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Abstract

For a given square-free integer d > 1 and a given integer z > 1, we describe every
integral solution (x, y) of the general Pell’s equation |x2 − dy2| = z, where x and
dy are coprime, with the fundamental unit of Q(

√
d) and elements of Z[

√
d] whose

absolute value of norms are the smallest prime powers. As one of its applications,
we describe all nontrivial rational solutions of (a − c)2(b2 + 1) = (b − c)2(a2 + 1),
which is a relational expression between the slopes a and b of two straight lines and
the slope c of one of their angle bisectors on the coordinate plane. We also prove an
explicit formula for all nontrivial integral solutions of this equation with solutions
of negative Pell’s equations.

1. Introduction

On the coordinate plane, we consider the following problem, which can be called

the rational angle bisection problem.

Problem 1. For which rational numbers a and b are the slopes of the angle bisectors

between two straight lines with slopes a and b rational?

Remark 1. Given two straight lines, we consider the two angles formed by them,

regardless of whether they are acute or not. The bisector of one of the angles and

that of the supplementary angle are perpendicular to each other. In the case when

they are not parallel to the coordinate axes, if one of the slopes is rational, then so

is the other, since the product of the slopes is −1.

Essentially, Problem 1 has the meaning when the bisectors of ∠AOB can be

drawn by connecting O and other lattice points for given lattice points O, A, and

B. This is important in drawing techniques. Furthermore, in engineering, we can

specify the radiation range and the axis of light with a ratio of integers without errors

due to approximations to irrational numbers by using a solution to Problem 1.
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The following proposition plays an important role in solving Problem 1.

Proposition 1. (a) Let a, b, c ∈ R with |a| ≠ |b|. If the slopes of the bisectors of

the angles between two straight lines with slopes a and b are c and −c−1, then

a, b, and c satisfy

(a− c)2(b2 + 1) = (b− c)2(a2 + 1). (1)

(b) Every rational solution (a, b, c) of (1) such that |a| ≠ |b| is given by

(a, b, c) =

(
a1, b1,

a1b2 + a2b1
b2 + a2

)
,

(
a1, b1,

a1b2 − a2b1
b2 − a2

)
for some rational solutions (x, y) = (a1, a2), (b1, b2) of

x2 − dy2 = −1,

where d is a positive square-free integer.

The proof is given in Section 2. We say that a solution (a, b, c) of (1) is trivial if

|a| = |b|.

Example 1. The triples

(a, b, c) =

(
3

4
,
12

5
,
9

7

)
,

(
1

7
,
23

7
,
6

7

)
, (1, 7, 2)

satisfy (1), and therefore (a, b) = (3/4, 12/5), (1/7, 23/7), (1, 7) are solutions to

Problem 1 (see Figure 1). The values a = 3/4 and b = 12/5 are the x-components

of rational solutions of x2 − y2 = −1, since(
3

4

)2

−
(
5

4

)2

= −1 and

(
12

5

)2

−
(
13

5

)2

= −1.

The values a = 1/7 and b = 23/7 (resp. a = 1 and b = 7) are the x-components of

rational (resp. integral) solutions of x2 − 2y2 = −1, since(
1

7

)2

− 2 ·
(
5

7

)2

= −1 and

(
23

7

)2

− 2 ·
(
17

7

)2

= −1

(resp. 12 − 2 · 12 = −1 and 72 − 2 · 52 = −1).

Definition 1. Let d > 1 be a square-free integer, and let z > 0 be an integer.

(a) Let (x, y) be an integral solution of |x2−dy2| = z. We say that (x, y) is strictly

primitive, if x and dy are coprime.
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Figure 1: Straight lines and their angle bisectors with rational slopes.

(b) Let (x, y) = (a1, a2), (b1, b2) be positive integral solutions of |x2 − dy2| = z.

We say (a1, a2) is smaller than (b1, b2), if a2 < b2, or if a1 < b1 and a2 = b2.

(c) For each equation of x2 − dy2 = z, x2 − dy2 = −z, and |x2 − dy2| = z, we call

its minimum positive integral solution its fundamental solution.

Remark 2. Suppose that z is a square number, and let (x, y) be an integral solution

of |x2 − dy2| = z. If (x, y) is primitive, that is, x and y are coprime, then (x, y)

is strictly primitive; otherwise, there exists a common prime divisor of x and d

dividing x2 − dy2 = ±z twice and also x2 ∓ z = dy2 twice, which contradicts that

x and y are coprime, and d is square-free. In particular, every integral solution of

|x2 − dy2| = 1 is strictly primitive.

Throughout this article, we use the following symbols.

Notation 1. Let N denote the additive monoid of all nonnegative integers. For each

prime number p, let ordp : Q× → Z be the normalized p-adic additive valuation.

We denote the greatest common divisor of a, b ∈ Z \ {0} by gcd (a, b).

Notation 2. Let d > 1 be a square-free integer. Let η be the fundamental unit

of the real quadratic field Q(
√
d). We denote the n-th smallest positive integral

solution of |x2 − dy2| = 1 by (x, y) = (f
(d)
n , g

(d)
n ) or simply (x, y) = (fn, gn), and

let ε = f1 + g1
√
d. Let S(d) denote the set of every prime number p such that

|x2 − dy2| = pl has a strictly primitive integral solution for some integer l > 0. For

each p ∈ S(d), let lp be the minimum integer l > 0 such that |x2 − dy2| = pl has a

strictly primitive integral solution, and let

ξp = xp + yp
√
d

with the fundamental solution (x, y) = (xp, yp) of{
x2 − dy2 = plp if x2 − dy2 = −1 has a integral solution,

|x2 − dy2| = plp otherwise.
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Let S(d)− denote the set of every p ∈ S(d) such that xp
2 − dyp

2 = −plp . Further-

more, for each α = a1 + a2
√
d ∈ Q(

√
d), where a1, a2 ∈ Q, we denote the conjugate

and norm of α by

α′ = a1 − a2
√
d and N(α) = αα′ = a1

2 − da2
2,

respectively.

The first main theorem of this article is the following formula.

Theorem 1. Let (a, b, c) be a nontrivial rational solution of (1).

(i) Suppose that a and b are the x-components of rational solutions of the equation

x2 − y2 = −1. Then (a, b, c) is given by

(a, b, c) =

(
l2 − n2

2ln
,
m2 − n2

2mn
,±
(

lm− n2

(l +m)n

)±1
)

(2)

for some l, m, n ∈ Z such that |l| ̸= |m|, lm ̸= n2,and lmn ̸= 0, where the

double signs correspond.

(ii) Suppose that a and b are the x-components of rational solutions of a common

negative Pell’s equation x2 − dy2 = −1 for some square-free integer d > 1.

Then (a, b, c) is given by

(a, b, c) =

(
α+ α′

2
,
β + β′

2
,±
(

αβ − (αβ)′

α+ β − (α+ β)′

)±1
)

(3)

for some α, β ∈ Q(
√
d) such that N(α) = N(β) = −1 and β ̸= ±α, where the

double signs correspond. In addition, α and β can be written in the form

α = ±ηm
∏

p∈S(d)

αp
mpp−lpmp/2 and β = ±ηn

∏
p∈S(d)

βp
npp−lpnp/2

for some mp, np ∈ N, αp, βp ∈ {ξp, ξ′p} (p ∈ S(d)), and m, n ∈ Z satisfying

lpmp ≡ lpnp ≡ 0 (mod 2)

and

1 ≡


m ≡ n (mod 2) if x2 − dy2 = −1 has an integral solution,∑
p∈S(d)−

mp ≡
∑

p∈S(d)−

np (mod 2) otherwise.

