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Abstract

The question of integer complexity asks about the minimal number of 1’s that are
needed to express a positive integer using only addition and multiplication (and
parentheses). In this paper, we propose the notion of l-complexity of multiples of l,
which specializes to integer complexity when l = 1, prove several elementary results
on 2-complexity of even positive integers, and raise some interesting questions on
2-complexity and in general l-complexity.

1. Introduction

Given a positive integer n, the integer complexity of n, denoted as ∥n∥, is defined

as the minimal number of 1’s that are needed to express n in terms of 1 using only

addition and multiplication (and parentheses). Alternatively, one could also define

the integer complexity recursively via

∥1∥ := 1 and ∥n∥ := min
a,b∈Z+

a+b=n or ab=n

(
∥a∥+ ∥b∥

)
.

The notion of integer complexity was first raised by Mahler–Popken [6], and it has

been a longstanding problem to determine the integer complexity of some given n.

Integer complexity grows logarithmically:

3 log3 n ≤ ∥n∥ ≤ 3 log2 n.

According to Guy [5], Selfridge proved that the lower bound can be attained when

n = 3m and raised the question of whether there exists a ∈ Z+ such that ∥2a∥ < 2a.

This question is nowadays usually incorporated into the following conjecture.

Conjecture 1. For a ≥ 1 and b ≥ 0, ∥2a · 3b∥ = 2a+ 3b.
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There has been much progress on this topic, specifically on improving the upper

bound for ‘generic’ positive integers, algorithms for computing integer complexity,

and partial results on Conjecture 1. Here we refer to the papers by Steinerberger [7],

Cordwell et al. [4], Altman–Zelinsky [2], and Altman [1] for discussions of previous

results and recent advances on various aspects. We would also like to mention

the paper by Arias de Reyna [3], which raised many other conjectures on integer

complexity, though most of them have been settled.

Now, let l be a positive integer. Given a positive integer n ∈ lZ+, define the

l-complexity of n, denoted as ∥n∥l, as the minimal number of l’s that are needed

to express n in terms of l using only addition and multiplication (and parentheses).

As before, one could also define the l-complexity recursively via

∥l∥l := 1 and ∥n∥l := min
a,b∈lZ+

a+b=n or ab=n

(
∥a∥l + ∥b∥l

)
.

Indeed, l-complexity specializes to integer complexity when l = 1, and in this article,

we will mostly focus on l = 2. Our main result is a complete classification of n ∈ 2Z+

with ∥n∥2 = m+ 1 and ∥n∥2 = m+ 2, where m = ⌈log2 n⌉ − 1.

Theorem 1. Let n ∈ 2Z+ and m = ⌈log2 n⌉ − 1, i.e., 2m < n ≤ 2m+1.

(1) ∥n∥2 = m+ 1 if and only if n = 2m+1 or n = 2m + 2m
′
for 1 ≤ m′ < m.

(2) ∥n∥2 = m+ 2 if and only if n is of one of the following forms

(a) 2m1 + 2m2 + 2m3 for m = m1 > m2 > m3 ≥ 1;

(b) 2m1 + 2m2 + 2m3 + 2m4 for m = m1 > m2 > m3 > m4 ≥ 2 with

m1 +m4 = m2 +m3;

(c) 2m1 + 2m1−3 + 2m2 + 2m2−1 for m = m1 ≥ m2 + 3 ≥ 6;

(d) 2m + 2m−5 + 2m−6 + 2m−7 for m ≥ 10.

Using this classification, we are able to prove the following result on the 2-

complexity of even positive integers of certain particular forms.

Theorem 2. For m ≥ 0, we have

(1) ∥2m · 6r∥2 = m+ 3r for 1 ≤ r ≤ 7, and m+ 3r− 1 ≤ ∥2m · 6r∥2 ≤ m+ 3r for

8 ≤ r ≤ 9;

(2) ∥2m · 10r∥2 = m+ 4r for 1 ≤ r ≤ 4, and m+ 19 ≤ ∥2m · 105∥2 ≤ m+ 20.

We would also like to propose the following conjecture cautiously, which may well

be entirely wrong for large r. One should compare this conjecture with Conjecture 1

in the realm of integer complexity. In Section 4, we also propose a list of other

interesting questions to investigate.

