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Abstract

This paper studies the distribution of the sequence 2ω(n) over squareful integers n
(we call an integer n > 1 squareful if for any prime p with p|n implies p2|n). We
provide an unconditional asymptotic formula for the discrete mean sum of 2ω(n)

over squareful integers. Additionally, assuming the Strong Riemann hypothesis, we
extract a few more main terms, thereby improving the error term bound.

1. Introduction

Define ω(1) = 0, and for n > 1, let ω(n) denote the number of distinct prime factors

of n. We call an integer n > 1 squareful if for any prime p with p|n implies p2|n.
Now, we define the arithmetical function f(n) as f(1) = 1, and for n > 1,

f(n) =

{
2ω(n) if n is squareful,

0 otherwise.

Note that f(n) is multiplicative. The L-function attached to the coefficients f(n),

namely

F (s) :=

∞∑
n=1

f(n)

ns
, (1)

has the following Euler product

F (s) =
∏
p

(1 + 2p−2s + 2p−3s + 2p−4s + · · · ) (2)
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for ℜ(s) > 1
2 , and F (s) converges absolutely and uniformly in ℜ(s) > 1

2 .

The Riemann zeta function is defined by

ζ(s) =
∑
n≥1

1

ns

for ℜ(s) > 1, which has a meromorphic continuation to the entire complex plane C
by the functional equation

ζ(s) = χ(s)ζ(1− s), (3)

where the conversion factor χ(s) behaves, in absolute value, as

| χ(s) |∼ |t| 12−σ (4)

for s = σ + it, |t| ≥ t0 (see [4]).

The Riemann hypothesis is a conjecture that states that all the nontrivial zeros

of the Riemann zeta function ζ(s) lie on the critical line ℜ(s) = 1
2 . The stronger

version of the Riemann hypothesis states that all the nontrivial zeros of ζ(s) lie on

the critical line, and each such zero is simple. A region Ω is said to be a zero-free

region for ζ(s) if ζ(s) ̸= 0 for all s ∈ Ω. For the best-known zero-free region we refer

to Theorem 6.1 of [1].

Throughout the paper, ϵ is any small positive constant. The aim here is to

establish the following theorems.

Theorem 1. Let x > 0 be large and ϵ > 0. Then we have unconditionally,

∑
n≤x

f(n) = C1x
1
2 log x+C2x

1
2 +C3x

1
3 log x+C4x

1
3 +O

(
x

1
4 exp

{
cϵ

(
log x

log log x

) 1
3

})
,

for some c > 0 and for real constants C1, C2, C3 and C4, that can be evaluated

explicitly.

Theorem 2. Let x > 0 be large and ϵ > 0. Assuming the strong Riemann hypothesis

namely, all the nontrivial zeros of ζ(ls) lie on the respective critical lines for l =

2, 3, · · · , 14, and each such zero is simple, we have∑
n≤x

f(n) = C1x
1
2 log x+ C2x

1
2 + C3x

1
3 log x+ C4x

1
3+

+
∑

ζ(4ρ)=0, ℜ(ρ)= 1
8 ,

0<

∣∣∣∣ℑ(4ρ)=γ 1
8

∣∣∣∣<x
3
11

D1, γ 1
8

x
1
8+iγ 1

8

+
∑

ζ(5ρ)=0, ℜ(ρ)= 1
10 ,

0<

∣∣∣∣ℑ(5ρ)=γ 1
10

∣∣∣∣<x
3
11

(
D2, γ 1

10

x
1
10+iγ 1

10 log x+D3, γ 1
10

x
1
10+iγ 1

10

)
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+
∑

ζ(6ρ)=0, ℜ(ρ)= 1
12 ,

0<

∣∣∣∣ℑ(6ρ)=γ 1
12

∣∣∣∣<x
3
11

(
D4, γ 1

12

x
1
12+iγ 1

12 (log x)2

+D5, γ 1
12

x
1
12+iγ 1

12 log x+D6, γ 1
12

x
1
12+iγ 1

12

)
+O

(
x

5
22+ϵ

)
,

where Ci’s are certain real constants, and Di’s are certain complex constants that

can be evaluated explicitly.

Remark 1. We observe that the main term

S1 :=
∑

ζ(4ρ)=0, ℜ(ρ)= 1
8 ,

0<

∣∣∣∣ℑ(4ρ)=γ 1
8

∣∣∣∣<x
3
11

D1, γ 1
8

x
1
8+iγ 1

8

in Theorem 1, satisfies

|S1| ≤ x
1
8

∣∣∣∣∣ ∑
ζ(4ρ)=0, ℜ(ρ)= 1

8 ,

0<

∣∣∣∣ℑ(4ρ)=γ 1
8

∣∣∣∣<x
3
11

D1, γ 1
8

x
iγ 1

8

∣∣∣∣∣.