Conversely, every triple (a, b, c) of Form (2) or (3) is a rational solution of (1).
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The proof is given in Section 4. For any rational solution (a, b, c) of (1) in (i),

each of a and b is a ratio of the leg lengths of some Pythagorean triangle. We find

the rational solutions of (1) in (ii) by using the following Theorem. This is the

second main theorem of this article.

Theorem 2. (a) Let z > 1 be an integer. Then |x2 − dy2| = z has a strictly

primitive integral solution if and only if

ordp(z) =

{
lpnp if p ∈ S(d),
0 if p /∈ S(d)

(4)

for some np ∈ N for each prime number p, where l2 = 2 and n2 ∈ {0, 1} if

η /∈ Z[
√
d]. In this case, its strictly primitive integral solution (x, y) satisfies

x+ y
√
d = ±ηn

∏
p∈S(d)

ξ∗p
np (5)

for some ξ∗p ∈ {ξp, ξ′p} (p ∈ S(d)) and n ∈ Z such that

n ≡

{
0, ±1 (mod 3) if η ∈ Z[

√
d] or z ≡ 0 (mod 2),

0 (mod 3) if η /∈ Z[
√
d] and z ≡ 1 (mod 2).

(6)

(b) Let z > 1 be an integer. Then every integral solution (x, y) of |x2 − dy2| = z2

satisfies

x+ y
√
d = ±ηn

∏
p∈S(d)

ξ∗p
nppordp(z)−lpnp/2

∏
p/∈S(d)

pordp(z) (7)

for some np ∈ N, ξ∗p ∈ {ξp, ξ′p} (p ∈ S(d)), and n ∈ Z, where

lpnp ≡ 0 (mod 2), np ≤ 2 ordp(z)/lp, (8)

and (6) hold.

The proof is given in Section 3. The integral solutions of (1) are given by the

following formula.

Theorem 3. Every nontrivial integral solution (a, b, c) of (1) is given by

(a, b, c) =±

f
(d)
(2m−1)(2n−1), f

(d)
(2m−1)(2n+1),

g
(d)
(2m−1)·2n

g
(d)
2m−1

 , (9)

± (f
(2)
2n−1,−f

(2)
2n+1, f

(2)
2n ) (10)

for some integers d, m, n > 0 such that x2−dy2 = −1 has an integral solution, after

switching a and b if necessary, where (9) contains the case when d = 2. Conversely,

every triple (a, b, c) of Form (9) or (10) is an integral solution of (1).

The proof is given in Section 6 after preparation in Section 5.
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2. Slopes of Angle Bisectors

In this section, we prove that the slopes of two straight lines and their angle bisectors

satisfy Equation (1) and certain properties.

Proof of Proposition 1. (a) It suffices to show the case when y = cx is one of the

angle bisectors between y = ax and y = bx. Then the distances from a point

(t, ct) ̸= (0, 0) on y = cx to ax− y = 0 and bx− y = 0 are equal to each other. This

implies
|at− ct|√
a2 + (−1)2

=
|bt− ct|√
b2 + (−1)2

,

or equivalently,

|a− c|
√
b2 + 1 = |b− c|

√
a2 + 1.

Squaring both sides, we obtain Equation (1).

(b) Let (a, b, c) = (a1, b1, c1) be a nontrivial rational solution of (1), and let

a1 =
A1

Z
, b1 =

B1

Z
, and c1 =

C1

Z

with A1, B1, C1, Z ∈ Z and Z ̸= 0. Substituting these into (1) and multiplying

both sides by Z4, we obtain

(A1 − C1)
2(B1

2 + Z2) = (B1 − C1)
2(A1

2 + Z2). (11)

For any prime number p, the parities of ordp(A1
2+Z2) and ordp(B1

2+Z2) coincide

with each other, since (A1−C1)
2 and (B1−C1)

2 are square numbers. Let d be the

product of every prime number p such that these valuations are odd (define d = 1

if there are no such prime numbers). Then there exist A2, B2 ∈ Z such that

A1
2 + Z2 = dA2

2 and B1
2 + Z2 = dB2

2, (12)

where A1 and B1 are the X-components of the integral solutions (X,Y ) = (A1, A2),

(B1, B2) of X
2 − dY 2 = −Z2. Furthermore, a1 and b1 are the x-components of the

rational solutions (x, y) = (a1, a2), (b1, b2) of x2 − dy2 = −1 with a2 = A2/Z and

b2 = B2/Z. Substituting (12) into (11) and dividing both sides by d, we obtain

(A1 − C1)
2B2

2 = (B1 − C1)
2A2

2,

or equivalently,

(A1 − C1)B2 = ±(B1 − C1)A2.

Solving for C1, we obtain

C1 =
A1B2 +A2B1

B2 +A2
,
A1B2 −A2B1

B2 −A2
,
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since B2
2 −A2

2 = (B1
2 −A1

2)/d = (b1
2 − a1

2)Z2/d ̸= 0, and therefore

c1 =
a1b2 + a2b1
b2 + a2

,
a1b2 − a2b1
b2 − a2

.

Remark 3. Note that (1) is equivalent to (ac + 1)2(b2 + 1) = (bc + 1)2(a2 + 1),

which is derived from the same argument as above and the fact that the other angle

bisector is y = −c−1x. Statement (a) can also be proven by the addition formula of

the tangent function, or the formula for the inner product of two vectors.

For solutions of (1), the following properties are fundamental.

Proposition 2. (a) If (a, b, c) = (a1, b1, c1) is a real solution of (1), then so are

(a, b, c) = (a1, b1,−c1
−1) (c1 ̸= 0) and (a, b, c) = (−a1,−b1,−c1), (b1, a1, c1).

(b) If a = 0 or b = 0, then (1) has no nontrivial integral solutions.

Proof. (a) See Remark 3 for (a, b, c) = (a1, b1,−c1
−1). The others are obvious.

(b) Let a, b ∈ Z with |a| ≠ |b|. Solving (1) for c, we obtain

c =
ab− 1±

√
(a2 + 1)(b2 + 1)

a+ b
,

which is not an integer if a = 0 or b = 0, since
√
e2 + 1 /∈ Q for any e ∈ Z \ {0}.

This proves the desired assertion.

3. General Pell’s Equations

In this section, we prove Theorem 2. Throughout the section, let d > 1 be a

square-free integer. We recall the following classical theorems.

Theorem 4 ([1, Theorem 3.2.1]). The positive Pell’s equation x2 − dy2 = 1 has a

nontrivial integral solution independently of the value of d.

Theorem 5. The negative Pell’s equation x2 − dy2 = −1 has a rational solution,

if and only if d has no prime divisors congruent to 3 modulo 4.

Proof. By Fermat’s two squares theorem (see [7, Theorem 2.15]), d can be expressed

as d = a2 + b2 for some a, b ∈ N, if and only if d has no prime divisors congruent

to 3 modulo 4. We can assume b > 0, since d > 1. Under these conditions, (x, y) =

(a/b, 1/b) is a rational solution of x2 − dy2 = −1.

