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Abstract
We extend the well-known Dumont-Thomas numeration systems to Z using an
approach inspired by the two’s complement numeration system. Integers in Z are
canonically represented by a finite word (starting with 0 when nonnegative and
with 1 when negative). The systems are based on two-sided periodic points of
substitutions as opposed to the right-sided fixed points. For every periodic point of
a substitution, we construct an automaton which returns the letter at position n ∈ Z
of the periodic point when fed with the representation of n in the corresponding
numeration system. The numeration system naturally extends to Zd. We give
an equivalent characterization of the numeration system in terms of a total order
on a regular language. Lastly, using particular periodic points, we recover the
well-known two’s complement numeration system and the Fibonacci analogue of the
two’s complement numeration system.

1. Introduction

On a finite size memory representing unsigned integers with base-10 digits, incre-
menting by 1 the largest representable number gives

9999999999999

+1
0000000000000

if we ignore the overflow error caused by the propagation of the carry beyond the
memory limit. Therefore, it makes sense to identify the number 999 · · · 9 with the
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value −1 since adding one to it gives zero. Likewise, 999 · · · 98 can be identified
with the value −2, 999 · · · 97 with the value −3, and so on, just like negative p-adic
integers [17]. This numeration system is called ten’s-complement. As instructively
explained by Knuth [22, Section 4.1], the same can be done in an arbitrary integer
base b ≥ 2. When b = 2, it is called the two’s complement numeration system.
This system is still used nowadays to represent signed integers in the architecture of
modern processors [21, Section 4.2.1] due to its efficiency at performing arithmetic
operations.

In this article, we show that the concept of complement numeration systems
goes beyond numeration systems in an integer base. The theory of numeration
systems studies and describes the various ways of representing numbers (integers,
real numbers, Gaussian integers, etc.) by sequences of digits [14, 13, 15, 5, 20, 4, 31].
One of these ways gives rise to the numeration systems based on substitutions which
were proposed by Dumont and Thomas [10]. The Dumont-Thomas numeration
system associated with a substitution provides a canonical representation for every
nonnegative integer. It may also be used to represent real numbers in a certain
interval. It turns out there exists a natural complement version of the Dumont-
Thomas numeration systems allowing to represent all integers in Z and not only
those that are nonnegative.

a

b c
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1 2

0

0

1

Figure 1: The graph associated with the substitution a 7→ abc, b 7→ c, c 7→ ac.

In practical terms, the Dumont-Thomas numeration system can be defined by
the set of finite paths in a directed graph starting from some fixed vertex. For
example, consider the directed graph shown in Figure 1 with vertices a, b and c

where the outgoing edges of every vertex are labeled with consecutive nonnegative
integers starting with zero. The set of paths of fixed length starting with some
chosen vertex can be unfolded into a tree; see Figure 2 (left). A path in the tree is
uniquely identified with the sequence of labels of its edges starting from the root.
Among the set of paths of a given length ordered lexicographically, the n-th one can
be regarded as a representation of the nonnegative integer n. Considering arbitrarily
long finite paths starting from the initial vertex in the directed graph, we obtain
a canonical representation of all nonnegative integers after removing leading zeros
in their representation (assuming the initial vertex has a loop labeled with 0); see
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Figure 2 (right). We refer to such a numeration system as the Dumont-Thomas

a

a b c

a b c c a c

0 1 2 3 4 5

0 1 2

0 1 2 0 0 1

n path representation of n
0 00 ε
1 01 1

2 02 2

3 10 10

4 20 20

5 21 21

Figure 2: The set of paths starting in state a in the directed graph provide a canonical
representation of the nonnegative integers after removing leading zeroes.

numeration system for N associated with the substitution µ : a 7→ abc, b 7→ c, c 7→ ac.
The directed graph shown in Figure 2 (as well as the automaton shown in Figure 1)
is derived from the substitution µ following a well-known construction for automatic
sequences [1]: α i−→ β is an edge of the graph if and only if β is the i-th letter of the
image of the letter α, for every integer i such that 0 ≤ i < ℓ where ℓ is the length of
the image of the letter α. Among other properties, this numeration system gives a
direct description of the right-infinite fixed point t = µ(t) = abccacacabc . . . of the
substitution µ as an automatic sequence.