Since we expect enough cancellations to happen in the sum S1, we are tempted to
make a plausible conjecture that S1 = O(x

5
22+ϵ), but we are not in a position to

establish this assertion. It is also to be noted that, trivially,

| S1 | ≤ x
1
8

(
max

ζ(4ρ)=0, ℜ(ρ)= 1
8
,

0<

∣∣∣∣ℑ(4ρ)=γ 1
8

∣∣∣∣<x
3
11

| D1, γ 1
8

|

)
T log T ≪

(
max

ζ(4ρ)=0, ℜ(ρ)= 1
8
,

0<

∣∣∣∣ℑ(4ρ)=γ 1
8

∣∣∣∣<x
3
11

| D1, γ 1
8

|

)
x

35
88

+ϵ

with T = x
3
11 . Observe that 1

3 < 35
88 . Similarly, we do expect cancellations to

happen with the sums

S2 :=
∑

ζ(5ρ)=0, ℜ(ρ)= 1
10 ,

0<

∣∣∣∣ℑ(5ρ)=γ 1
10

∣∣∣∣<x
3
11

(
D2, γ 1

10

x
1
10+iγ 1

10 log x+D3, γ 1
10

x
1
10+iγ 1

10

)

and

S3 :=
∑

ζ(5ρ)=0, ℜ(ρ)= 1
12 ,

0<

∣∣∣∣ℑ(6ρ)=γ 1
12

∣∣∣∣<x
3
11

(
D4, γ 1

12

x
1
12+iγ 1

12 (log x)2 +D5, γ 1
12

x
1
12+iγ 1

12 log x

+D6, γ 1
12

x
1
12+iγ 1

12

)
.

So conjecturally, we may have S2 = O(x
5
22+ϵ) and S3 = O(x

5
22+ϵ), but we are not

in a position to prove them.
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For further related problems of this type, interested readers may consult Chapter

14 of [1].

2. Lemmas

Lemma 1. For ℜ(s) > 1
2 , we have

F (s) =
ζ2(2s)ζ2(3s)ζ2(7s)ζ4(8s)ζ5(12s)ζ14(13s)ζ5(14s)

ζ(4s)ζ2(5s)ζ3(6s)ζ5(10s)ζ6(11s)
H1(s), (5)

where H1(s) is a Dirichlet series which converges absolutely and uniformly for

ℜ(s) > 1
15 .

Proof. For ℜ(s) > 1
2 , we have the Euler product for F (s) as

F (s) =
∏
p

(1 + 2p−2s + 2p−3s + 2p−4s + · · · ). (6)

If we let X = p−s, then for ℜ(s) > 1
2 , we have | X |< 1. To prove the lemma we

split the series 1 + 2X2 + 2X3 + 2X4 + · · · into the product of polynomials of the

form 1−Xm or its inverses from m = 2 to m = 14 possibly with some error terms.

By using the Mathematica software, we get

1 + 2X2 + 2X3 + 2X4 + 2X5 + · · ·

=
(
1−X2

)−2
(1 + 2X3 −X4 − 2X5)

=
(
1−X2

)−2 (
1−X3

)−2 ×
(1−X4 − 2X5 − 3X6 + 2X7 + 4X8 + 2X9 −X10 − 2X11)

=
(
1−X2

)−2 (
1−X3

)−2
(1−X4)(1− 2X5 − 3X6

+ 2X7 + 4X8 − 4X10 + 4X12 − 4X14 +O(X15)

=
(
1−X2

)−2 (
1−X3

)−2
(1−X4)(1−X5)2(1− 3X6 + 2X7

+ 4X8 − 5X10 − 6X11 + 8X12 + 8X13 − 4X14 +O(X15))

=
(
1−X2

)−2 (
1−X3

)−2
(1−X4)(1−X5)2(1−X6)3×

(1 + 2X7 + 4X8 − 5X10 − 6X11 + 5X12 + 14X13 + 8X14 +O(X15))

=
(
1−X2

)−2 (
1−X3

)−2
(1−X4)(1−X5)2(1−X6)3(1−X7)−2×

(1 + 4X8 − 5X10 − 6X11 + 5X12 + 14X13 + 5X14 +O(X15))

=
(
1−X2

)−2 (
1−X3

)−2
(1−X4)(1−X5)2(1−X6)3(1−X7)−2(1−X8)−4×

(1− 5X10 − 6X11 + 5X12 + 14X13 + 5X14 +O(X15))

=
(
1−X2

)−2 (
1−X3

)−2
(1−X4)(1−X5)2(1−X6)3(1−X7)−2(1−X8)−4×
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(1−X10)5(1− 6X11 + 5X12 + 14X13 + 5X4 +O(X15))

=
(
1−X2

)−2 (
1−X3

)−2
(1−X4)(1−X5)2(1−X6)3(1−X7)−2(1−X8)−4×

(1−X10)5(1−X11)6(1 + 5X12 + 14X13 + 5X14 +O(X15))

=
(
1−X2

)−2 (
1−X3

)−2
(1−X4)(1−X5)2(1−X6)3(1−X7)−2(1−X8)−4×

(1−X10)5(1−X11)6(1−X12)−5(1 + 14X13 + 5X14 +O(X15))