Conversely, if x2 − dy2 = −1 has a rational solution (x, y) = (a/c, b/c) with a, b,

c ∈ Z and c > 0, then db2 = a2 + c2, which implies that db2 has no prime divisors

congruent to 3 modulo 4 by Fermat’s theorem as above, and so does d.
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Remark 4. If x2−dy2 = −1 has an integral solution, then d has no prime divisors

congruent to 3 modulo 4; however, the converse is false. For example, x2−34y2 = −1

has a rational solution (x, y) = (5/3, 1/3) but no integral solutions.

Let z, w ∈ Z \ {0}. If x2 − dy2 = z and x2 − dy2 = w have integral solutions

(x, y) = (a1, a2) and (x, y) = (b1, b2), respectively, then x2 − dy2 = zw has an

integral solution

(x, y) = (a1b1 + da2b2, a1b2 + a2b1),

since the norm map N : Q(
√
d)× → Q× is a group homomorphism. In the case

when w = 1, such a solution is called a Pell multiple.

Theorem 6 ([4, Corollary 3.5]). Let z ∈ Z \ {0}. Suppose that x2 − dy2 = z has

an integral solution. Then, for this equation, there exists a finite number of integral

solutions (x, y) = (a1,1, a1,2), . . . , (ar,1, ar,2) such that every integral solution (x, y)

satisfies

x+ y
√
d = ±εn(ai,1 + ai,2

√
d)

for some i ∈ {1, . . . , r} and n ∈ Z.

In this article, we generalize the concept of Pell multiples. The following propo-

sitions are fundamental.

Proposition 3. (a) Let p1, . . . , pr be distinct prime numbers, and let n1, . . . ,

nr ∈ N. If |x2 − dy2| = pi
ni has a strictly primitive integral solution (x, y) =

(ai,1, ai,2) for each i ∈ {1, . . . , r}, then (x, y) ∈ Z2 defined by

x+ y
√
d = ±

r∏
i=1

(ai,1 + ai,2
√
d) (13)

is a strictly primitive integral solution of |x2 − dy2| =
∏r

i=1 pi
ni .

(b) Let p be a prime number, and let m, n > 0 be integers. If |x2− dy2| = pm has

a strictly primitive integral solution (x, y) = (a1, a2), then (x, y) ∈ Z2 defined

by

x+ y
√
d = ±(a1 + a2

√
d)n (14)

is a strictly primitive integral solution of |x2 − dy2| = pmn.

Proof. We prove the contrapositions.

(a) For each i ∈ {1, . . . , r}, let (x, y) = (ai,1, ai,2) be an integral solution of

|x2 − dy2| = pi
ni , and let αi = ai,1 + ai,2

√
d. Suppose that the integral solution

(x, y) of |x2−dy2| =
∏r

i=1 pi
ni defined by (13) is not strictly primitive. Then pj | x

and pj | dy for some j ∈ {1, . . . , r}.

Case 1: Suppose that pj | d. Then pj | daj,22±pj
nj = aj,1

2, and therefore pj | aj,1.
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Case 2: Suppose that pj ∤ d. Then pj | y. In Z[
√
d], this implies that pj divides

(x+ y
√
d)
∏
i̸=j

α′
i = ±αj

∏
i̸=j

αiα
′
i = ±αj

∏
i ̸=j

pi
ni

and therefore αj . Hence pj | aj,1 and pj | aj,2.
Thus, in each case, pj | aj,1 and pj | daj,2, which imply that the solution (x, y) =

(aj,1, aj,2) is not strictly primitive.

(b) Let (x, y) = (a1, a2) be an integral solution of |x2 − dy2| = pm. Suppose that

the solution (x, y) of |x2−dy2| = pmn defined by (14) is not strictly primitive. Then

p | x and p | dy.

Case 1: Suppose that p | d. Then p | da22 ± pm = a1
2, and therefore p | a1.

Case 2: Suppose that p ∤ d. Then p | y, and therefore p | x+ y
√
d in Z[

√
d]. With

respect to an extension v of ordp : Q× → Z to Q(
√
d), this implies

v(a1 + a2
√
d) =

1

n
v(x+ y

√
d) > 0.

Hence p | a1 and p | a2.
Thus, in each case, p | a1 and p | da2, which imply that the solution (x, y) =

(a1, a2) is not strictly primitive.

Proposition 4. Let z ∈ Z \ {0}. Suppose that x2 − dy2 = −1 has an integral

solution. If x2 − dy2 = z has a strictly primitive integral solution, then so does

x2 − dy2 = −z.

Proof. We prove the contraposition. Suppose that x2 − dy2 = −z has no strictly

primitive integral solutions. Let (x, y) = (x0, y0) be an integral solution of x2−dy2 =

z. Then (x, y) ∈ Z2 defined by x + y
√
d = ε(x0 + y0

√
d) is an integral solution of

x2−dy2 = −z, which implies that there exists a prime divisor p of z such that p | x
and p | dy.

Case 1: Suppose that p | d. Then p | dy02 + z = x0
2, and therefore p | x0.

Case 2: Suppose that p ∤ d. Then p | y. In Z[
√
d], this implies p | x + y

√
d, and

therefore p | x0 + y0
√
d since p ∤ ε. Hence p | x0 and p | y0.

Thus, in each case, p | x0 and p | dy0, which imply that x2 − dy2 = z has no

strictly primitive integral solutions.

We say that an ideal a ̸= (0) in a subring of the integer ring of a quadratic field

is primitive if a is not divisible by the ideal (p) for any prime number p.

Theorem 7. Let p be a prime number. Suppose that d ̸≡ 5 (mod 8) or p ̸= 2. Then

|x2 − dy2| = z has a strictly primitive integral solution for some multiple z of p, if

and only if p splits in Q(
√
d).
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Proof. Let K = Q(
√
d). Recall that the integer ring OK of K is

OK =

Z

[
1 +

√
d

2

]
if d ≡ 1 (mod 4),

Z[
√
d] if d ≡ 2, 3 (mod 4).

Let I be the monoid of all ideals in Z[
√
d]. For each (a, b) ∈ I × I, we define a ∼ b

if

b = (λ)a or a = (λ)b

for some λ ∈ Z[
√
d] \ {0}. Then the relation ∼ on I is an equivalence relation which

is compatible with the multiplication. Since the ideal class group ClK of K is

finite, and so is the quotient monoid I/∼ which can be regarded as its submonoid.

Furthermore, 2 splits in K if d ≡ 1 (mod 8), and 2 is unramified in K if d ≡
5 (mod 8).

Suppose that a prime number p splits into prime ideals p and p′ = {α′ | α ∈ p}
in OK , that is, (p) = pp′ ̸= p2. Then there exist l, x, y ∈ Z such that

(p ∩ Z[
√
d])l = (x+ y

√
d) and 0 < l ≤ #ClK (15)

by the finiteness of I/∼, where x and y are coprime since (p∩Z[
√
d])l is primitive.

Furthermore, x and d are coprime, since x2−dy2 = ±pl and p ∤ d. These imply that

|x2 − dy2| = pl has a strictly primitive integral solution.

To prove the converse, suppose that an integer z > 1 has a prime divisor p which

does not split in K. Let (x, y) be an integral solution of |x2 − dy2| = z.