Conjecture 2. For m ≥ 0 and r ≥ 1, ∥2m ·6r∥2 = m+3r and ∥2m ·10r∥2 = m+4r.
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2. Preparatory Lemmas

Throughout this section, let l > 1 be a fixed positive integer. The main result that

we will prove in this section is that l-complexity also grows logarithmically. For

convenience, we also adopt the notational convention that ∥1∥l = 0 for l > 1. Note

that this notation is compatible with that ∥ab∥l ≤ ∥a∥l + ∥b∥l when a or b is 1.

Proposition 1. Let l > 1 and n ∈ lZ+. Then, logl n ≤ ∥n∥l ≤ l logl n− 1.

The lower bound follows from Lemma 1, which may seem trivially true but does

depend on the assumption that l > 1; the upper bound follows from Lemma 2.

Lemma 1. Let l > 1 and m ∈ Z+. Then, lm is the largest number that one can

obtain using addition and multiplication with m copies of l.

Proof. Indeed, for l > 1, we always have a + l ≤ a · l for all a ∈ Z+, so the lemma

follows.

Lemma 2. Let l > 1. Then,

∥a1lm1 + a2l
m2 + · · ·+ akl

mk∥l ≤ m1 + a1 + a2 + · · ·+ ak − 1

for m1 > m2 > · · · > mk ≥ 1 and 0 ≤ ai ≤ l − 1 with a1 ̸= 0.

Proof. We prove this by induction on k. If k = 1, then

∥a1lm1∥l ≤ ∥lm1−1∥l + ∥a1l∥l ≤ m1 + a1 − 1,

so the result holds. Now, suppose that k > 1 and that the result holds for k − 1.

Then,

∥a1lm1 + · · ·+ akl
mk∥l ≤ ∥lmk−1∥l + ∥a1lm1−mk+1 + a2l

m2−mk+1 + · · ·+ akl∥l
≤ ∥lmk−1∥l + ∥a1lm1−mk+1 + · · ·+ ak−1l

mk−1−mk+1∥l + ∥akl∥l
≤ (mk − 1) +

(
(m1 −mk + 1) + (a1 + · · ·+ ak−1)− 1

)
+ ak

= m1 + a1 + a2 + · · ·+ ak − 1,

where in the third line we use the induction hypothesis for k − 1. The result then

follows from induction.

Proof of Proposition 1. The lower bound follows from the fact that n ≤ l∥n∥l by

Lemma 1. For the upper bound, write n = a1l
m1 + a2l

m2 + · · · + akl
mk as in

Lemma 2. Then, m1 ≤ logl n and k ≤ m1 ≤ logl n. Hence, by Lemma 2,

∥n∥l ≤ m1 + a1 + a2 + · · ·+ ak − 1

≤ m1 + (l − 1)k − 1

≤ logl n+ (l − 1) logl n− 1 = l logl n− 1.
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Corollary 1. Let l > 1. Then, ∥lm + lm
′∥l = m+ 1 for m ≥ m′ ≥ 1.

Proof. It follows from Lemma 2 that ∥lm + lm
′∥l ≤ m + 1. On the other hand, it

follows from Proposition 1 that ∥lm + lm
′∥l ≥ logl(l

m + lm
′
) > m. The result then

follows.

Our last proposition also demonstrates the difference between l = 1 and l > 1.

This proposition is essentially saying that given n = b + al for b ∈ l2Z+ and

0 ≤ a ≤ l − 1, the most efficient way to write n using l is to first write b using l in

the most efficient way, and then write al as l + · · ·+ l with a l’s.

Proposition 2. Let l > 1. For n ∈ lZ+, write n = b + al uniquely for b ∈ l2Z+

and 0 ≤ a ≤ l − 1. Then, ∥n∥l = ∥b∥l + a.

Proof. We will prove this by induction on n. If b = 0, then ∥al∥l = a simply because

we can only use addition in this case as al < l · l (or use the recursive definition

inductively). Hence, suppose that b > 0, i.e., n ≥ l2. If a = 0, then indeed this

holds, so suppose that a > 0. Now, suppose that the proposition holds for all

n′ < n. By the recursive definition, there exist x, y ∈ lZ+ with x + y = b + al or

xy = b+al such that ∥x∥l+ ∥y∥l = ∥b+al∥l. Since l2 ∤ b+al, this can only happen

when x+ y = b+ al.