The Dumont-Thomas numeration systems were later explained using the so-called
prefix-suffix automata associated with primitive substitutions [6] by considering the
cylinders of finite length words [6, Corollary 6.2]. The main motivation of Canterini
and Siegel was to prove that every dynamical system generated by a substitution of
Pisot type on d letters admits a minimal translation on the torus Td−1 as a topological
factor [7]. As a consequence, they obtained a numeration system representing the
elements of Td−1 by infinite paths in a prefix-suffix automaton; see [12].

In more generality, every regular language over a totally ordered alphabet leads
to what is called an abstract numeration system, which may be used to represent
nonnegative integers [27] or real numbers in an interval [26]; see also [28, Section 7],
[16, Section 4], [3], [4, Section 3], [8].

Recently, a very general framework was proposed to extend the Dumont-Thomas
numeration systems to all integers based on the notion of coding prescription,
which allows the image of letters to be scattered words of nonconsecutive letters
[33]. Another recent article extending these numeration systems concerns also the
β-numeration of real numbers in an interval [34].

The extension of the Dumont-Thomas numeration systems to all integers in Z
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that we propose is inspired by integer base complement numeration systems; see
Definition 4.3. It is derived from the two-sided periodic points of substitutions
as opposed to the right-infinite fixed points. In a Dumont-Thomas complement
numeration system, the representations of nonnegative integers start with the digit
0 whereas the representations of negative integers start with the digit 1. The proofs
provided here follow as much as possible the approach originally proposed by Dumont
and Thomas [10].

The main results of this contribution are Theorem 6.1, where we prove that
two-sided periodic points of substitutions are automatic sequences with respect to
the Dumont-Thomas complement numeration systems for Z, and Theorem 8.4, where
we characterize these numeration systems by means of a total order on the language
recognized by an automaton. Finally, we show that the well-known two’s complement
numeration system can be constructed as a Dumont-Thomas complement numeration
system for Z (Proposition 9.1) and similarly for the Fibonacci analogue of the two’s
complement numeration system (Proposition 9.2).

Also, we extend the Dumont-Thomas complement numeration systems to Zd;
see Definition 7.2. The need for extending the theory of numeration systems based
on substitutions from N to Z and to Zd for d ≥ 2 was motivated by the study of
aperiodic Wang tilings of the plane. In [25], configurations in a particular aperiodic
Wang shift based on 16 Wang tiles were described by an automaton derived from a
two-dimensional substitution. The automaton takes as input the representation of
a position in Z2 using a Fibonacci analogue of the two’s complement numeration
system and outputs the index of the Wang tile to place at this position. This example
belongs to a family of the Dumont-Thomas complement numeration systems for Z2.

The authors believe further extensions beyond Dumont-Thomas based on a single
substitution can be expected including S-adic sequences [11]. For instance, in a
Bratteli–Vershik diagram [19, 18, 29], one may think of the maximal path in the
diagram as a representation of −1 and the minimal path as a representation of 0.
The representation of the other negative and nonnegative integers can be deduced
from the order of a Bratteli–Vershik diagram and its natural successor map.

The article is structured as follows. Preliminaries and notation are presented
in Section 2. Section 3 recalls numeration systems for N defined by Dumont and
Thomas and presents some extensions of their results. In Section 4, we extend
a theorem of Dumont and Thomas to the right-infinite and left-infinite periodic
points of substitutions. We use it to define numeration systems for Z based on the
two-sided periodic points of substitutions. In Section 5, we show some examples. In
Section 6, we describe periodic points of substitutions as automatic sequences. In
Section 7, we show how to extend the Dumont-Thomas numeration systems to Zd.
In Section 8, we present a total order on {0, 1} ⊙ D∗, where D is some alphabet of
integers and ⊙ is the concatenation of words within the monoid D∗. We characterize
the Dumont-Thomas complement numeration systems for Z with respect to this
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total order. In Section 9, we show that the well-known two’s complement numeration
system is an instance of a Dumont-Thomas numeration system for Z and similarly
for the Fibonacci analogue of the two’s complement numeration system.

2. Preliminaries

An alphabet A is a finite set and its elements a ∈ A are called letters. A finite word
u = u0u1 · · ·un−1 is a concatenation of letters ui ∈ A for every i ∈ {0, 1, . . . , n− 1}
and |u| denotes its length. When it is more convenient, we denote the i-th letter of
u by u[i] instead of ui. The empty word is denoted by ε. The set of all finite words
over the alphabet A is denoted by A∗ and the set of all nonempty words over the
alphabet A is denoted by A+ = A∗ \ {ε}. We define the concatenation ⊙ as the
following binary operation:

⊙ : A∗ ×A∗ → A∗, u⊙ v 7→ uv.