Case 1: Suppose that p is unramified in K. Then p ̸= 2 or “d ≡ 3 (mod 4) and

p = 2” by assumption. In OK , the principal ideal (z) is decomposed as

(z) = (x+ y
√
d)(x− y

√
d),

where both sides are divisible by (p). Therefore (x+y
√
d) and (x−y

√
d) are divisible

by (p) in OK , since the prime ideal (p) divides one of these ideals and also the other

because of its self-conjugacy. This implies that (x+y
√
d) and (x−y

√
d) are divisible

by (p) in Z[
√
d], since

pOK ∩ Z[
√
d] = pZ[

√
d]. (16)

Hence p | x+ y
√
d, and therefore p | x and p | y.

Case 2: Suppose that p ramifies in K. Then p | d, and therefore p divides dy2±z =

x2, which implies p | x.
Thus, in each case, (x, y) is not strictly primitive. This proves the desired asser-

tion.

Corollary 1. Unless d ≡ 1 (mod 4) and p = 2, then lp is not greater than the ideal

class number of Q(
√
d) for each p ∈ S(d).
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Proof. The desired assertion follows from (15).

In the arguments below, we use the following lemma.

Lemma 1. Suppose that d ≡ 1 (mod 4), and let z > 1 be an integer.

(a) If z ≡ 2 (mod 4), then |x2 − dy2| = z has no integral solutions. Furthermore,

if 2 ∈ S(d), then l2 ≥ 2.

(b) Both 2 ∈ S(d) and l2 = 2 hold if and only if η /∈ Z[
√
d]. In this case, ξ2 = 2η

holds.

(c) If d ≡ 1 (mod 8) and z ≡ 4 (mod 8), then every integral solution of |x2−dy2| =
z is a pair of even integers. Furthermore, if d ≡ 1 (mod 8), then η ∈ Z[

√
d].

(d) If d ≡ 5 (mod 8) and z ≡ 0 (mod 8), then every integral solution of |x2−dy2| =
z is a pair of even integers.

Proof. (a) If z ≡ 2 (mod 4), then |x2 − dy2| = z has no integral solutions, since

x2−dy2 ≡ x2−y2 ̸≡ 2 (mod 4) by assumption. This implies that l2 ≥ 2 if 2 ∈ S(d).

(b) Suppose that η /∈ Z[
√
d]. Then the pair (x, y) of odd integers defined by

η = (x+ y
√
d)/2 satisfies |x2 − dy2| = 22. This implies that x and dy are coprime,

and therefore 2 ∈ S(d) and l2 = 2. In this case, ξ2 = 2η holds by the minimality of

η.

Conversely, if 2 ∈ S(d) and l2 = 2, then a strictly primitive integral solution (x, y)

of |x2 − dy2| = 22 satisfies (x + y
√
d)/2 ∈ O×

K \ Z[
√
d]×, which implies η /∈ Z[

√
d]

since

O×
K = {±ηn | n ∈ Z}. (17)

(c) Suppose that d ≡ 1 (mod 8). Then

12 − d · 12 ≡ 12 − d · 32 ≡ 32 − d · 12 ≡ 32 − d · 32 ≡ 0 (mod 8),

which imply that every integral solution (x, y) of |x2 − dy2| = z is a pair of even

integers if z ≡ 4 (mod 8). This implies η ∈ Z[
√
d] by (b).

(d) If d ≡ 5 (mod 8), then

12 − d · 12 ≡ 12 − d · 32 ≡ 32 − d · 12 ≡ 32 − d · 32 ≡ 4 (mod 8),

which imply that every integral solution (x, y) of |x2 − dy2| = z is a pair of even

integers if z ≡ 0 (mod 8).

Now we can determine the elements of S(d).

Theorem 8. (a) If d ≡ 1 (mod 8), or d ≡ 5 (mod 8) and η ∈ Z[
√
d], or d ≡ 2,

3 (mod 4), then S(d) consists of all prime numbers which split in Q(
√
d).
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(b) If d ≡ 5 (mod 8) and η /∈ Z[
√
d], then S(d) consists of all prime numbers

which split in Q(
√
d) and 2.

Proof. If d ≡ 5 (mod 8) and η ∈ Z[
√
d], then 2 /∈ S(d), since |x2 − dy2| = 2l has

no strictly primitive integral solutions for each integer l > 0 by Lemma 1(a), (b),

and (d). Combining this fact with Theorem 7 and Lemma 1(b), we obtain (a) and

(b).

We also use the following fact.

Theorem 9. Let a1, . . . , ar be pairwise coprime ideals in the integer ring OK of a

quadratic field K. Then
∏r

i=1 ai is primitive if and only if a1, . . . , ar are primitive.

Proof. For any ideal a ̸= (0) in OK , a is primitive if and only if the residue group

OK/a is cyclic (see [2, Corollary 6.30]). Combining this fact with the Chinese

remainder theorem, we obtain the desired assertion.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. (a) Let K = Q(
√
d), and let OK denote the integer ring of K.

For each prime number p, we take a prime ideal p in OK lying over (p) in Z, and let

p′ = {α′ | α ∈ p}. Note that pr and p′r are primitive for each r ∈ N if p splits in K.

Let (x, y) be a strictly primitive integral solution of |x2−dy2| = z. Let T be the set

of all prime divisors of z, and let T (d) = T ∩ S(d). For each p ∈ T (d), let qp and rp
be the quotient and remainder, respectively, when dividing ordp(z) by lp. For each

p ∈ T \ T (d), let rp = ordp(z). The equality |x2 − dy2| = z can be expressed as

(x2 − dy2) = (z) with ideals in OK , which implies

(x+ y
√
d)(x− y

√
d) =

∏
p∈T (d)

(ξp)
qp(ξ′p)

qp
∏
p∈T

(p)rp ,

since (ξp)(ξ
′
p) = (p)lp for each p ∈ T (d). For each p ∈ T, if d ≡ 2, 3 (mod 4) or

p ̸= 2, then (p) is decomposed as

(p) = pp′ ̸= p2

in OK by Theorem 7, and therefore the ideal (x + y
√
d) is divisible by either p or

p′; otherwise, (p) = pp′ | (x + y
√
d) in OK and also Z[

√
d] by (16), and therefore

p | x and p | y, which contradict that x and dy are coprime. For each p ∈ T (d),

we can see that (ξp) is divisible by either p or p′ by the same argument as above,

which implies

{(ξp), (ξ′p)} =

{
{plp , p′lp} if d ≡ 2, 3 (mod 4) or p ̸= 2,

{pl2 , p′l2}, {(2)pl2−2, (2)p′l2−2} if d ≡ 1 (mod 4) and p = 2.
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The latter case follows from (2)2 = p2p′2 ∤ (ξ2), since

22OK ∩ Z[
√
d] ⊂ 2Z[

√
d] (18)

and the fundamental solution of |x2 − dy2| = 2l2 is strictly primitive.