Let x = bx + axl and y = by + ayl with bx, by ∈ l2Z+ and 0 ≤ ax, ay ≤ l − 1. By

the induction hypothesis for x, y < n,

∥x∥l = ∥bx∥l + ax and ∥y∥l = ∥by∥l + ay.

Note that we must have ax + ay = a or l + a. Suppose by contradiction that

ax + ay = l + a. On one hand,

l + 1 ≤ l + a = ax + ay ≤ 2l − 2

so l ≥ 3. On the other hand,

b+ al = x+ y = bx + by + l2 + al

so

∥bx∥l + ∥by∥l + ax + ay = ∥x∥l + ∥y∥l = ∥b+ al∥l = ∥bx + by + l2 + al∥l
≤ ∥bx∥l + ∥by∥l + 2 + a.

This implies that l + a = ax + ay ≤ 2 + a, so l ≤ 2, which leads to contradiction.

Hence, ax + ay = a and bx + by = b, so

∥bx∥l + ∥by∥l + a = ∥x∥l + ∥y∥l = ∥b+ al∥l ≤ ∥b∥l + a ≤ ∥bx∥l + ∥by∥l + a.

The result then follows.
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3. 2-Complexity

In this section, we will specialize everything to the case when l = 2. This section

is dedicated to proving Theorem 1 and Theorem 2. We first summarize the results

that follow from Section 2.

Lemma 3. The following are true:

(1) ∥2m1∥2 = m1 and ∥2m1 + 2m2∥2 = m1 + 1 for m1 > m2 ≥ 1;

(2) ∥2m1 + 2m2 + · · ·+ 2mk∥2 ≤ m1 + k − 1 for m1 > m2 > · · · > mk ≥ 1;

(3) log2 n ≤ ∥n∥2 ≤ 2 log2 n− 1.

Note that the first part of Lemma 3 essentially says that the inequality in the

second part is an equality when k = 1, 2. In fact, the equality also holds when

k = 3. To show this, we will first prove the following proposition, which is also the

first part of Theorem 1.

Proposition 3. Let m ≥ 1 and n ∈ 2Z+ with 2m < n ≤ 2m+1. Then, ∥n∥2 = m+1

if and only if n is of the form 2m + 2t for some 1 ≤ t ≤ m.

Proof. Indeed, for 1 ≤ t ≤ m, ∥2m + 2t∥2 = m+ 1 by Corollary 1. Also, the result

is trivially true when m = 1 and easy to verify when m = 2. We will now prove

this by induction on m.

Let m > 2 and suppose that the result holds for all m′ < m. Let n ∈ 2Z+ with

∥n∥2 = m+1 and 2m < n ≤ 2m+1. Then, there exist a, b ∈ 2Z+ such that n = a+b

or n = ab with ∥a∥2 + ∥b∥2 = ∥n∥2 = m + 1. Let ma = ∥a∥2 and mb = ∥b∥2. If

n = a+ b, then 2m < n ≤ 2ma + 2mb ≤ 2m + 2, so n = 2m + 2 and hence is of the

required form.

Now, suppose n = ab. Note that if a ≤ 2ma−1, then n = ab ≤ 2ma−1 · 2mb ≤ 2m,

contradicting the assumption. Hence, 2ma−1 < a ≤ 2ma and similarly 2mb−1 < b ≤
2mb . If ma = 1, then a = 2, n = 2b, and ∥b∥2 = m with 2m−1 < b ≤ 2m. As

m > m− 1 ≥ 1, b = 2m−1 + 2t for some 1 ≤ t ≤ m− 1 by the induction hypothesis

for m− 1, so n = 2b is of the required form.

Hence, suppose that ma,mb > 1. For convenience, let c ∈ {a, b}. As m >

mc−1 ≥ 1 and 2mc−1 < c ≤ 2mc , we have c = 2mc−1+2tc for some 1 ≤ tc ≤ mc−1

by the induction hypothesis for mc − 1. Then,

2ma+mb−1 ≤ n = ab = (2ma−1 + 2ta)(2mb−1 + 2tb)

= 2ma+mb−2 + 2ma+tb−1 + 2mb+ta−1 + 2ta+tb .