The set A∗ with the concatenation as operation forms a monoid with ε as the neutral
element.

A morphism over A is a map η : A∗ → A∗ such that η(u⊙ v) = η(u)⊙ η(v) for
all words u, v ∈ A∗. A substitution η : A∗ → A∗ is a morphism such that η(a) ∈ A+

is nonempty for every a ∈ A and there exists a ∈ A such that a is growing, that is,
limk→+∞ |ηk(a)| = +∞. A morphism η is said primitive if there exists k ∈ N such
that for every a, b ∈ A the letter a appears in ηk(b). A morphism η is said d-uniform
for some nonnegative integer d if |η(a)| = d for every letter a ∈ A.

We call u0u1u2 · · · ∈ AZ≥0 a right-infinite word and · · ·u−3u−2u−1 ∈ AZ<0 a
left-infinite word. We call u ∈ AZ a two-sided word and we separate by a vertical bar
its elements u−1 and u0 to indicate the origin, i.e., u = · · ·u−3u−2u−1|u0u1u2 · · · .

Substitutions can be applied naturally to two-sided words u ∈ AZ by setting

η(. . . u−3u−2u−1|u0u1u2 · · · ) = · · · η(u−3)η(u−2)η(u−1)|η(u0)η(u1)η(u2) · · · .

Let D ∈ {Z,Z≥0,Z<0}. A word u ∈ AD is called a periodic point of the substitution η
if there exists an integer p ≥ 1 such that ηp(u) = u, and in this case, p is called a
period of the periodic point. The minimum integer p ≥ 1 such that ηp(u) = u is called
the period of u. A periodic point with period p = 1 is called a fixed point of η. The set
of periodic points of η is denoted by PerD(η) = {u ∈ AD | ηp(u) = u for some p ≥ 1}.
Since we are mostly interested in two-sided words in this contribution, we omit the
domain when D = Z and we write Per(η) = PerZ(η).

If u ∈ Per(η) is a two-sided periodic point of a substitution η, then we say that
the pair of letters u−1|u0 is the seed of u; see [2, Section 4.1]. If the seed letters of a
two-sided periodic point are growing, then the periodic point is defined entirely by
its seed. More precisely, u = limk→+∞ ηpk(u−1)|ηpk(u0), where p is a period of u.
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Let u = u0u1 · · · ∈ PerN(η) with a seed u0 = a. The previous terminology is
inspired by [6], where a prefix-suffix automaton is associated with η. However, for
our goal an automaton associated with η as in [4] is sufficient. Let D denote the
alphabet D = {0, ...,maxc∈A |η(c)| − 1} whose elements are integers. The set D∗ is
a monoid for the operation ⊙ of concatenation. The deterministic finite automaton
with output (DFAO) associated with the substitution η and letter a is the 5-tuple
Aη,a = (A,D, δ, a, A), where the transition function δ : A × D → A is a partial
function such that δ(b, i) = c if and only if c = wi and η(b) = w0 . . . w|η(b)|−1. The
transition function δ is naturally extended to A×D∗ by δ(b, ε) = b for every b ∈ A,
and, for every b ∈ A, i ∈ D and w ∈ D∗, δ(b, i⊙ w) = δ(δ(b, i), w). For some state
b ∈ A and word w ∈ D∗, we let Aη,a(b, w) denote δ(b, w). In particular, we let
Aη,a(w) denote δ(a,w). We let L(Aη,a) denote the set of words accepted by the
automaton Aη,a. Finally, for every q ∈ N, we let Lq(Aη,a) denote the set of words
in L(Aη,a) of length q.

3. Dumont-Thomas Numeration System for N

In this section, we recall Dumont-Thomas numeration system for N, which was
based on substitutions having a right-infinite fixed point [10]. It uses the definition
of admissible sequences.

