = f(m) + f(n) for all m,n ∈ E, then we call E an additive

uniqueness set for S.

Spiro [8] coined the notion of additive uniqueness and showed that the set of

primes is an additive uniqueness set for multiplicative functions f provided that

there exists a prime p0 such that f(p0) ̸= 0. Since her paper many mathematicians

have studied various additive uniqueness sets. For example, Dubickas and Šarka [3]

extended Spiro’s result to apply to more than two primes; that is,

f(p1 + p2 + · · ·+ pk) = f(p1) + f(p2) + · · ·+ f(pk)

for all primes pi.

Chung [2] considered the condition f(a2 + b2) = f(a2) + f(b2) for all a, b ∈ N.
However, the multiplicative function f is not uniquely determined. Later, the author

DOI: 10.5281/zenodo.14339987
1This work was supported by the National Research Foundation of Korea (NRF) grant funded

by the Korean government (MSIT) (NRF-2021R1A2C1092930).



INTEGERS: 24 (2024) 2

[6] proved that if k ≥ 3 and a multiplicative function f satisfies

f(a21 + a22 + · · ·+ a2k) = f(a21) + f(a22) + · · ·+ f(a2k)

for all positive integers ai, then f is the identity function.

As a variation, Bašić [1] studied multiplicative functions f satisfying f(a2+b2) =

f(a)2 + f(b)2 for all a, b ∈ N. However, this is also not uniquely determined. The

author [5] also showed that f is uniquely determined if k ≥ 3 and

f(a21 + a22 + · · ·+ a2k) = f(a1)
2 + f(a2)

2 + · · ·+ f(ak)
2

holds for all positive integers ai.

Recently, Pak and Kang [4] studied the different functional equation

f(p+ q) + f(p− q) = 2f(p) + 2f(q)

for all primes p > q. They showed that the multiplicative function is uniquely

determined to be f(n) = n2 if Goldbach’s conjecture is true. They call this property

parallelogram uniqueness.

In this paper, we study the parallelogram uniqueness of square numbers for

multiplicative functions. There are three solutions for the functional equation: one

is f(n) = n2 (Theorem 1) and two other functions are possible (Theorem 2).

Theorem 1. If a multiplicative function f satisfies

f(m2 + n2) + f(m2 − n2) = 2f(m2) + 2f(n2)

for all positive integers m > n and f(4) ̸= 0, then f is uniquely determined to be

f(n) = n2.

Theorem 2. If a multiplicative function f satisfies

f(m2 + n2) + f(m2 − n2) = 2f(m2) + 2f(n2)

for all positive integers m > n and f(4) = 0, then f is one of the following:

1. f(n) =


0, if n ≡ 0 (mod 4),

4, if n ≡ 2 (mod 4),

1, otherwise,

2. f(2) = 4, f(2r) = 0 for all r ≥ 2, and

f(pr) =

(
−1

p

)r

pr

for all r ≥ 1 and odd primes p. Here,
( ·
·
)
is the Jacobi symbol.
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2. Proofs of Theorems 1 and 2

In this section we will provide the proofs of Theorems 1 and 2. The proofs rely on

several preliminary results (Theorem 3-6 and Lemmas 1-5), that we present first.

If a multiplicative function f satisfies

f(m2 + n2) + f(m2 − n2) = 2f(m2) + 2f(n2)

for all positive integers m > n, then we can evaluate some f(n) by solving a system

of equations. For example, it contains

f(22 + 12) + f(22 − 12) = 2f(22) + 2f(12)

or

f(5) + f(3) = 2f(4) + 2f(1).

We use the following Mathematica code by setting fn = f(n).