It is easy to see that one must have tc ≥ mc − 2 for some c ∈ {a, b} in order for

the right hand side to be ≥ 2ma+mb−1. Without loss of generality, suppose that
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ta ≥ ma − 2. If ta = ma − 1, then n = 2ma · b so it is of the required form. Hence,

suppose that ta = ma − 2. Then,

2ma+mb−1 ≤ n = 2ma+mb−2 + 2ma+mb−3 + 2ma+tb−1 + 2ma+tb−2,

implying that tb ≥ mb − 2. Now, if tb = mb − 1, then n = 2ma+mb = 2m + 2m is of

the required form; if tb = mb − 2, then

n = (2ma−1 + 2ma−2)(2mb−1 + 2mb−2) = 2ma+mb−1 + 2ma+mb−4

so n is also of the required form (note that ma,mb > 2 in this case). The result

then follows.

An immediate corollary of this lemma is a slightly better lower bound for ∥n∥2
when n is not expressible as a sum of two powers of 2, as stated below.

Corollary 2. Let n ∈ 2Z+. If n is not expressible as a sum of (one or) two powers

of 2, then

log2 n+ 1 ≤ ∥n∥2.

Proof. Let m = ⌈log2 n⌉ − 1 so that 2m < n ≤ 2m+1. Note that ∥n∥2 ≥ ⌈log2 n⌉ =
m+1 by Corollary 1, and that ∥n∥2 ̸= m+1 by the assumption and Proposition 3,

so it follows that ∥n∥2 ≥ m+ 2 = ⌈log2 n⌉+ 1.

Corollary 3. Let m ≥ 3 and n ∈ 2Z+ such that 2m < n ≤ 2m+1. Then,

∥n∥2 = m+ 2 if n is of one of the following forms:

(a) 2m1 + 2m2 + 2m3 for m = m1 > m2 > m3 ≥ 1;

(b) 2m1 + 2m2 + 2m3 + 2m4 for m = m1 > m2 > m3 > m4 ≥ 2 with m1 +m4 =

m2 +m3;

(c) 2m1 + 2m1−3 + 2m2 + 2m2−1 for m = m1 ≥ m2 + 3 ≥ 6.

(d) 2m + 2m−5 + 2m−6 + 2m−7 for m ≥ 10.

Proof. First, note that in each case n is not expressible as a sum of two powers

of 2, so m + 2 = ⌈log2 n⌉ + 1 ≤ ∥n∥2 by Corollary 2. It then suffices to show that

∥n∥2 ≤ m+ 2 in each case, and we will show this case by case.

(a): It follows from Lemma 3 that ∥2m1 + 2m2 + 2m3∥2 ≤ m1 + 3− 1 = m+ 2.

(b): As m1 +m4 = m2 +m3, we have

2m1 + 2m2 + 2m3 + 2m4 = 2m4−2 · (2m2−m4+1 + 2) · (2m3−m4+1 + 2).

It then follows from Lemma 3 that

∥2m1 + 2m2 + 2m3 + 2m4∥2 ≤ m4 − 2 + (m2 −m4 + 2) + (m3 −m4 + 2)

= m1 + 2 = m+ 2.
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(c): Note that

2m1 + 2m1−3 + 2m2 + 2m2−1 = (2m2−1 + 2m2−2) · (2m1−m2 + 2m1−m2−1 + 2).

It then follows from Lemma 3 that

∥2m1 + 2m1−3 + 2m2 + 2m2−1∥2 ≤ m2 + (m1 −m2 + 2) = m+ 2.

(d): Note that

2m + 2m−5 + 2m−6 + 2m−7 = (2m−6 + 2m−9) · (25 + 24 + 23 + 22).

It then follows from Lemma 3 and (b) that

∥2m + 2m−5 + 2m−6 + 2m−7∥2 ≤ (m− 5) + 7 = m+ 2.

In conclusion, we always have ∥n∥2 ≤ m+2 in each case. The result then follows.