=
(
1−X2

)−2 (
1−X3

)−2
(1−X4)(1−X5)2(1−X6)3(1−X7)−2(1−X8)−4×

(1−X10)5(1−X11)6(1−X12)−5(1−X13)−14(1 + 5X14 +O(X15))

=
(
1−X2

)−2 (
1−X3

)−2
(1−X4)(1−X5)2(1−X6)3(1−X7)−2(1−X8)−4×

(1−X10)5(1−X11)6(1−X12)−5(1−X13)−14(1−X14)−5(1 +O(X15). (7)

By substituting X = p−s in the above expression, by (6) we then get

F (s) =
ζ2(2s)ζ2(3s)ζ2(7s)ζ4(8s)ζ5(12s)ζ14(13s)ζ5(14s)

ζ(4s)ζ2(5s)ζ3(6s)ζ5(10s)ζ6(11s)
H1(s),

where H1(s) converges absolutely and uniformly for ℜ(s) > 1
15 .

Lemma 2. For ℜ(s) > 1
2 , we have

F (s) =
ζ2(2s)ζ2(3s)

ζ(4s)
H2(s), (8)

where H2(s) converges absolutely and uniformly for ℜ(s) > 1
5 .

Proof. From Lemma 1, we can write

F (s) =
ζ2(2s)ζ2(3s)

ζ(4s)
H2(s),

where

H2(s) =
ζ2(7s)ζ4(8s)ζ5(12s)ζ14(13s)ζ5(14s)

ζ2(5s)ζ3(6s)ζ5(10s)ζ6(11s)
H1(s),

which converges absolutely and uniformly for ℜ(s) > 1
5 .

Remark 2. In the proofs of Theorems 1 and 2, we use either Lemma 1 or Lemma

2 suitably.

Lemma 3. Let x > 0 be large. Then under the assumption of the strong Riemann

hypothesis for various zeta functions ζ(ls) appearing in F (s) proved in Lemma 1

(l = 2, 3, 4, · · · , 14), we have the following residues corresponding to the poles

arising from F (s) :

Res
s= 1

2

F (s)
xs

s
=C1x

1
2 log x+ C2x

1
2 , (9)
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Res
s= 1

3

F (s)
xs

s
=C3x

1
3 log x+ C4x

1
3 , (10)

Res
s= 1

7

F (s)
xs

s
=C5x

1
7 log x+ C6x

1
7 , (11)

Res
s= 1

8

F (s)
xs

s
=C7x

1
8 (log x)3 + C8x

1
8 (log x)2 + C9x

1
8 log x+ C10x

1
8 , (12)

Res
s= 1

12

F (s)
xs

s
=C11x

1
12 (log x)4 + · · ·+ C14x

1
12 log x+ C15x

1
12 , (13)

Res
s= 1

13

F (s)
xs

s
=C16x

1
13 (log x)13 + · · ·+ C28x

1
13 log x+ C29x

1
13 , (14)

Res
s= 1

8+iγ 1
8

F (s)
xs

s
=D1, γ 1

8

x
1
8+iγ 1

8 , (15)

Res
s= 1

10+iγ 1
10

F (s)
xs

s
=D2, γ 1

10

x
1
10+iγ 1

10 log x+D3, γ 1
10

x
1
10+iγ 1

10 , (16)

Res
s= 1

12+iγ 1
12

F (s)
xs

s
=D4, γ 1

12

x
1
12+iγ 1

12 (log x)2 +D5, γ 1
12

x
1
12+iγ 1

12 log x

+D6, γ 1
12

x
1
12+iγ 1

12 , (17)

where 1
8 + γ 1

8
, 1

10 + γ 1
10

and 1
12 + γ 1

12
are the coordinates of the simple zeros of

ζ(4s), ζ(5s) and ζ(6s) on the lines ℜ(s) = 1
8 , ℜ(s) =

1
10 and ℜ(s) = 1

12 respectively,

and the Ci’s, and Di’s are constants that can be evaluated explicitly.

Proof. By Lemma 1, for ℜ(s) > 1
2 , we have

F (s) =
ζ2(2s)ζ2(3s)ζ2(7s)ζ4(8s)ζ5(12s)ζ14(13s)ζ5(14s)

ζ(4s)ζ2(5s)ζ3(6s)ζ5(10s)ζ6(11s)
H1(s), (18)

where H1(s) converges absolutely and uniformly for ℜ(s) > 1
15 .

Let

F1(s) :=
ζ2(3s)ζ2(7s)ζ4(8s)ζ5(12s)ζ14(13s)ζ5(14s)

ζ(4s)ζ2(5s)ζ3(6s)ζ5(10s)ζ6(11s)
H1(s), (19)

which is analytic at s = 1
2 , and hence, F (s) = ζ2(2s)F1(s) has a pole of order 2 at

s = 1
2 . Therefore,

Res
s= 1

2

F (s)
xs

s
=

(
F1(s)

xs

s

)′

s= 1
2

Res
s= 1

2

(
s− 1

2

)
ζ2(2s) + F1

(
1

2

)
x

1
2

1
2

Res
s= 1

2

ζ2(2s)

:=C1x
1
2 log x+ C2x

1
2 ,

where C1 and C2 are some constants that can be evaluated explicitly. Similarly, the

equalities from (10) to (14) can be proved.
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Now, for any simple zero 1
8 + iγ 1

8
of ζ(4s) lying on the critical line ℜ(s) = 1

8 , we

have that

F2(s) :=
ζ2(2s)ζ2(3s)ζ2(7s)ζ4(8s)ζ5(12s)ζ14(13s)ζ5(14s)

ζ2(5s)ζ3(6s)ζ5(10s)ζ6(11s)
H1(s) (20)

is analytic at s = 1
8 + iγ 1

8
and hence, F (s) = F2(s)

ζ(4s) has a simple pole at 1
8 + iγ 1

8
.