Case 1: Suppose that d ≡ 2, 3 (mod 4) or 2 /∈ T. Then T = T (d) by Theorem

8(a), and the ideal (x+ y
√
d) is decomposed as

(x+ y
√
d) =

 ∏
p∈T (d)

ξ∗p
qp

 ∏
p∈T (d)

p∗rp

with ξ∗p ∈ {ξp, ξ′p} and p∗ ∈ {p, p′} in OK . The ideal(
x+ y

√
d∏

p∈T (d) ξ
∗
p
qp

)
=

∏
p∈T (d)

p∗rp

is principal and primitive by Theorem 9, and therefore equal to OK , which implies

that rp = 0 for each p ∈ T (d). Hence there exists n ∈ Z such that

x+ y
√
d = ±ηn

∏
p∈T (d)

ξ∗p
qp .

Letting np = qp, we obtain (5).

Case 2: Suppose that d ≡ 1 (mod 4) and 2 ∈ T.

Assume that 2 /∈ S(d). Then T \ {2} = T (d), d ≡ 5 (mod 8), 2 is unramified in

K, η ∈ Z[
√
d] by Theorem 8, and ord2(z) = 2 by Lemma 1(a) and (d). The prime

ideal (2) divides both (x + y
√
d) and (x − y

√
d) only once by its self-conjugacy;

otherwise, (2)2 | (x+ y
√
d) in OK , and therefore (2) | (x+ y

√
d) in Z[

√
d] by (18),

which contradicts that x and dy are coprime. The ideal ((x+y
√
d)/2) is decomposed

as (
x+ y

√
d

2

)
=

 ∏
p∈T (d)

ξ∗p
qp

 ∏
p∈T (d)

p∗rp

with ξ∗p ∈ {ξp, ξ′p} and p∗ ∈ {p, p′} in OK . The ideal(
x+ y

√
d

2
∏

p∈T (d) ξ
∗
p
qp

)
=

∏
p∈T (d)

p∗rp

is principal and primitive by Theorem 9, and therefore equal to OK , which implies

that rp = 0 for each p ∈ T (d). Hence there exists n ∈ Z such that

x+ y
√
d = ±2ηn

∏
p∈T (d)

ξ∗p
qp .
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This implies x+ y
√
d ∈ 2Z[

√
d], and therefore 2 | x and 2 | y, which contradict that

x and dy are coprime.

Thus, 2 ∈ S(d), and therefore T = T (d) by Theorem 8.

Subcase 2-1: Suppose that η ∈ Z[
√
d]. Then d ≡ 1 (mod 8), 2 splits in K by

Theorem 8(a), and l2 ≥ 3 by Lemma 1(a) and (b). By the same argument as

Case 1, we can see that rp = 0 for each p ∈ T (d). Hence there exists n ∈ Z such

that

x+ y
√
d = ±ηn

∏
p∈T (d)

ξ∗p
qp .

Letting np = qp, we obtain (5).

Subcase 2-2: Suppose that η /∈ Z[
√
d]. Then d ≡ 5 (mod 8), 2 is unramified in K

by Lemma 1(c), and ord2(z) = 2, l2 = 2, q2 = 1, r2 = 0, and ξ2 = 2η by Lemma

1(b) and (d). The ideal ((x+ y
√
d)/2) is decomposed as(

x+ y
√
d

2

)
=

 ∏
p∈T (d)\{2}

ξ∗p
qp

 ∏
p∈T (d)\{2}

p∗rp

with ξ∗p ∈ {ξp, ξ′p} and p∗ ∈ {p, p′} in OK . The ideal(
x+ y

√
d

2
∏

p∈T (d)\{2} ξ
∗
p
qp

)
=

∏
p∈T (d)\{2}

p∗rp

is principal and primitive by Theorem 9, and therefore equal to OK , which implies

that rp = 0 for each p ∈ T (d) \ {2}. Hence there exists m ∈ Z such that

x+ y
√
d = ±2ηm

∏
p∈T (d)\{2}

ξ∗p
qp

= ±ηm−1ξ2
∏

p∈T (d)\{2}

ξ∗p
qp = ±ηm+1ξ′2

∏
p∈T (d)\{2}

ξ∗p
qp .

Letting n2 = 1, np = qp for each p ̸= 2, and n = m± 1, we obtain (5).

In these cases, the exponent n satisfies (6), since

Z[
√
d]× =

{
{±ηn | n ∈ Z} if η ∈ Z[

√
d],

{±ηn | n ∈ Z, n ≡ 0 (mod 3)} if η /∈ Z[
√
d]

by (17) and η3 ∈ Z[
√
d] (see [6, Theorem 2.1.4]). We can verify that (4) is satisfied

by the argument above. Thus the assertion of (a) holds.

(b) Let (x, y) be an integral solution of |x2 − dy2| = z2, and let g = gcd (x, y).

Let T be the set of all prime divisors of zg−1, and let T (d) = T ∩ S(d). Let

x0 =
x

g
and y0 =

y

g
.
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Then (x0, y0) is a strictly primitive integral solution of |x2 − dy2| = z2g−2, and

satisfies

x0 + y0
√
d = ±ηn

∏
p∈S(d)

ξ∗p
np (19)

for some np ∈ N, ξ∗p ∈ {ξp, ξ′p} (p ∈ S(d)), and n ∈ Z satisfying (6) and the condition

obtained by replacing z with z2g−2 in (4) because of (a). If p ∈ S(d), then (8)

holds, since 0 ≤ ordp(g) = ordp(z) − lpnp/2. If p /∈ S(d), then ordp(g) = ordp(z).

Multiplying both sides of (19) by

g =
∏

p∈T (d)

pordp(z)−lpnp/2
∏

p∈T\T (d)

pordp(z),

we obtain (7).

Remark 5. By Theorem 2, it is impossible for both x2 − dy2 = pn and x2 − dy2 =

−pn to have strictly primitive integral solutions, if x2 − dy2 = −1 has no integral

solutions.

Example 2. The equation x2 − 34y2 = 1 has the fundamental solution (x, y) =

(35, 6); however, x2 − 34y2 = −1 has no integral solutions. The fundamental unit

of Q(
√
34) is η = 35+6

√
34. The equations x2− 34y2 = −32, x2− 34y2 = −52, and

x2−34y2 = −112 have the fundamental solutions (x, y) = (5, 1), (x, y) = (3, 1), and

(x, y) = (27, 5), respectively. Every integral solution (x, y) of x2−34y2 = −(3·5·11)2
satisfies one of the conditions

• x+ y
√
d = ±ηn · (5±

√
34) · 5 · 11

• x+ y
√
d = ±ηn · 3 · (3±

√
34) · 11

• x+ y
√
d = ±ηn · 3 · 5 · (27± 5

√
34)

• x+ y
√
d = ±ηn · (5±

√
34) · (3±

√
34) · (27± 5

√
34)

for some n ∈ Z.

Theorem 2 implies the following formula for rational solutions of Pell’s equations.