Definition 3.1 (admissible sequence [10]). Let η : A∗ → A∗ be a substitution. Let
a ∈ A be a letter, k an integer and, for each integer i, 0 ≤ i ≤ k, (mi, ai) be an
element of A∗ ×A. We say that the finite sequence (mi, ai)i=0,...,k is admissible with
respect to η if and only if, for all i, 1 ≤ i ≤ k, mi−1ai−1 is a prefix of η(ai). We say
that this sequence is a-admissible with respect to η if it is admissible with respect to
η and, moreover, mkak is a prefix of η(a).

As done in [10], when the substitution is clear from the context, we write that a
sequence is admissible or a-admissible without specifying the substitution.

Dumont and Thomas proved the following result, which we rewrite in our notation.

Theorem 3.2 ([10, Theorem 1.5]). Let a ∈ A and let η : A∗ → A∗ be a substitution.
Let u = η(u) be a right-infinite fixed point of η with growing seed u0 = a. For
every integer n ≥ 1, there exists a unique integer k = k(n) and a unique sequence
(mi, ai)i=0,...,k such that

• this sequence is a-admissible and mk ̸= ε,

• u0u1 · · ·un−1 = ηk(mk)η
k−1(mk−1) · · · η0(m0).

The proof of the above theorem was based on the following lemmas, which we
cite here as we need them in what follows.
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Lemma 3.3 ([10, Lemma 1.1]). Let η : A∗ → A∗ be a substitution and k ≥ 0 be an
integer. If (mi, ai)i=0,...,k is an admissible sequence, then

k∑
j=0

|ηj(mj)| < |ηk(mkak)|.

Lemma 3.4 ([10, Lemma 1.3]). Let η : A∗ → A∗ be a substitution and k ≥ 0 be an
integer. Let b ∈ A, (mi, ai)i=0,...,k and (m′

i, a
′
i)i=0,...,k be two b-admissible sequences

and n be an integer such that

n =

k∑
j=0

|ηj(mj)| =
k∑
j=0

|ηj(m′
j)|.

Then for every i, 0 ≤ i ≤ k, we have (mi, ai) = (m′
i, a

′
i).

Lemma 3.5 ([10, Lemma 1.4]). Let η : A∗ → A∗ be a substitution. Let ℓ ≥ 1 be an
integer, a ∈ A a letter and m ∈ A∗ a proper prefix of the word ηℓ(a). Then there
exist (m′, a′) ∈ A∗ × A and m′′ ∈ A∗ such that m′a′ is a prefix of η(a), m′′ is a
proper prefix of ηℓ−1(a′) and m = ηℓ−1(m′)m′′.

3.1. Some Extensions of Dumont-Thomas Results

In this subsection, we propose some extensions of Dumont-Thomas lemmas. Firstly,
we observe that admissible sequences are related to automata as follows.

Lemma 3.6. Let η : A∗ → A∗ be a substitution, k ≥ 1 be an integer and x ∈ A. If
(mi, ai)i=0,...,k−1 is an x-admissible sequence, then

ai = Aη,x(|mk−1| ⊙ |mk−2| ⊙ . . .⊙ |mi|) for every i = 0, . . . , k − 1.

Remark 3.7. The notation (⊙) in the above equation and the proof that follows
stands for the concatenation of words within the monoid D∗. Since the elements of
D are integers, we write this notation explicitly to avoid misinterpreting it with the
multiplication of integers.

Proof. The proof is carried out by induction on i. If i = k − 1, then ai = ak−1 =

η(x)[|mk−1|] = Aη,x(|mk−1|). If i < k − 1, then

ai = η(ai+1)[|mi|] = η (Aη,x(|mk−1| ⊙ . . .⊙ |mi+1|)) [|mi|]
= Aη,x(|mk−1| ⊙ . . .⊙ |mi+1| ⊙ |mi|).

Lemma 3.8. Let η : A∗ → A∗ be a substitution, k ≥ 1 be an integer and
x ∈ A. If vk−1vk−2 · · · v0 ∈ L(Aη,x), then there exists an x-admissible sequence
(mi, ai)i=0,...,k−1 such that |mi| = vi for every i = 0, . . . , k − 1.
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Proof. We carry out the proof by induction on k. If k = 1, then v0 ∈ L(Aη,x)

implies that 0 ≤ v0 < |η(x)|. Denote m0 the proper prefix of η(x) of length v0 and
let a0 ∈ A so that m0a0 is a prefix of η(x). The length-1 sequence (mi, ai)i=0 is
x-admissible and satisfies the condition that |m0| = v0.