Therefore,

Res
s= 1

8+iγ 1
8

F (s)
xs

s
= F2

(
1

8
+ iγ 1

8

)
x

1
8+iγ 1

8

1
8 + iγ 1

8

Res
s= 1

8+iγ 1
8

1

ζ(4s)

:= D1, γ 1
8

x
1
8+iγ 1

8 ,

where D1, γ 1
8

is some constant which can be evaluated explicitly.

Similarly, for any simple zero 1
10+iγ 1

10
of ζ(5s) lying on the critical line ℜ(s) = 1

10 ,

we have that

F3(s) :=
ζ2(2s)ζ2(3s)ζ2(7s)ζ4(8s)ζ5(12s)ζ14(13s)ζ5(14s)

ζ(4s)ζ3(6s)ζ5(10s)ζ6(11s)
H1(s) (21)

is analytic at s = 1
10 + iγ 1

10
and hence, F (s) = F3(s)

ζ2(5s) has a pole of order 2 at
1
10 + iγ 1

10
. Therefore,

Res
s= 1

10+iγ 1
10

F (s)
xs

s
=

(
F3(s)

xs

s

)′

s= 1
10+iγ 1

10

Res
s= 1

10+iγ 1
10

(
s− 1

10
− iγ 1

10

)
1

ζ2(5s)

+ F3

(
1

10
+ iγ 1

10

)
x

1
10+iγ 1

10

1
10 + iγ 1

10

Res
s= 1

10+iγ 1
10

1

ζ2(5s)

:=D2, γ 1
10

x
1
10+iγ 1

10 log x+D3, γ 1
10

x
1
10+iγ 1

10 ,

where D2, γ 1
10

and D3, γ 1
10

are some constants that can be evaluated explicitly.

Similarly, the equality (17) can be proved. This completes the proof of this lemma.

Lemma 4 ([4, 5]). For any 1
2 ≤ σ ≤ 1, and T -sufficiently large, we have∫ T

1

|ζ(σ + it)|4 dt ≪ T (log T )4 (22)

uniformly.
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Lemma 5 ([1]). There is a constant C > 0 such that

1

ζ(s)
≪ (log T )2/3(log log T )1/3 (23)

in the region σ ≥ 1− C

(log T )2/3(log log T )1/3
, T0 < t ≤ T.

Lemma 6 ([1]). There is a constant C∗ > 0 such that ζ(s) ̸= 0 for σ ≥ 1 −
C∗

(log T )2/3(log log T )1/3
, |t| ≥ t0.

Lemma 7 ([1, 3]). We have N(T ) ≪ T log T , where N(T ) is the number of zeros

of ζ(s) in the region {s = σ + it : 0 < σ < 1, 0 < t ≤ T}.

Lemma 8 ([4]). The Riemann hypothesis implies that

ζ(σ + it) = O(|t|ϵ) (24)

for 1
2 ≤ σ ≤ 1 and |t| ≥ t0, and

1

ζ(σ + it)
= O(|t|ϵ) (25)

for 1
2 < σ ≤ 1 and |t| ≥ t0.

3. Proof of Theorem 1

We are now ready to prove Theorem 1.

Proof of Theorem 1. By Lemma 2, for ℜ(s) > 1
2 , we have

F (s) =
ζ2(2s)ζ2(3s)

ζ(4s)
H2(s), (26)

where H2(s) converges absolutely and uniformly for ℜ(s) > 1
5 .

By applying Perron’s formula (see [2]) to Equation (26), we get∑
n≤x

f(n) =
∑
n≤x

n is squareful

2ω(n)

=
1

2πi

∫ 1
2+

1
log x+iT

1
2+

1
log x−iT

F (s)
xs

s
ds+O

(
x

1
2+

1
log x (log x)2

T

)
,

where 1 ≤ T ≤ x is a parameter to be chosen later.
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We move the line of integration to ℜ(s) = 1
4 −

c
(log T )2/3(log log T )1/3

, where c = C∗

as in Lemma 6. Define g(T ) := (log T )2/3(log log T )1/3. Then, in the rectangle

formed by the vertices 1
2 + 1

log x + iT, 1
4 − c

g(T ) + iT, 1
4 − c

g(T ) − iT, 1
2 + 1

log x − iT ,

and 1
2 + 1

log x + iT , we note that F (s) has two poles, one at s = 1
2 of order 2 and

another at s = 1
3 of order 2.