As promised before, it follows from this lemma that the inequality in the second

part of Lemma 3 is an equality when k = 3 but is no longer an equality when

k ≥ 4. In fact, the four cases described in Corollary 3 are the only cases with

2m < n ≤ 2m+1 and ∥n∥2 = m+ 2, as shown in the following proposition, which is

also the second part of Theorem 1.

Proposition 4. Let m ≥ 3 and n ∈ 2Z+ with 2m < n ≤ 2m+1. Then, ∥n∥2 = m+2

if and only if n is of one of the forms described in Corollary 3.

Proof. Throughout the proof, we also adopt the notation c ∈ {a, b} for convenience

as before. We will prove this by induction on m. The result is trivially true when

m = 3, 4 so suppose that m > 4 and that the result holds for all m′ < m.

First, let a, b ∈ 2Z+ such that n = a + b with ∥a∥2 + ∥b∥2 = ∥n∥2 = m + 2.

If a, b > 2, then n = a + b ≤ 2∥a∥2 + 2∥b∥2 ≤ 2m + 22, implying that n = 2m + 2

or 2m + 22, both of which contradict that ∥n∥2 = m + 2 by Lemma 3. Thus, one

of a, b must be 2. Without loss of generality, let a = 2. Then, ∥b∥2 = m + 1 and

2m − 2 < b ≤ 2m+1 − 2. This implies that 2m < b < 2m+1 so b = 2m + 2t for some

m > t ≥ 1 by Proposition 3. We have t > 1 as otherwise n = 2m +22 contradicting

that ∥n∥2 = m+ 2. Thus, n = 2m + 2t + 2 is of the form (a).

Now, let a, b ∈ 2Z+ such that n = ab with ∥a∥2 + ∥b∥2 = ∥n∥2 = m + 2.

Let mc = ∥c∥2 for c ∈ {a, b}. If a = 2ma , then 2m−ma < b ≤ 2m−ma+1 and

∥b∥2 = m − ma + 2, so b is of one of the forms by the induction hypothesis for

m − ma, and hence so is n = 2ma · b. Thus, suppose that c < 2mc for both

c ∈ {a, b}, and note that this implies that mc > 2 for both c ∈ {a, b}. If a ≤ 2ma−2,

then n = ab ≤ 2ma−2 · 2mb = 2m, contradicting that n > 2m. Hence, c > 2mc−2 for

both c ∈ {a, b}.
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To summarize, we are now in the situation where mc > 2 and 2mc−2 < c < 2mc

for both c ∈ {a, b}. If c < 2mc−1 for both c ∈ {a, b}, then n = ab < 2m, which

leads to contradiction. Suppose for now that c > 2mc−1 for both c ∈ {a, b}. Then,

2mc−1 < c < 2mc and ∥c∥2 = mc, so c = 2mc−1 + 2tc for some 1 ≤ tc < mc − 1 by

Proposition 3. Hence,

n = ab = 2ma+mb−2 + 2ma+tb−1 + 2mb+ta−1 + 2ta+tb

with ma +mb − 2 > ma + tb − 1,mb + ta − 1 > ta + tb, so n is of either the form

(a) or (b). Thus, suppose without loss of generality that a > 2ma−1 and b < 2mb−1.

As before, we still have a = 2ma−1 + 2ta for some 1 ≤ ta < ma − 1.

To summarize again, we are now in the situation where ma,mb > 2, a = 2ma−1+

2ta with 1 ≤ ta < ma − 1, and 2mb−2 < b < 2mb−1 with ∥b∥2 = mb. Note that the

condition on b readily implies that mb ≥ 5. By the induction hypothesis for mb−2,

b is of one of the forms, so b ≤ 2mb−2+2mb−3+2mb−4+2mb−5 = 15 ·2mb−5. Hence,

2ma−1 + 2ta =
n

b
>

2m

b
≥ 2m

15 · 2mb−5
=

2ma+3

15

so 2ta > 2ma−1

15 , implying that ta ≥ ma − 4.

Case i. ta = ma − 4. Then,

b >
2m

2ma−1 + 2ma−4
=

2mb+2

9
=

7 · 2mb+2

63
> 7 · 2mb−4

= 2mb−2 + 2mb−3 + 2mb−4.