Assume that k ≥ 1 is an integer such that for every word wk−1wk−2 · · ·w0 ∈
L(Aη,x) of length k, there exists an x-admissible sequence (mi, ai)i=0,...,k−1 such
that |mi| = wi for every i = 0, . . . , k − 1. Let vkvk−1 · · · v0 ∈ L(Aη,x). Then from
the induction hypothesis applied on vkvk−1 · · · v1 ∈ L(Aη,x), which is of length
k, we have an x-admissible sequence (mi, ai)i=1,...,k such that |mi| = vi for every
i = 1, . . . , k. We have from Lemma 3.6 that a1 = Aη,x(vkvk−1 · · · v1) and we have
from the definition of the automaton Aη,x that v0 < |η(a1)|. Denote m0 the proper
prefix of η(a1) of length v0 and let a0 ∈ A so that m0a0 is a prefix of η(a1). Then
|m0| = v0 and (mi, ai)i=0,...,k is an x-admissible sequence.

Lemma 3.5 can be used to construct an admissible sequence from a prefix of the
image of a letter under the p-th power of a substitution.

Lemma 3.9. Let η : A∗ → A∗ be a substitution and p ≥ 1 be an integer. If m ∈ A∗

and x ∈ A are such that m is a proper prefix of ηp(x), then there exists a unique
x-admissible sequence (mi, ai)i=0,...,p−1 such that

|m| =
∑p−1
j=0 |ηj(mj)|. (1)

Moreover, m = ηp−1(mp−1)η
p−2(mp−2) · · · η0(m0).

Proof. (Uniqueness) Let (mi, ai)i=0,...,p−1 and (m′
i, a

′
i)i=0,...,p−1 be two x-admissible

sequences satisfying the hypothesis. Then∑p−1
j=0 |ηj(mj)| = |m| =

∑p−1
j=0 |ηj(m′

j)|.

By Lemma 3.4, (mi, ai)i=0,...,p−1 = (m′
i, a

′
i)i=0,...,p−1.

(Existence) We carry out the proof by induction on p. If p = 1, then m is a
proper prefix of η(x). Let m0 = m and a0 ∈ A be such that ma0 is a prefix of η(x).
The length-1 sequence (mi, ai)i=0 is x-admissible and satisfies the condition that
m = η0(m0).

Now let m ∈ A∗ and x ∈ A be such that m is a proper prefix of ηp+1(x). From
Lemma 3.5, there exist (mp, ap) ∈ A∗ ×A and m′′ ∈ A∗ such that mpap is a prefix
of η(x), m′′ is a proper prefix of ηp(ap) and m = ηp(mp)m

′′. By the induction
hypothesis, there exists an ap-admissible sequence (mi, ai)i=0,...,p−1 such that

m′′ = ηp−1(mp−1)η
p−2(mp−2) · · · η0(m0).

Therefore,

m = ηp(mp)m
′′ = ηp(mp)η

p−1(mp−1)η
p−2(mp−2) · · · η0(m0).
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The extended sequence (mi, ai)i=0,...,p is x-admissible since mp−1ap−1 is a prefix of
η(ap) and mpap is a prefix of η(x).

Let η : A∗ → A∗ be a substitution and D = {0, ...,maxc∈A |η(c)| − 1}. Lemma 3.9
allows us to define a map for every integer p ≥ 1 and x ∈ A as follows

tailη,p,x : {0, 1, . . . , |ηp(x)| − 1} → Dp

n 7→ |mp−1| ⊙ |mp−2| ⊙ . . .⊙ |m0|,

where (mi, ai)i=0,...,p−1 is the unique x-admissible sequence satisfying Equation (1)
with m being the prefix of length n of ηp(x). The map tailη,p,x will be used in
Section 4.

Example 3.10. Consider the Tribonacci substitution ψT : a 7→ ab, b 7→ ac, c 7→ a

[30]. The successive images of a under the substitution ψT are illustrated as a tree
in Figure 3. The path from the root of the tree to a node of depth p at x-position

a

a b

a b a c

a b a c a b a

0 1 2 3 4 5 6 · · ·

0 1

0 1 0 1

0 1 0 1 0 1 0

Figure 3: The successive images of the letter a under the Tribonacci substitution.

n ∈ N is labeled by tailψT ,p,a(n). Their values are illustrated in Table 1.