Theorem 10. Let r ∈ {0, 1}. Every rational solution (x, y) of x2 − dy2 = (−1)r

satisfies

x+ y
√
d = ±ηn

∏
p∈S(d)

ξ∗p
npp−lpnp/2 (20)

for some np ∈ N, ξ∗p ∈ {ξp, ξ′p} (p ∈ S(d)), and n ∈ Z such that

lpnp ≡ 0 (mod 2)
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and

r ≡


n (mod 2) if x2 − dy2 = −1 has an integral solution,∑
p∈S(d)−

np (mod 2) otherwise. (21)

Proof. Every integral solution (x, y) of x2 − dy2 = (−1)r satisfies

x+ y
√
d = ±ηn

for some n ∈ Z.
Let (x, y) = (X/Z, Y/Z) be a rational solution of x2 − dy2 = (−1)r, where X,

Y, and Z are coprime integers and Z > 1. Then (X,Y ) is an integral solution of

X2 − dY 2 = (−1)rZ2, and satisfies

X + Y
√
d = ±ηn

∏
p∈S(d)

ξ∗p
nppordp(Z)−lpnp/2

∏
p/∈S(d)

pordp(Z)

for some np ∈ N, ξ∗p ∈ {ξp, ξ′p} (p ∈ S(d)), and n ∈ Z, where

lpnp ≡ 0 (mod 2), np ≤ 2 ordp(Z)/lp,

and

n ≡

{
0, ±1 (mod 3) if η ∈ Z[

√
d] or Z ≡ 0 (mod 2),

0 (mod 3) if η /∈ Z[
√
d] and Z ≡ 1 (mod 2)

(22)

by Theorem 2. Dividing both sides by Z, we obtain (20). Condition (21) follows

from {
N(ξ∗p) < 0 if p ∈ S(d)−,

N(ξ∗p) > 0 if p ∈ S(d) \ S(d)−
and {

N(η) < 0 if x2 − dy2 = −1 has an integral solution,

N(η) > 0 otherwise.

We can remove Condition (22), since x, y ∈ Q and ηn ∈ Z[(1 +
√
d)/2] for each

n ∈ Z. Thus the assertion of the theorem holds.

4. Angle Bisectors with Rational Slopes

In this section, we prove Theorem 1.

Proof of Theorem 1. (i) Suppose that a and b are the x-components of rational

solutions (x, y) = (a1, a2) and (x, y) = (b1, b2) of x
2 − y2 = −1, respectively. Let

(a1, a2) =

(
A1

n
,
A2

n

)
and (b1, b2) =

(
B1

n
,
B2

n

)
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with A1, A2, B1, B2, n ∈ Z and n ̸= 0. Then we have

A2
2 −A1

2 = B2
2 −B1

2 = n2.

Furthermore, let

A2 +A1 = l and B2 +B1 = m.

Then we have

A2 −A1 =
n2

l
and B2 −B1 =

n2

m
.

These imply

a1 =
l − n2/l

2n
=

l2 − n2

2ln
, a2 =

l + n2/l

2n
=

l2 + n2

2ln
,

b1 =
m− n2/m

2n
=

m2 − n2

2mn
, b2 =

m+ n2/m

2n
=

m2 + n2

2mn
,

and therefore

a1b2 + a2b1
b2 + a2

=
1

2
· (l

2 − n2)(m2 + n2) + (l2 + n2)(m2 − n2)

ln(m2 + n2) +mn(l2 + n2)
=

lm− n2

(l +m)n
,

which implies

a1b2 − a2b1
b2 − a2

= −
(
a1b2 + a2b1
b2 + a2

)−1

= − (l +m)n

lm− n2
.

(ii) Suppose that a and b are the x-components of rational solutions (x, y) =

(a1, a2) and (x, y) = (b1, b2) of x2 − dy2 = −1 for some square-free integer d > 1,

respectively. In general, if α = a1+a2
√
d and β = b1+b2

√
d with a1, a2, b1, b2 ∈ Z,

then

a1 =
α+ α′

2
and b1 =

β + β′

2
,

which imply

a1b2 + a2b1 =
αβ − (αβ)′

2
√
d

and a2 + b2 =
(α+ β)− (α+ β)′

2
√
d

.

Combining these identities with Theorem 10, we obtain the desired assertion.

Example 3. (a) In (2), letting (l,m, n) = (2, 3, 1), we obtain the rational solu-

tions

(a, b, c) =

(
3

4
,
4

3
, 1

)
,

(
3

4
,
4

3
,−1

)
of (1), and letting (l,m, n) = (2, 5, 1), we obtain the rational solutions

(a, b, c) =

(
3

4
,
12

5
,
9

7

)
,

(
3

4
,
12

5
,−7

9

)
of (1).
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(b) In (3), letting d = 2, α = (1 + 5
√
2)/7, β = η2α, and η = 1 +

√
2, we obtain

the rational solutions

(a, b, c) =

(
1

7
,
23

7
,
6

7

)
,

(
1

7
,
23

7
,−7

6

)
of (1), and letting d = 34, α = (5 +

√
34)/3, β = ηα, and η = 35 + 6

√
34, we

obtain the rational solutions

(a, b, c) =

(
5

3
,
379

3
,
32

9

)
,

(
5

3
,
379

3
,− 9

32

)
of (1).

5. Integral Solutions of Pell’s Equations

Let d > 1 be a square-free integer. Assume that x2 − dy2 = −1 has an integral

solution. In this section, we denote f
(d)
n and g

(d)
n by fn and gn, respectively, without

the indices (d). For convenience, let f0 = 1 and g0 = 0. In the case when d = 2, the

terms of (fn) and (gn) are known as half-companion Pell numbers and Pell numbers,

respectively. Note that ε = f1 + g1
√
d satisfies εε′ = −1 by assumption.

In this section, we describe the properties of (fn) and (gn) used in the proof of

Theorem 3 and certain related properties. The following proposition is well-known.

Proposition 5 ([5, Section 2.4]). The sequences (fn) and (gn) are strictly increas-

ing, and satisfy

εn = fn + gn
√
d (23)

and

fn
2 − dgn

2 = (−1)n. (24)

Their general terms are given by

fn =
εn + ε′n

2
, (25)

gn =
εn − ε′n

2
√
d

. (26)

Corollary 2. We have fn ≥ gn, where the equality holds if and only if d = 2 and

n = 1. We also have f1 ≥
√
d− 1.

Proof. Identity (24) implies fn
2 − gn

2 = (d − 1)gn
2 + (−1)n ≥ d − 2 ≥ 0 and

f1
2 = dg1

2 + (−1)n ≥ d− 1, which prove the desired inequalities.

The following proposition is also well-known and generalized for the Lucas se-

quences (see [8, Chapter 2, IV]).
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Proposition 6. Let m, n ∈ N with m ≥ n.

(a) Addition formulas: we have

fm+n = fmfn + dgmgn, (27)

gm+n = fmgn + gmfn, (28)

fm−n = (−1)n(fmfn − dgmgn), (29)

gm−n = (−1)n+1(fmgn − gmfn). (30)

(b) Double formulas: we have

f2n = f2
n + dg2n, (31)

g2n = 2fngn. (32)

Proof. (a) Describing εm+n = εmεn and εm−n = (−1)nεmε′n with terms of (fn)

and (gn) by (23), we obtain

fm+n + gm+n

√
d = (fm + gm

√
d)(fn + gn

√
d)

= (fmfn + dgmgn) + (fmgn + gmfn)
√
d,

fm−n + gm−n

√
d = (−1)n(fm + gm

√
d)(fn − gn

√
d)

= (−1)n(fmfn − dgmgn) + (−1)n+1(fmgn − gmfn)
√
d.

Comparing both sides, we obtain the desired identities, since 1 and
√
d are linearly

independent over Q.

(b) Letting m = n in (27) and (28), we obtain the desired identities.

The divisibility in (gn) depends only on that of the indices (see [3, Theorem IV]

and [5, Theorem 8.4]). A certain divisibility property in (fn) can be proven in a

similar way (see [3, Theorem V]). These are summarized as follows. Since most of

them are already known, we give a brief proof in a somewhat new way.