Since b is of one of the forms, we must have b = 2mb−2 + 2mb−3 + 2mb−4 + 2mb−5,

so n is of the form (d).

Case ii. ta = ma − 3. Then,

b >
2m

2ma−1 + 2ma−3
=

2mb+1

5
=

51 · 2mb+1

255
> 51 · 2mb−7

= 2mb−2 + 2mb−3 + 2mb−6 + 2mb−7.

Since b is of one of the forms, we must have

(1) b = 2mb−2+2mb−3+2mb−5 so n = 2m+2m−6, contradicting that ∥n∥2 = m+1;

(2) b = 2mb−2 + 2mb−3 + 2mb−5 + 2mb−6 so n is of the form (d);

(3) b = 2mb−2 + 2mb−3 + 2mb−4 so n is of the form (a);

(4) b = 2mb−2 + 2mb−3 + 2mb−4 + 2mb−5 so n is also of the form (c).

Case iii. ta = ma − 2. Then,

b >
2m

2ma−1 + 2ma−2
=

2mb

3
=

85 · 2mb

255
> 85 · 2mb−8

= 2mb−2 + 2mb−4 + 2mb−6 + 2mb−8.
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Since b is of one of the forms, we must have

(1) b = 2mb−2+2mb−4+2mb−5 so n = 2m+2m−5, contradicting that ∥n∥2 = m+2;

(2) b = 2mb−2 + 2mb−4 + 2mb−5 + 2mb−7 so n is of the form (d);

(3) b = 2mb−2 + 2mb−3 + 2tb with 1 ≤ tb < mb − 3 so n is of the form (c);

(4) b = 2mb−2 + 2mb−3 + 2tb + 2tb−1 with tb < mb − 3 so n is of the form (b).

In conclusion, n must be of one of the forms described in Corollary 3.

As before, this proposition also yields a slightly better lower bound for us.

Corollary 4. Let n ∈ 2Z+. If n is not expressible as a sum of two powers of 2 or

one of the forms described in Corollary 3, then log2 n+ 2 ≤ ∥n∥2. In particular, if

n is expressible as a sum of at least five distinct powers of 2, then log2 n+2 ≤ ∥n∥2.

Having this corollary, we are now ready to prove Theorem 2.

Proposition 5. For m ≥ 0, we have

∥2m · 6r∥2 = m+ 3r for 1 ≤ r ≤ 7

and

m+ 3r − 1 ≤ ∥2m · 6r∥2 ≤ m+ 3r for 8 ≤ r ≤ 9.

Proof. By Lemma 3, if r = 1, then ∥2m · 6∥2 = ∥2m+2 + 2m+1∥2 = m + 3, and

if r = 2, then ∥2m · 62∥2 = ∥2m+5 + 2m+2∥2 = m + 6. Now, assume that 3 ≤
r ≤ 9 so that n = 2m · (22 + 2)r is not a sum of two powers of 2. We then have

log2 n+ 1 ≤ ∥n∥2 by Corollary 2, so m+ (log2 6)r + 1 ≤ ∥n∥2. On the other hand,

∥n∥2 ≤ m + r∥6∥2 = m + 3r. Thus, ⌈m + (log2 6)r + 1⌉ ≤ ∥n∥2 ≤ m + 3r. When

r = 3, 4, computation shows that ⌈(log2 6)r + 1⌉ = 3r, so the result follows.

Now, assume that 5 ≤ r ≤ 9. Computation shows that 6r is a sum of at least five

distinct powers of 2 in this case, and so is n = 2m ·6r. We then have log2 n+2 ≤ ∥n∥2
by Corollary 4, som+(log2 6)r+2 ≤ ∥n∥2. Thus, ⌈m+(log2 6)r+2⌉ ≤ ∥n∥2 ≤ m+3r

for 5 ≤ r ≤ 9. Now, computation shows that ⌈(log2 6)r + 2⌉ = 3r when 5 ≤ r ≤ 7,

and that ⌈(log2 6)r + 2⌉ = 3r − 1 when 8 ≤ r ≤ 9, so the result follows.