Hence, by Cauchy’s residue theorem and Lemma 3, we get∑
n≤x

f(n) =C1x
1
2 log x+ C2x

1
2 + C3x

1
3 log x+ C4x

1
3

+
1

2πi

{∫ 1
4−

c
g(T )

+iT

1
4−

c
g(T )

−iT

+

∫ 1
4−

c
g(T )

−iT

1
2+

1
log x−iT

+

∫ 1
2+

1
log x+iT

1
4−

c
g(T )

+iT

}
F (s)

xs

s
ds

+O

(
x

1
2+

1
log x (log x)2

T

)
:=C1x

1
2 log x+ C2x

1
2 + C3x

1
3 log x+ C4x

1
3

+ I1 + I2 + I3 +O

(
x

1
2+

1
log x (log x)2

T

)
. (27)

The vertical line integration I1 contributes in absolute value (by using the func-

tional equation (Equation (3)) for ζ(s), the approximation (Equation (4)) for χ(s),

and Lemmas 4 and 5):

I1 ≪
∫ T

−T

∣∣∣∣∣∣
ζ2
(

1
2 − 2c

g(T ) + 2it
)
ζ2
(

3
4 − 3c

g(T ) + 3it
)

ζ
(
1− 4c

g(T ) + 4it
)

∣∣∣∣∣∣ x
1
4−

c
g(T )

t
dt

≪x
1
4−

c
g(T ) + x

1
4−

c
g(T )

∫ T

10

∣∣∣∣∣∣
ζ2
(

1
2 − 2c

g(T ) + 2it
)
ζ2
(

3
4 − 3c

g(T ) + 3it
)

ζ
(
1− 4c

g(T ) + 4it
)
t

∣∣∣∣∣∣ dt
≪x

1
4−

c
g(T ) + x

1
4−

c
g(T ) g(T )×∫ T

10

∣∣∣∣ζ2(1

2
− 2c

g(T )
+ 2it

)
ζ2
(
3

4
− 3c

g(T )
+ 3it

)∣∣∣∣ t−1dt

≪x
1
4−

c
g(T ) + x

1
4−

c
g(T ) g(T )T 2( 1

2−( 1
2−

2c
g(T )

))×∫ T

10

∣∣∣∣ζ2(1

2
+

2c

g(T )
− 2it

)
ζ2
(
3

4
− 3c

g(T )
+ 3it

)∣∣∣∣ t−1dt

≪x
1
4−

c
g(T ) + x

1
4−

c
g(T ) g(T ) exp

{
4c

log T

g(T )

}
×

sup
10≤T1≤T

(∫ 2T1

T1

∣∣∣∣ζ (1

2
+

2c

g(T )
− 2it

)∣∣∣∣4 dt
) 1

2

×
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(∫ 2T1

T1

∣∣∣∣ζ2(3

4
− 3c

g(T )
+ 3it

)∣∣∣∣4 dt
) 1

2

T−1
1

≪x
1
4−

c
g(T ) + x

1
4−

c
g(T ) (log T )2/3(log log T )1/3×

exp

{
4c

(
log T

log log T

) 1
3

}
T (log T )4T−1

≪x
1
4−

c
g(T ) (log log T )1/3(log T )

14
3 exp

{
4c

(
log T

log log T

) 1
3

}

≪x
1
4−

c
g(T ) exp

{
(4 + ϵ)c

(
log T

log log T

) 1
3

}
(28)

for some small ϵ > 0.

The horizontal line portions I2 and I3 contribute in absolute value (by using the

functional equation (Equation (3)) for ζ(s), the approximation (Equation (4)) for

χ(s), and Lemma 5) a total of

|I2|+ |I3| ≤10

∫ 1
2+

1
log x+iT

1
4−

c
g(T )

+iT

∣∣∣∣ζ2(2s)ζ2(3s)ζ(4s)

xs

s
ds

∣∣∣∣
≪g(T )

T

∫ 1
2+

1
log x+iT

1
4−

c
g(T )

+iT

∣∣χ2(2s)ζ2(1− 2s)ζ2(1− 3s)xsds
∣∣

≪g(T )

T

∫ 1
2+

1
log x

1
4−

c
g(T )

T 2( 1
2−2σ)T

2
3 (1−(1−2σ))+ 2

3 (1−3σ)xσdσ

≪g(T )

T

∫ 1
2+

1
log x

1
4−

c
g(T )

T
5
3−

14σ
3 xσdσ

≪g(T )T
2
3

∫ 1
2+

1
log x

1
4−

c
g(T )

(
x

T
14
3

)σ

dσ

≪(log T )2/3(log log T )1/3T
2
3

{
x

1
2+

1
log xT− 7

3−
14
3

1
log x

+ x
1
4−

c

(log T )2/3(log log T )1/3 T
− 7

6+
14
3

c

(log T )2/3(log log T )1/3

}
.