Lemma 3.11. Let η : A∗ → A∗ be a substitution and p ≥ 1 be an integer. Let
x ∈ A. Then for every ℓ ∈ {0, 1, . . . , |ηp(x)| − 1} we have

ηp(x)[ℓ] = Aη,x(tailη,p,x(ℓ)).

Proof. Let m be the prefix of ηp(x) of length ℓ. From Lemma 3.9, there exists a
unique x-admissible sequence (mi, ai)i=0,...,p−1 such that

m = ηp−1(mp−1)η
p−2(mp−2) · · · η0(m0).
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n tailψT ,1,a(n) tailψT ,2,a(n) tailψT ,3,a(n)
0 0 00 000

1 1 01 001

2 10 010

3 11 011

4 100

5 101

6 110

Table 1: The tail map for the Tribonacci substitution ψT of depth p ∈ {1, 2, 3}
associated with letter x = a for integers n from 0 to 6.

The word ma0 is a prefix of ηp(x), thus ηp(x)[ℓ] = a0. From Lemma 3.6,

ηp(x)[ℓ] = a0 = Aη,x(|mp−1| ⊙ |mp−2| ⊙ . . .⊙ |m0|) = Aη,x(tailη,p,x(ℓ)).

In the next lemma, we consider the total order (D∗, <lex), where u <lex v means
that u is lexicographically less than v. Recall that given a totally ordered set
(D, <), and two words u, v ∈ D∗ such that v is nonempty, then one has that u
is lexicographically less than v, if u is a proper prefix of v, or there exist words
r, s, t ∈ D∗ and letters a, b ∈ D such that u = ras and v = rbt with a < b.

Lemma 3.12. Let η : A∗ → A∗ be a substitution and p ≥ 1 be an integer. Let
n, n′ ∈ {0, 1, . . . , |ηp(x)| − 1}. Then

(i) n = n′ if and only if tailη,p,x(n) = tailη,p,x(n
′),

(ii) n < n′ if and only if tailη,p,x(n) <lex tailη,p,x(n
′).

Proof. Let (mi, ai)i=0,...,p−1 and (m′
i, a

′
i)i=0,...,p−1 be two x-admissible sequences

such that n =
∑p−1
j=0 |ηj(mj)| and n′ =

∑p−1
j=0 |ηj(m′

j)|. Thus tailη,p,x(n) = |mp−1| ⊙
|mp−2| ⊙ . . .⊙ |m0| and tailη,p,x(n

′) = |m′
p−1| ⊙ |m′

p−2| ⊙ . . .⊙ |m′
0|.

(i) If n = n′, then tailη,p,x(n) = tailη,p,x(n
′). Conversely, if tailη,p,x(n) =

tailη,p,x(n
′), then mp−1ap−1 = m′

p−1a
′
p−1 since both are prefixes of the same length

of η(x). Thus mp−1 = m′
p−1 and ap−1 = a′p−1. Similarly, mp−2ap−2 = m′

p−2a
′
p−2

since both are prefixes of the same length of η(ap−1). Thus mp−2 = m′
p−2 and

ap−2 = a′p−2. By induction, we obtain (mi, ai)i=0,...,p−1 = (m′
i, a

′
i)i=0,...,p−1. Thus

n =
∑p−1
j=0 |ηj(mj)| =

∑p−1
j=0 |ηj(m′

j)| = n′.
(ii) Suppose that |mp−1| ⊙ |mp−2| ⊙ . . .⊙ |m0| <lex |m′

p−1| ⊙ |m′
p−2| ⊙ . . .⊙ |m′

0|.
Then there exists an integer ℓ such that 0 ≤ ℓ ≤ p− 1, |mj | = |m′

j | for every integer
j such that ℓ < j ≤ p − 1 and |mℓ| < |m′

ℓ|. Since |mp−1| = |m′
p−1| and mp−1ap−1

and m′
p−1a

′
p−1 are prefixes of η(x) we have that mp−1 = m′

p−1 and ap−1 = a′p−1.
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Similarly, we have mj = m′
j and aj = a′j for every j such that ℓ < j ≤ p− 1. Thus

mℓaℓ and m′
ℓa

′
ℓ must both be prefixes of the image under η of the same letter. This

letter is x if ℓ = p− 1 or otherwise is aℓ+1 = a′ℓ+1. Since |mℓ| < |m′
ℓ|, we have that

mℓaℓ is a prefix of m′
ℓ. Using Lemma 3.3, we have

n− n′ =
∑p−1
j=0 |ηj(mj)| −

∑p−1
j=0 |ηj(m′

j)|

=
∑ℓ
j=0 |ηj(mj)| −

∑ℓ
j=0 |ηj(m′

j)| ≤ |ηℓ(mℓ aℓ)| − |ηℓ(m′
ℓ)| ≤ 0.