Proposition 6. For m ≥ 0, we have

∥2m · 10r∥2 = m+ 4r for 1 ≤ r ≤ 4

and for r = 5,

m+ 19 ≤ ∥2m · 105∥2 ≤ m+ 20.
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Proof. If r = 1, then ∥2m · 10∥2 = ∥2m+3 + 2m+1∥2 = m+ 4 by Lemma 3; if r = 2,

then ∥2m·102∥2 = ∥2m+6+2m+5+2m+2∥2 = m+8 by Corollary 3. Now, assume that

3 ≤ r ≤ 5. Computation shows that 10r is a sum of at least five distinct powers of 2

in this case, and so is n = 2m · 10r. We then have log2 n+2 ≤ ∥n∥2 by Corollary 4,

so m + (log2 10)r + 2 ≤ ∥n∥2. On the other hand, ∥n∥2 ≤ m + r∥10∥2 = m + 4r.

Thus, ⌈m + (log2 10)r + 2⌉ ≤ ∥n∥2 ≤ m + 4r. Now, computation shows that

⌈(log2 10)r + 2⌉ = 4r when 3 ≤ r ≤ 4, and that ⌈(log2 10)r + 2⌉ = 4r − 1 when

r = 5, so the result follows.

4. Further Questions

In the final section, we will propose a list of questions on 2-complexity, and in

general l-complexity, that seem interesting to investigate further.

Question 1. For l > 1, can one improve the bounds for ∥n∥l in Proposition 1 for

all n ∈ lZ+ or for a density 1 subset of lZ+?

Question 2. Can one determine the l-complexity of multiples of l that are of certain

particular forms? For example, are the following true?

(1) For l not divisible by 2, ∥(2l)r∥l = 2r for all r ≥ 1, and if l > 1, then

∥lm · (2l)r∥l = m + 2r for all m ≥ 0 and r ≥ 1. (Note that l = 1 is a special

case of Conjecture 1.)

(2) For l not divisible by 3, ∥(3l)r∥l = 3r for all r ≥ 1, and if l > 1, then

∥lm · (3l)r∥l = m+ 3r for all m ≥ 0 and r ≥ 1. (Note that l = 1 follows from

Selfridge’s result and l = 2 is one of the cases of Conjecture 2.)

The next question should be compared with the result on integer complexity

that for every n ∈ Z+, there exists m0 ≥ 0 such that for all m ≥ m0, ∥3m · n∥1 =

3(m−m0) + ∥3m0 · n∥1 (see [2, Theorem 1.5]).

Question 3. Let l > 1 and define

Al :=
{
n ∈ lZ+

∣∣∥lm · n∥l = m+ ∥n∥l for all m ≥ 0
}
.

Can one say anything about the set Al? For example, is it true that for every

n ∈ lZ+, there exists m0 ≥ 0 such that lm0 · n ∈ Al? (Note that e.g. 54 /∈ A2 since

∥54∥2 = 8 and ∥22 · 54∥2 = ∥63∥2 = 9, but 22 · 54 ∈ A2 by Theorem 2.)

Question 4. For l = 2, should one expect Conjecture 2 to hold in a more general

form, i.e., ∥2m · (2u + 2)r∥2 = m+ (u+ 1)r for all m ≥ 0, u ≥ 2, and r ≥ 1?
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The last question is an interesting interplay between integer complexity and

2-complexity. Before stating the question, recall that if R is a most efficient repre-

sentation of n ∈ Z+ in terms of 1’s, then R does not contain 1 + · · ·+ 1 with more

than five 1’s. In particular, one can always replace 1+ 1+ 1+ 1 with (1+ 1)(1+ 1)

and 1 + 1 + 1 + 1 + 1 with (1 + 1)(1 + 1) + 1 to assume that R does not contain

1 + · · ·+ 1 with more than three 1’s.

Question 5. Let n ∈ Z+ and let R be a most efficient representation of n in terms

of 1’s that does not contain 1 + · · · + 1 with more than three 1’s. Let a(n,R) be

the even number obtained by replacing all the 1’s in R with 2’s. Then, is it true

that ∥a(n,R)∥2 = ∥n∥1? If not, can one say anything about pairs (n,R) satisfying

or violating this?
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