Note that, for T ≫ x
1
4 , we have

|I2|+ |I3| ≪ x
1
4−

c

(log T )2/3(log log T )1/3 T
− 1

2+
14
3

c

(log T )2/3(log log T )1/3 (log T )2/3(log log T )1/3.

(29)
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Therefore, for T ≫ x
1
4 , from Equations (27), (28), and (29), we get∑

n≤x

f(n) =C1x
1
2 log x+ C2x

1
2 + C3x

1
3 log x+ C4x

1
3

+O

(
x

1
4−

c
g(T ) exp

{
(4 + ϵ)c

(
log T

log log T

) 1
3

})
+O

(
x

1
2+

1
log x (log x)2

T

)
.

(30)

Finally, by making our choice T = x
1
4 (log x)2 exp

{
−cϵ

(
log x

log log x

) 1
3

}
, we obtain

∑
n≤x

f(n) = C1x
1
2 log x+C2x

1
2 +C3x

1
3 log x+C4x

1
3 +O

(
x

1
4 exp

{
cϵ

(
log x

log log x

) 1
3

})
,

for some real constants C1, C2, C3, C4 that can be evaluated explicitly. This proves

Theorem 1.

4. Proof of Theorem 2

Proof of Theorem 2. By Lemma 1, for ℜ(s) > 1
2 , we have

F (s) =
ζ2(2s)ζ2(3s)ζ2(7s)ζ4(8s)ζ5(12s)ζ14(13s)ζ5(14s)

ζ(4s)ζ2(5s)ζ3(6s)ζ5(10s)ζ6(11s)
H1(s), (31)

where H1(s) converges absolutely and uniformly for ℜ(s) > 1
15 .

By applying Perron’s formula (see [2]) to Equation (31), we get∑
n≤x

f(n) =
∑
n≤x

n is squareful

2ω(n)

=
1

2πi

∫ 1
2+

1
log x+iT

1
2+

1
log x−iT

F (s)
xs

s
ds+O

(
x

1
2+

1
log x (log x)2

T

)
,

where 1 ≤ T ≤ x is a parameter to be chosen later.

Here, we move the line of integration to ℜ(s) = 1
14 + 1

log log x . Then, in the

rectangle R formed by the vertices 1
2 +

1
log x + iT, 1

14 +
1

log log x + iT, 1
14 +

1
log log x −

iT, 1
2 + 1

log x − iT , and 1
2 + 1

log x + iT , we note that F (s) has poles at the points

s = 1
2 of order 2, s = 1

3 of order 2, s = 1
7 of order 2, s = 1

8 of order 4, s = 1
12

of order 5, s = 1
13 of order 14, a simple pole at each s = 1

8 + iγ 1
8
, a pole of

order 2 at each s = 1
10 + iγ 1

10
and a pole of order 3 at each s = 1

12 + iγ 1
12
, where

1
8 + γ 1

8
, 1

10 + γ 1
10

and 1
12 + γ 1

12
are the coordinates of the zeros of ζ(4s), ζ(5s)
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and ζ(6s) on the lines ℜ(s) = 1
8 , ℜ(s) = 1

10 and ℜ(s) = 1
12 respectively, such that

| γ 1
8
|, | γ 1

10
|, | γ 1

12
|< T .

Hence, by Cauchy’s residue theorem, we get∑
n≤x

f(n) =
1

2πi

{∫ 1
14+

1
log log x+iT

1
14+

1
log log x−iT

+

∫ 1
14+

1
log log x−iT

1
2+

1
log x−iT

+

∫ 1
2+

1
log x+iT

1
14+

1
log log x+iT

}
F (s)

xs

s
ds

+
∑
ρ

Res
s=ρ

F (s)
xs

s
+O

(
x

1
2+

1
log x (log x)2

T

)

:=J1 + J2 + J3 +
∑
ρ

Res
s=ρ

F (s)
xs

s
+O

(
x

1
2+

1
log x (log x)2

T

)
, (32)

where in the right-hand side sum, ρ runs over all the poles of F (s) inside the

rectangle R.

The vertical line integration J1 contributes in absolute value (by using the func-

tional equation (Equation (3)) for ζ(s), the approximation (Equation (4)) for χ(s),

and Equations (24) and (25)):

J1 ≪

∣∣∣∣∣
∫ 1

14+
1

log log x+iT

1
14+

1
log log x−iT

F (s)
xs

s
ds

∣∣∣∣∣
≪x

1
14+

1
log log x

+

∫ T

10

∣∣∣∣∣∣
ζ2
(

1
7 + 2

log x + 2it
)
ζ2
(

3
14 + 3

log x + 3it
)
x

1
14+

1
log log x t−1+41ϵ

ζ
(

2
7 + 4

log x + 4it
)
ζ2
(

5
14 + 5

log x + 5it
)
ζ3
(

3
7 + 6

log x + 6it
)
∣∣∣∣∣∣ dt

≪x
1
14+

1
log log x + x

1
14+

1
log log xT 2( 1

2−
1
7−

2
log log x )+2( 1

2−
3
14−

3
log log x )×

T−( 1
2−

2
7−

4
log log x )−2( 1

2−
5
14−

5
log log x )−3( 1

2−
3
7−

6
log log x )×∫ T

10

∣∣∣∣∣∣
ζ2
(

6
7 − 2

log x − 2it
)
ζ2
(

11
14 − 3

log x − 3it
)
t−1+41ϵ

ζ
(

5
7 − 4

log x − 4it
)
ζ2
(

9
14 − 5

log x − 5it
)
ζ3
(

4
7 − 6

log x − 6it
)
∣∣∣∣∣∣ dt

≪x
1
14+

1
log log x + x

1
14+

1
log log xT

4
7+

22
log log x+51ϵ(log T )