Then n ≤ n′. If n = n′, we obtain a contradiction from part (i). Thus, we conclude
that n < n′.

Now suppose that n < n′ and suppose by contradiction that tailη,p,x(n) ̸<lex
tailη,p,x(n

′). If tailη,p,x(n) = tailη,p,x(n
′), then we obtain from part (i) that n = n′, a

contradiction. If tailη,p,x(n) >lex tailη,p,x(n
′), then we obtain from above that n > n′,

a contradiction. Therefore, we conclude that tailη,p,x(n) <lex tailη,p,x(n
′).

4. Dumont-Thomas Complement Numeration Systems for Z Based on
Periodic Points

In this section, we prove extensions of Theorem 3.2 to right-infinite and left-infinite
periodic points of substitutions from which we deduce a numeration system for Z
associated with any two-sided periodic point with growing seed of a substitution.

Theorem 4.1. Let η : A∗ → A∗ be a substitution with growing letter a ∈ A. Let
u ∈ PerZ≥0

(η) such that u0 = a. Let p ≥ 1 be a period of u. For every integer n ≥ 1,
there exists a unique integer k = k(n) such that p divides k and a unique sequence
(mi, ai)i=0,...,k−1 such that

(i) this sequence is a-admissible and mk−1mk−2 · · ·mk−p ̸= ε,

(ii) u0u1 · · ·un−1 = ηk−1(mk−1)η
k−2(mk−2) · · · η0(m0).

Proof. Since u is a periodic point of period p, we have that u0 = a is a prefix of
ηp(a). Also, since a is growing, we have that ηp(a) ∈ aA+. Thus (|ηpℓ(a)|)ℓ∈N is
a strictly increasing sequence starting with value 1 when ℓ = 0. Let n ≥ 1 be an
integer. There exists a unique integer ℓ ≥ 1 such that |ηp(ℓ−1)(a)| ≤ n < |ηpℓ(a)|.
Let k = pℓ so that we have

|ηk−p(a)| ≤ n < |ηk(a)|. (2)

The word m = u0u1 · · ·un−1 is thus a proper prefix of ηk(a). From Lemma 3.9,
there exists a unique a-admissible sequence (mi, ai)i=0,...,k−1 such that

m = ηk−1(mk−1)η
k−2(mk−2) · · · η0(m0).
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Assume by contradiction that mk−1mk−2 · · ·mk−p = ε. Then ak−p = a and from
Lemma 3.3, we have

n = |m| =
∑k−1
j=0 |ηj(mj)| =

∑k−p−1
j=0 |ηj(mj)|

< |ηk−p−1(mk−p−1ak−p−1)| ≤ |ηk−p−1(η(ak−p))| = |ηk−p(a)|,

a contradiction with (2). Thus mk−1mk−2 · · ·mk−p ̸= ε.

We now adapt Dumont-Thomas’s theorem to the left-infinite periodic points.

Theorem 4.2. Let η : A∗ → A∗ be a substitution with growing letter b ∈ A. Let
u ∈ PerZ<0(η) such that u−1 = b. Let p ≥ 1 be a period of u. For every integer
n ≤ −2, there exists a unique integer k = k(n) such that p divides k and a unique
sequence (mi, ai)i=0,...,k−1 such that

(i) this sequence is b-admissible and

ηp−1(mk−1)η
p−2(mk−2) · · · η0(mk−p)ak−p ̸= ηp(b), (3)

(ii) u−|ηk(b)| · · ·un−2un−1 = ηk−1(mk−1)η
k−2(mk−2) · · · η0(m0).