Theorem 11. Let m, n ∈ N with m ≥ n > 0.

(a) We have gcd (d, fn) = gcd (fn, gn) = 1.

(b) If m is a multiple of n whose quotient is even, then gcd (fm, fn) = 1.

(c) The following conditions are equivalent.

(f1) fm is a multiple of fn.

(f2) Either we have d = 2 and n = 1, or m is a multiple of n whose quotient

is odd.

(d) The following conditions are equivalent.
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(g1) gm is a multiple of gn.

(g2) m is a multiple of n.

Proof. We give the proof in the following order: (a), the implication (f2) to (f1),

(b), the implication (f1) to (f2), (d).

(a) Identity (24) implies gcd (d, fn) = gcd (fn, gn) = 1.

(c) We prove the implication (f2) to (f1).

Case 1: Suppose that d = 2 and n = 1. Then fm is a multiple of fn = 1, since

ε = 1 +
√
2.

Case 2: Suppose that m = nq with an odd integer q > 0. Since

εm + ε′m

2
=

εn + ε′n

2

q−1∑
i=0

(−1)iεn(q−1−i)ε′ni,

we have

fm
fn

=

q−1∑
i=0

(−1)iεn(q−1−i)ε′ni ∈ Z[
√
d] ∩Q = Z

by (25). This implies that fm is a multiple of fn.

(b) Suppose that m = nq with an even integer q > 0. By (27), we have

fm = fn(q−1)+n = fn(q−1)fn + dgn(q−1)gn.

Since d and gn are coprime with fn by (a), we have gcd (fm, fn) = gcd (gn(q−1), fn),

and therefore this is a common divisor of gn(q−1) and fn(q−1) by the implication

(f2) to (f1), which implies gcd (fm, fn) = 1 by (a).

(c) We prove the implication (f1) to (f2). Suppose that fm is a multiple of fn,

and d ̸= 2 or n ̸= 1. By Corollary 2, we have fn > 1. Let q and r be the quotient

and remainder, respectively, when dividing m by n. By (27), we have

fm = fnq+r = fnqfr + dgnqgr.

Assume that q is even, and let q = 2ek, where e, k > 0 are integers and k is

odd. By (32), we have gnq = 2fnq/2gnq/2. Repeating this e times, we see that gnq
is a multiple of fnk. By the implication (f2) to (f1), fnk is a multiple of fn. These

imply that gnq is a multiple of fn. Since fnq is coprime with fn by (b), and fr is

not a multiple of fn by 0 < fr < fn, we see that fm is not a multiple of fn. This is

a contradiction.

Therefore q is odd. Since fnq is a multiple of fn by the implication (f2) to (f1),

dgnqgr is a multiple of fn. Furthermore, gcd (fn, gnq) is a common divisor of fnq
and gnq, which implies gcd (fn, gnq) = 1 by (a). Since d and gnq are coprime with

fn, we see that gr is a multiple of fn. Since 0 ≤ gr < gn < fn by Proposition 5 and
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Corollary 2, we have r = 0 and m = nq, which implies that m is a multiple of n

whose quotient is odd.

(d) We prove the implication (g2) to (g1). Suppose that m = nq with an integer

q > 0. Since

εm − ε′m

2
√
d

=
εn − ε′n

2
√
d

q−1∑
i=0

εn(q−1−i)ε′ni,

we have

gm
gn

=

q−1∑
i=0

εn(q−1−i)ε′ni ∈ Z[
√
d] ∩Q = Z

by (26). This implies that gm is a multiple of gn.

We prove the implication (g1) to (g2). Suppose that gm is a multiple of gn. Let q

and r be the quotient and remainder, respectively, when dividing m by n. By (28),

we have

gm = gnq+r = fnqgr + gnqfr.

Since gnq is a multiple of gn by the implication (g2) to (g1), fnqgr is a multiple of

gn. Furthermore, gcd (fnq, gn) is a common divisor of fnq and gnq, which implies

gcd (fnq, gn) = 1 by (a). Since fnq is coprime with gn, we see that gr is a multiple

of gn. Since 0 ≤ gr < gn, we have r = 0 and m = nq, which implies that m is a

multiple of n.

The following formulas enable us to convert sums into products in (fn) and (gn).

Proposition 7. For any m, n ∈ N such that m > n, we have

fm+n + fm−n =

{
2fmfn if n ≡ 0 (mod 2),

2dgmgn if n ≡ 1 (mod 2),
(33)

fm+n − fm−n =

{
2dgmgn if n ≡ 0 (mod 2),

2fmfn if n ≡ 1 (mod 2),
(34)

gm+n + gm−n =

{
2gmfn if n ≡ 0 (mod 2),

2fmgn if n ≡ 1 (mod 2),
(35)

gm+n − gm−n =

{
2fmgn if n ≡ 0 (mod 2),

2gmfn if n ≡ 1 (mod 2).
(36)
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Proof. For any n ∈ N, we have εnε′n = (εε′)n = (−1)n. By (25) and (26), we have

2fmfn =
(εm + ε′m)(εn + ε′n)

2
=

(εm+n + ε′m+n) + (−1)n(εm−n + ε′m−n)

2
= fm+n + (−1)nfm−n,

2dgmgn =
(εm − ε′m)(εn − ε′n)

2
=

(εm+n + ε′m+n) + (−1)n+1(εm−n + ε′m−n)

2

= fm+n + (−1)n+1fm−n,

2fmgn =
(εm + ε′m)(εn − ε′n)

2
√
d

=
(εm+n − ε′m+n) + (−1)n+1(εm−n − ε′m−n)

2
√
d

= gm+n + (−1)n+1gm−n,

2gmfn =
(εm − ε′m)(εn + ε′n)

2
√
d

=
(εm+n − ε′m+n) + (−1)n(εm−n − ε′m−n)

2
√
d

= gm+n + (−1)ngm−n,

which imply the desired identities.

6. Angle Bisectors with Integral Slopes

In this section, we prove Theorem 3.

Proof of Theorem 3. Every nontrivial integral solution (a, b, c) of (1) can necessarily

be written in the form

(a, b, c) =

(
a1, b1,

a1b2 + a2b1
b2 + a2

)
,

(
a1, b1,

a1b2 − a2b1
b2 − a2

)
for some a1, a2, b1, b2 ∈ Z such that a1

2 − da2
2 = b1

2 − db2
2 = −1 by Proposition

1. Henceforth, we consider the condition that the rational numbers

c+ =
a1b2 + a2b1
b2 + a2

or c− =
a1b2 − a2b1
b2 − a2

are integers. In the general case, we denote f
(d)
n and g

(d)
n by fn and gn, respectively.

Suppose that 0 < a1 and 0 < a2 < b2. Then (a1, a2) = (fk, gk) and (b1, b2) =

(±fl, gl) for some odd indices k and l such that k < l.

Case 1: Suppose that

(a1, a2) = (f2i−1, g2i−1) and (b1, b2) = (f(2i−1)+(4j−2), g(2i−1)+(4j−2))
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for some integers i, j > 0. Then we have

c+ =
g4(i+j−1)

2f2(i+j−1)g2j−1
=

g2(i+j−1)

g2j−1

by (28), (35), and (32). This implies that c+ ∈ Z holds if and only if g2j−1 | g2(i+j−1),

which is equivalent to 2j − 1 | 2(i+ j − 1) by Theorem 11(d), and to 2j−1 | 2i−1.