Solve[f1 == 1 && f5 + f3 == 2*f4 + 2*f1

&& f4 f17 + f4 f3 f5 == 2*f64 + 2*f4

&& f5 f13 + f9 f7 == 2*f64 + 2*f1

&& f25 + f7 == 2*f16 + 2*f9 && f4 f25 + f4 f7 == 2*f64 + 2*f4 f9

&& f5 f17 + f7 f11 == 2*f81 + 2*f4 && f2 f5 + f8 == 2*f9 + 2*f1

&& f2 f13 + f8 f3 == 2*f25 + 2*f1 && f13 + f5 == 2*f9 + 2*f4

&& f9 f13 + f9 f5 == 2*f81 + 2*f4 f9

&& f5 f17 + f13 == 2*f49 + 2*f4 f9

&& f4 f13 + f4 f5 == 2*f4 f9 + 2*f16

&& f2 f17 + f16 == 2*f25 + 2*f9

&& f41 + f9 == 2*f25 + 2*f16 && f5 f13 + f3 f11 == 2*f49 + 2*f16

&& f2 f25 + f16 f3 == 2*f49 + 2*f1

&& f2 f41 + f16 f5 == 2*f81 + 2*f1,

{f1, f2, f3, f4, f5, f7, f8, f9, f11, f13, f16, f17, f25, f41, f49,

f64, f81}]

The above system of equations has three sets of solutions as in Table 1.

We can determine f(2r) according to the value of f(4).

Theorem 3. If f(4) = 0, then f(2r) = 0 for r ≥ 2. Otherwise, f(2r) = 22r for

r ≥ 1.

Proof. From Table 1, if f(4) = 0, then f(23) = f(24) = 0. We use induction on

f(2r), assuming that f(2t) = 0 for all 2 ≤ t < r.
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n 2 3 4 5 7 8 9 11 13 16 17 25 41 49 64 81

f(n) 4 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1

f(n) 4 −3 0 5 −7 0 9 −11 13 0 17 25 41 49 0 81

f(n) 22 32 42 52 72 82 92 112 132 162 172 252 412 492 642 812

Table 1: f(n) for several n’s

Consider r = 2s+ 1 ≥ 5. To evaluate f(22s+1) by using the equation

f(A2 +B2) + f(A2 −B2) = 2f(A2) + 2f(B2),

we set A = 3 · 2s−1 and B = 2s−1. Then, the above equation becomes

f(5)f
(
22s−1

)
+ f

(
22s+1

)
= 2f(9)f

(
22s−2

)
+ 2f

(
22s−2

)
.

Rearranging the equation, we obtain f(22s+1) = 0.

If r = 2s+ 2 ≥ 4, then we set A = 3 · 2s and B = 2s+1. Since

f(13)f
(
22s
)
+ f(5)f

(
22s
)
= 2f(9)f

(
22s
)
+ 2f

(
22s+2

)
,

we obtained f(22s+2) = 0.

If f(4) ̸= 0, then we already computed f(4) = 42, f(8) = 82, and f(16) = 162.

In this case we obtain f(2r) = 22r by induction by using the same process as the

above two cases.

Now we start the proof of Theorem 1. We prove that f(pr) = p2r through

induction on odd primes p and r ∈ N. In our proof that f(p) = p2, we assume that

f(qs) = q2s for all primes q < p and all s ∈ N. Using the fact that f(p) = p2, we

then prove that f(pr) = p2r for all r.

The difficult part is to show that f(p) = p2 for p ≡ 3 (mod 4). If p ≡ 1 (mod 4),

then p is the sum of two squares and we can use induction.

First, we show that f(pr) = p2r with r ≥ 2 under the assumption that f(p) = p2.

To this end we need a lemma.

Lemma 1. Assume that f(qs) = q2s for all primes q < p and s ∈ N. If f(p) = p2,

then f(p2 + 1) = (p2 + 1)2.

Proof. Note that all prime divisors of p + 1 and p − 1 are smaller that p. Then,

since

f

(
p2 + 1

2

)
+ f(p) = 2f

((
p+ 1

2

)2)
+ 2f

((
p− 1

2

)2)
,

we obtain f(p2 + 1) = (p2 + 1)2.
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Theorem 4. Assume that f(qs) = q2s for all primes q < p and s ∈ N. If f(p) = p2,

then f(pr) = p2r for r ≥ 2.