≪x
1
14+

1
log log xT

4
7+

22
log log x+52ϵ. (33)

Now, to find the contributions coming from the horizontal line portions J2 and J3

in absolute value, (to see more clearly) we divide the interval
[

1
14 + 1

log log x ,
1
2 + 1

log x

]
into the union of the following six intervals:

[
1
14 + 1

log log x ,
1
12 + 1

log log x

]
,[

1
12 + 1

log log x ,
1
10 + 1

log log x

]
,
[

1
10 + 1

log log x ,
1
8 + 1

log log x

]
,
[
1
8 + 1

log log x ,
1
6 + 1

log log x

]
,[

1
6 + 1

log log x ,
1
4 + 1

log log x

]
and

[
1
4 + 1

log log x ,
1
2 + 1

log x

]
. Then, by using the func-

tional equation (Equation (3)) for ζ(s), the approximation (Equation (4)) for χ(s),
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and Equations (24) and (25), we get

|J2|+ |J3| ≤10

∣∣∣∣∣
∫ 1

2+
1

log x+iT

1
14+

1
log log x+iT

F (s)
xs

s
ds

∣∣∣∣∣
≪

{∫ 1
12+

1
log log x+iT

1
14+

1
log log x+iT

+

∫ 1
10+

1
log log x+iT

1
12+

1
log log x+iT

+

∫ 1
8+

1
log log x+iT

1
10+

1
log log x+iT

+

∫ 1
6+

1
log log x+iT

1
8+

1
log log x+iT

+

∫ 1
4+

1
log log x+iT

1
6+

1
log log x+iT

+

∫ 1
2+

1
log x+iT

1
4+

1
log log x+iT

}
×∣∣∣∣ ζ2(2σ + 2iT )ζ2(3σ + 3iT )

ζ(4σ + 4iT )ζ2(5σ + 5iT )ζ3(6σ + 6iT )