Letting j = m and 2i− 1 = (2m− 1)(2n− 1), we obtain

(a1, b1, c+) =

(
f(2m−1)(2n−1), f(2m−1)(2n+1),

g(2m−1)·2n

g2m−1

)
.

Furthermore, c− = −c+
−1 /∈ Z, since g(2m−1)·2n > g2m−1.

Case 2: Suppose that

(a1, a2) = (f2i−1, g2i−1) and (b1, b2) = (−f(2i−1)+(4j−2), g(2i−1)+(4j−2))

for some integers i, j > 0. Then we have

c− =
g4(i+j−1)

2g2(i+j−1)f2j−1
=

f2(i+j−1)

f2j−1

by (28), (36), and (32). This implies that c− ∈ Z holds if and only if f2j−1 | f2(i+j−1),

which is equivalent to d = 2 and j = 1 by Theorem 11(c), since 2(i+ j − 1) is not

a multiple of 2j − 1 whose quotient is odd. Letting i = n, we obtain

(a1, b1, c−) = (f
(2)
2n−1,−f

(2)
2n+1, f

(2)
2n ).

Furthermore, c+ = −c−
−1 /∈ Z, since f

(2)
2n > 1.

Case 3: Suppose that

(a1, a2) = (f2i−1, g2i−1) and (b1, b2) = (f(2i−1)+4j , g(2i−1)+4j)

for some integers i, j > 0. Then we have

c+ =
g4(i+j)−2

2g2(i+j)−1f2j
=

f2(i+j)−1

f2j

by (28), (35), and (32). In addition, f2(i+j)−1 is not a multiple of f2j by Theorem

11(c), since 2(i+ j)− 1 is not a multiple of 2j whose quotient is odd. These imply

c+ /∈ Z. Furthermore, c− = −c+
−1 /∈ Z, since f2(i+j)−1 > f2j .

Case 4: Suppose that

(a1, a2) = (f2i−1, g2i−1) and (b1, b2) = (−f(2i−1)+4j , g(2i−1)+4j)
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for some integers i, j > 0. Then we have

c− =
g4(i+j)−2

2f2(i+j)−1g2j
=

g2(i+j)−1

g2j

by (28), (36), and (32). In addition, g2(i+j)−1 is not a multiple of g2j by Theorem

11(d), since 2(i+ j)− 1 is not a multiple of 2j. These imply c− /∈ Z. Furthermore,

c+ = −c−
−1 /∈ Z, since g2(i+j)−1 > g2j .

Considering the sign changes, it is concluded that every nontrivial integral solu-

tion of (1) is given by (9) or (10) after switching a and b if necessary.

It is easy to verify that every triple of Form (9) or (10) is an integral solution of

(1).

Example 4. (a) For a given integer e > 0, (1) has integral solutions

(a, b, c) = ±(e, e(4e2 + 3), 2e),

where e and e(4e2 + 3) are the x-components of the first and third smallest

solutions (x, y) = (e, 1) and (x, y) = (e(4e2+3), 4e2+1) of |x2−(e2+1)y2| = 1,

respectively.

(b) Integral solutions of |x2 − 2y2| = 1 produce the following integral solutions of

(1): the first few solutions of Form (9) are

(f
(2)
1 , f

(2)
3 , g

(2)
2 /g

(2)
1 ) (f

(2)
3 , f

(2)
5 , g

(2)
4 /g

(2)
1 ) (f

(2)
5 , f

(2)
7 , g

(2)
6 /g

(2)
1 )

= (1, 7, 2), = (7, 41, 12), = (41, 239, 70),

(f
(2)
3 , f

(2)
9 , g

(2)
6 /g

(2)
3 ) (f

(2)
9 , f

(2)
15 , g

(2)
12 /g

(2)
3 )

= (7, 1393, 14), = (1393, 275807, 2772),

(f
(2)
5 , f

(2)
15 , g

(2)
10 /g

(2)
5 )

= (41, 275807, 82),

and the first few solutions of Form (10) are

(f
(2)
1 ,−f

(2)
3 , f

(2)
2 ) (f

(2)
3 ,−f

(2)
5 , f

(2)
4 ) (f

(2)
5 ,−f

(2)
7 , f

(2)
6 )

= (1,−7, 3), = (7,−41, 17), = (41,−239, 99).

(c) Integral solutions of |x2 − 5y2| = 1 produce the following integral solutions of

(1): the first few solutions of Form (9) are
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(f
(5)
1 , f

(5)
3 , g

(5)
2 /g

(5)
1 ) (f

(5)
3 , f

(5)
5 , g

(5)
4 /g

(5)
1 ) (f

(5)
5 , f

(5)
7 , g

(5)
6 /g

(5)
1 )

= (2, 38, 4), = (38, 682, 72), = (682, 12238, 1292),

(f
(5)
3 , f

(5)
9 , g

(5)
6 /g

(5)
3 ) (f

(5)
9 , f

(5)
15 , g

(5)
12 /g

(5)
3 )

= (38, 219602, 76), = (219602, 1268860318, 439128),

(f
(5)
5 , f

(5)
15 , g

(5)
10 /g

(5)
5 )

= (682, 1268860318, 1364).
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Appendix

In Theorem 1, for d ≤ 34 such that x2 − dy2 = −1 has a rational solution and

p ≤ 29, the values of η and ξp are summarized in Table 1. For reference, we add

the values of N(η) and N(ξp) below the values of η and ξp, respectively. We also

add the value of the ideal class number h of Q(
√
d).

d 2 5 10 13
h 1 1 2 1

η 1 +
√
2 (1 +

√
5)/2 3 +

√
10 (3 +

√
13)/2

−1 −1 −1 −1

ξ2 3 +
√
5 11 + 3

√
13

22 22

ξ3 7 + 2
√
10 4 +

√
13

32 3
ξ5

ξ7 3 +
√
2

7

ξ11 4 +
√
5

11

ξ13 23 + 6
√
10

132

ξ17 5 + 2
√
2 15 + 4

√
13

17 17

ξ19 8 + 3
√
5

19

ξ23 5 +
√
2 6 +

√
13

23 23

ξ29 7 + 2
√
5 9 + 2

√
13

29 29

d 17 26 29 34
h 1 2 1 2

η 4 +
√
17 5 +

√
26 (5 +

√
29)/2 35 + 6

√
34

−1 −1 −1 1

ξ2 5 +
√
17 27 + 5

√
29

23 22

ξ3 5 +
√
34

−32

ξ5 21 + 4
√
26 11 + 2

√
29 3 +

√
34

52 5 −52

ξ7 6 +
√
29

7

ξ11 15 + 2
√
26 27 + 5

√
34

112 −112

ξ13 9 + 2
√
17 97 + 18

√
29

13 13

ξ17 11 + 2
√
26

17

ξ19 6 +
√
17 45 + 8

√
26

19 192

ξ23 7 +
√
26 38 + 7

√
29

23 23

ξ29 3 + 5
√
34

−292

Table 1: The values of η, N(η), ξp, and N(ξp) for d ≤ 34 and p ≤ 29 in Theorem 1.