Proof. Suppose r is even. We write r = 2k. If f(ps) = p2s for all s < 2k, then

f(p2k) = p4k by induction since

f(p2k−2) f(p2 + 1) + f(p2k−2) f((p+ 1)(p− 1)) = 2f(p2k) + 2f(p2k−2).

When r is odd, we write r = 2k + 1. If f(ps) = p2s for all s < 2k + 1, then the

equation

f(p2k) f

(
p2 + 1

2

)
+ f(p2k+1) = 2f(p2k) f

((
p+ 1

2

)2)
+ 2f(p2k) f

((
p− 1

2

)2)

gives f(p2k+1) = p2(2k+1).

We already have f(p) = p2 for p = 3, 5, 7, 11, 13, and 17. So, we only need to

show that f(p) = p2 for p ≥ 19 under the induction hypothesis.

Theorem 5. Assume that f(qs) = q2s for all primes q < p and s ∈ N. If p ≡ 1

(mod 4), then f(p) = p2.

Proof. Since p ≡ 1 (mod 4), p = a2 + b2 for some positive integers a > b. Then, all

prime divisors of a2 − b2, a2, and b2 are smaller than p. Thus, since

f(p) + f(a2 − b2) = 2f(a2) + 2f(b2),

we obtain f(p) = p2.

Now, we prove that f(p) = p2 when p ≡ 3 (mod 4). To use induction, we assume

that f(qr) = q2r for all primes q < p.

Lemma 2. Assume that f(qs) = q2s for all primes q < p and s ∈ N. If p ≡ 3

(mod 4), then f(p+ 2) = (p+ 2)2 and f
(
(p+ 2)2

)
= (p+ 2)4.

Proof. If p+2 is composite, then all prime divisors of p+2 are smaller than p. So,

f(p+ 2) = (p+ 2)2 and f
(
(p+ 2)2

)
= (p+ 2)4.

If p + 2 is prime, then p + 2 ≡ 1 (mod 4) and thus, p + 2 = a2 + b2 with some

integers a > b. Thus, f(p + 2) = (p + 2)2 by the previous method in the proof of

Lemma 5.

Similarly, since

(p+ 2)2 = (a2 − b2)2 + (2ab)2

and a2 − b2 < p and 2ab < a2 + b2 = p, we have that f
(
(p+ 2)2

)
= (p+ 2)4.

Lemma 3. Assume that f(qs) = q2s for all primes q < p and s ∈ N. If p = 4k− 1,

then f(k2 + 1) = (k2 + 1)2 and f(4k2 + 1) = (4k2 + 1)2.
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Proof. Note that

f(k2 + 1) + f((k + 1)(k − 1)) = 2f(k2) + 2f(1)

and

f(4k2 + 1) + f((2k + 1)(2k − 1)) = 2f(4k2) + 2f(1).

Since prime divisors of each factor are less than p, we obtain f(k2 + 1) = (k2 + 1)2

and f(4k2 + 1) = (4k2 + 1)2.

Lemma 4. Assume that f(qs) = q2s for all primes q < p and s ∈ N. If p =

4k − 1 ≥ 19 and k is not a multiple of 4, then f(5k + 3) = (5k + 3)2.

Proof. Suppose 5k + 3 is prime. Then, 5k + 3 = a2 + b2 for some a > b ≥ 1. Note

that a <
√
5k + 3 < 4k − 1 = p. Thus, f(5k + 3) = (5k + 3)2 similarly as in the

proof of Theorem 5.

If 5k + 3 is a composite number, then it has a divisor d ≥ 2 and

5k + 3

d
≤ 5k + 3

2
< 4k − 1 = p.

Thus, all prime divisors of 5k + 3 are smaller than p and f(5k + 3) = (5k + 3)2 by

the induction hypothesis.

Similarly, we have the following lemma.

Lemma 5. Assume that f(qs) = q2s for all primes q < p and s ∈ N. If p =

4k − 1 ≥ 19 and k ̸≡ 3 (mod 4), then f(6k + 1) = (6k + 1)2.