∣∣∣∣xσT−1+41ϵdσ

≪ max
1
14+

1
log log x≤σ≤ 1

12+
1

log log x

xσT 2(1−5σ)−( 1
2−4σ)−2( 1

2−5σ)−3( 1
2−6σ)−1+51ϵ

+ max
1
12+

1
log log x≤σ≤ 1

10+
1

log log x

xσT 2(1−5σ)−( 1
2−4σ)−2( 1

2−5σ)−1+51ϵ

+ max
1
10+

1
log log x≤σ≤ 1

8+
1

log log x

xσT 2(1−5σ)−( 1
2−4σ)−1+51ϵ

+ max
1
8+

1
log log x≤σ≤ 1

6+
1

log log x

xσT 2(1−5σ)−1+51ϵ

+ max
1
6+

1
log log x≤σ≤ 1

4+
1

log log x

xσT 2( 1
2−2σ)−1+51ϵ

+ max
1
4+

1
log log x≤σ≤ 1

2+
1

log x

xσT−1+51ϵ

≪ max
1
14+

1
log log x≤σ≤ 1

12+
1

log log x

xσT−2+22σ+51ϵ

+ max
1
12+

1
log log x≤σ≤ 1

10+
1

log log x

xσT− 1
2+4σ+51ϵ

+ max
1
10+

1
log log x≤σ≤ 1

8+
1

log log x

xσT
1
2−6σ+51ϵ

+ max
1
8+

1
log log x≤σ≤ 1

6+
1

log log x

xσT 1−10σ+51ϵ

+ max
1
6+

1
log log x≤σ≤ 1

4+
1

log log x

xσT−4σ+51ϵ

+ max
1
4+

1
log log x≤σ≤ 1

2+
1

log x

xσT−1+51ϵ

≪x
1
12+

1
log log xT−2+ 22

12+
22

log log x+51ϵ + x
1
10+

1
log log xT− 1

2+
4
10+

4
log log x+51ϵ

+ x
1
10+

1
log log xT

1
2−

6
10−

6
log log x+51ϵ + x

1
8+

1
log log xT

1
2−

6
8−

6
log log x+51ϵ

+ x
1
8+

1
log log xT 1− 10

8 − 10
log log x+51ϵ + x

1
6+

1
log log xT 1− 10

6 − 10
log log x+51ϵ

+ x
1
6+

1
log log xT− 4

6−
4

log log x+51ϵ + x
1
4+

1
log log xT− 4

4−
4

log log x+51ϵ



INTEGERS: 24 (2024) 14

+ x
1
2+

1
log xT−1+51ϵ

≪x
1
12+

1
log log xT− 1

6+
22

log log x+51ϵ + x
1
10+

1
log log xT− 1

10+
4

log log x+51ϵ

+ x
1
10+

1
log log xT− 1

10−
6

log log x+51ϵ + x
1
8+

1
log log xT− 1

4−
6

log log x+51ϵ

+ x
1
8+

1
log log xT− 1

4−
10

log log x+51ϵ + x
1
6+

1
log log xT− 2

3−
10

log log x+51ϵ

+ x
1
6+

1
log log xT− 2

3−
4

log log x+51ϵ + x
1
4+

1
log log xT−1− 4

log log x+51ϵ

+ x
1
2+

1
log xT−1+51ϵ

≪x
1
12+

1
log log xT− 1

6+
22

log log x+51ϵ + x
1
10+

1
log log xT− 1

10+
4

log log x+51ϵ

+ x
1
8+

1
log log xT− 1

4−
6

log log x+51ϵ + x
1
6+

1
log log xT− 2

3−
4

log log x+51ϵ

+ x
1
2+

1
log xT−1+51ϵ.

Note that, for T ≫ x
1
4 , we have

|J2|+ |J3| ≪ x
1
2+

1
log xT−1+51ϵ. (34)

Therefore, for T ≫ x
1
4 , from Equations (32), (33), (34), and Lemma 3, we get∑

n≤x

f(n) =C1x
1
2 log x+ C2x

1
2 + C3x

1
3 log x+ C4x

1
3 + C5x

1
7 log x+ C6x

1
7

+ C7x
1
8 (log x)3 + C8x

1
8 (log x)2 + C9x

1
8 log x+ C10x

1
8

+ C11x
1
12 (log x)4 + · · ·+ C14x

1
12 log x+ C15x

1
12

+ C16x
1
13 (log x)13 + · · ·+ C28x

1
13 log x+ C29x

1
13

+
∑

ζ(4ρ)=0, ℜ(ρ)= 1
8 ,

0<

∣∣∣∣ℑ(4ρ)=γ 1
8

∣∣∣∣<T

D1, γ 1
8

x
1
8+iγ 1

8

+
∑

ζ(5ρ)=0, ℜ(ρ)= 1
10 ,

0<

∣∣∣∣ℑ(5ρ)=γ 1
10

∣∣∣∣<T

(
D2, γ 1

10

x
1
10+iγ 1

10 log x+D3, γ 1
10

x
1
10+iγ 1

10

)

+
∑

ζ(6ρ)=0, ℜ(ρ)= 1
12 ,

0<

∣∣∣∣ℑ(6ρ)=γ 1
12

∣∣∣∣<T

(
D4, γ 1

12

x
1
12+iγ 1

12 (log x)2

+D5, γ 1
12

x
1
12+iγ 1

12 log x+D6, γ 1
12

x
1
12+iγ 1

12

)
+O

(
x

1
14+

1
log log xT

4
7+

22
log log x+52ϵ

)
+O

(
x

1
2+

1
log xT−1+51ϵ

)
. (35)
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Finally, by making our choice T = x
3
11 , we obtain∑

n≤x

f(n) =C1x
1
2 log x+ C2x

1
2 + C3x

1
3 log x+ C4x

1
3+

+
∑

ζ(4ρ)=0, ℜ(ρ)= 1
8 ,

0<

∣∣∣∣ℑ(4ρ)=γ 1
8

∣∣∣∣<x
3
11

D1, γ 1
8

x
1
8+iγ 1

8

+
∑

ζ(5ρ)=0, ℜ(ρ)= 1
10 ,

0<

∣∣∣∣ℑ(5ρ)=γ 1
10

∣∣∣∣<x
3
11

(
D2, γ 1

10

x
1
10+iγ 1

10 log x+D3, γ 1
10

x
1
10+iγ 1

10

)

+
∑

ζ(6ρ)=0, ℜ(ρ)= 1
12 ,

0<

∣∣∣∣ℑ(6ρ)=γ 1
12

∣∣∣∣<x
3
11

(
D4, γ 1

12

x
1
12+iγ 1

12 (log x)2

+D5, γ 1
12

x
1
12+iγ 1

12 log x+D6, γ 1
12

x
1
12+iγ 1

12

)
+O

(
x

5
22+ϵ

)
.

This proves Theorem 2.
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[1] A. Ivić, The Riemann Zeta-Function: Theory and Applications, Dover Publications, Inc.,
Mineola, New York, 2003.

[2] H. Iwaniec and A. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ. 53,
American Mathematical Society, Providence, 2004.

[3] A. Selberg, On the zeros of Riemann’s zeta-function, Skr. Norske Vid.-Akad. Oslo I 1942
(10) (1942), 59 pp.

[4] E. C. Titchmarsh and D. R. Heath-Brown, The Theory of the Riemann Zeta-function, second
edition, Clarendon Press, Oxford, 1986.

[5] K. Ramachandra, A simple proof of the mean fourth power estimate for ζ(1/2 + it) and
L(1/2 + it, χ), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1 (1974), 81-97.