We have now finished the setup for the proof.

Theorem 6. Assume that f(qs) = q2s for all primes q < p and s ∈ N. If p =

4k − 1 ≥ 19, then f(p) = p2.

Proof. The previous lemmas established that for p = 4k − 1, we have f(5k + 3) =

(5k + 3)2 or f(6k + 1) = (6k + 1)2.

Suppose that 4 ∤ k. Then, f(5k+3) = (5k+3)2 by Lemma 4. Also, f(k2 +1) =

(k2 + 1)2 by Lemma 3. If 17s∥(k2 + 1) with s ≥ 0, then

f(k2 + 1) = f(17s) f

(
k2 + 1

17s

)
= 172s f

(
k2 + 1

17s

)
= (k2 + 1)2

and thus,

f
(
17(k2 + 1)

)
= f(17s+1) f

(
k2 + 1

17s

)
= 172(k2 + 1)2.
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Note that

f
(
17(k2 + 1)

)
+ f((5k + 3)(3k − 5)) = 2f(p2) + 2f

(
(k + 4)2

)
and gcd(5k + 3, 3k − 5) is 1, 2, 17, or 34. In every case, we have

f((5k + 3)(3k − 5)) = (5k + 3)2(3k − 5)2

since 3k − 5 < p.

Then, we have that f(16k2 + 1) = (16k2 + 1)2, since

f(2) f(16k2 + 1) + f(16k) = 2f
(
(p+ 2)2

)
+ 2f(p2)

and f
(
(p+ 2)2

)
= (p+ 2)4 by Lemma 2.

Thus, we can deduce that f(p) = p2 since

f(16k2 + 1) + f(p+ 2) f(p) = 2f(16k2) + 2f(1)

and f(p+ 2) = (p+ 2)2 by Lemma 2.

Now, suppose that 4 | k. Because 5k + 3 ≡ 3 (mod 4), we cannot use f(5k + 3).

Instead, we use 6k + 1 ̸≡ 3 (mod 4). We have f(6k + 1) = (6k + 1)2 by Lemma 5

and f(4k2 + 1) = (4k2 + 1)2 by Lemma 3. Then, f(p2) = p4 since

f
(
5(4k2 + 1)

)
+ f((6k + 1)(2k − 3)) = 2f(p2) + 2f

(
4(k + 1)2

)
.

Therefore, f(16k2 + 1) = (16k2 + 1)2 and f(p) = p2 by the previous method.

Now, we prove Theorems 1 and 2.

Proof of Theorem 1. We have that f(2r) = 22r by Theorem 3. Let p be an odd

prime and assume that f(qr) = q2r for all primes q < p. Then, f(p) = p2 by

Theorem 5 and Theorem 6. If f(ps) = p2s for all s < r, then f(pr) = p2r by

Theorem 4.

Proof of Theorem 2. We can prove Theorem 2 in the same way. For example,

f(2r) = 0 with r ≥ 2 was already shown in Theorem 3. It is obvious that f(n) = 1

for all odd n satisfies the condition. So, suppose that f(3) ̸= 1. Then, Lemma 1

for this case should be stated as follows: If f(p) =
(

−1
p

)
p, then f

(
p2+1

2

)
= p2+1

2 .

This can be verified since

f

((
p+ 1

2

)2)
=


(
p+ 1

2

)2
if p ≡ 1 (mod 4),

0 if p ≡ 3 (mod 4),

f

((
p− 1

2

)2)
=


0 if p ≡ 1 (mod 4),(
p− 1

2

)2
if p ≡ 3 (mod 4).

By a similar process we obtain f(pr) =
(

−1
p

)r
pr for all odd primes p.
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[1] B. Bašić, Characterization of arithmetic functions that preserve the sum-of-squares operation,
Acta Math. Sin. (Engl. Ser.) 30 (4) (2014), 689-695.

[2] P. V. Chung, Multiplicative functions satisfying the equation f(m2 + n2) = f(m2) + f(n2),
Math. Slovaca 46 (1996), 165-171.
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