Proof. Since u is a periodic point of period p, we have that u−1 = b is a suffix of
ηp(b). Also, since b is growing, we have that ηp(b) ∈ A+b. Thus (−|ηpℓ(b)|)ℓ∈N is a
strictly decreasing sequence starting with value −1 when ℓ = 0. Let n ≤ −2 be an
integer. There exists a unique integer ℓ ≥ 1 such that −|ηpℓ(b)| ≤ n < −|ηp(ℓ−1)(b)|.
Let k = pℓ so that we have

−|ηk(b)| ≤ n < −|ηk−p(b)|. (4)

Therefore the word m = u−|ηk(b)| · · ·un−2un−1 of length

|m| = |ηk(b)|+ n < |ηk(b)| − |ηk−p(b)| ≤ |ηk(b)| (5)

is a proper prefix of the word ηk(b). From Lemma 3.9, there exists a unique
b-admissible sequence (mi, ai)i=0,...,k−1 such that

m = ηk−1(mk−1)η
k−2(mk−2) · · · η0(m0).

By contradiction, assume that (3) is an equality. Then ak−p = b and

|m| = |ηk−p(ηp(b))| − |ηk−p(ak−p)|+
∑k−p−1
j=0 |ηj(mj)|

≥ |ηk(b)| − |ηk−p(b)|,

a contradiction with (5).

We may now define a numeration system for Z using the previous results.
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Definition 4.3 (Dumont-Thomas complement numeration systems for Z). Let
η : A∗ → A∗ be a substitution and u ∈ Per(η) be a two-sided periodic point with
growing seed u−1|u0. Let p ≥ 1 be the period of u. Let D = {0, ...,maxc∈A |η(c)| − 1}.
We define

repu : Z → {0, 1} ⊙ D∗

n 7→


0⊙ |mk−1| ⊙ |mk−2| ⊙ . . .⊙ |m0|, if n ≥ 1,

0, if n = 0,

1, if n = −1,

1⊙ |mk−1| ⊙ |mk−2| ⊙ . . .⊙ |m0|, if n ≤ −2,

where k = k(n) ≥ 0 is the unique integer and (mi, ai)i=0,...,k−1 is the unique sequence
obtained from Theorem 4.1 (Theorem 4.2) applied on the right-infinite periodic point
u|Z≥0

(on the left-infinite periodic point u|Z<0
) if n ≥ 1 (if n ≤ −2, respectively)

both with period p.

Note that the period p ∈ N of u divides | repu(n)|−1 for every n ∈ Z. Also, one may
observe that

repu(n) =

{
0⊙ tailη,k,u0

(n), if n ≥ 0,

1⊙ tailη,k,u−1
(n), if n < 0.

(6)

Remark 4.4. In Definition 4.3, the numeration system repu could be defined with
any period of the two-sided periodic point u and the main result, Theorem 6.1,
would still hold. A choice is made here to keep it simple and always take the period
of the periodic point u.

Remark 4.5. If u ∈ Per(η) is a two-sided periodic point of period p with growing
seed, then its restriction u|Z≥0

to the nonnegative integers is also a periodic point,
but its period might be smaller than p (in general, a divisor of p). For example, this
is what happens for the Fibonacci substitution φ : a 7→ ab, b 7→ a or the Thue-Morse
substitution ψTM : a 7→ ab, b 7→ ba. Both have two-sided periodic points of period 2

and right-infinite fixed points. In Definition 4.3, the numeration system is defined
with the period of the two-sided periodic point u when applying Theorem 4.1 on
u|Z≥0

and Theorem 4.2 on u|Z<0 .

When u = ηp(u) is a periodic point of a substitution η, then it is also a fixed
point of the substitution ηp. Thus, Theorem 3.2 may be used to define a numeration
system for N, but it leads to a much larger alphabet size #D. One advantage of
Definition 4.3 is that the size of the alphabet D is independent of the period p.

Example 4.6. Consider the Tribonacci substitution ψT : a 7→ ab, b 7→ ac, c 7→ a

[30]. The successive images of the seed c|a under the substitution ψT are illustrated
as a tree in Figure 4. Let ω = · · · abac|abacaba · · · be the two-sided periodic point
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Figure 4: The successive images of the seed c|a under the Tribonacci substitution.

of ψT of period 3 with seed c|a. In Figure 4, the representation repω(n) of n labels
the shortest path from the root of the tree to a node at x-position n ∈ N. The
representation of small integers based on the periodic point ω is illustrated in Table 2.

n repω(n) n repω(n)
−7 1010100 0 0

−6 1010101 1 0001

−5 1010110 2 0010

−4 1000 3 0011

−3 1001 4 0100

−2 1010 5 0101

−1 1 6 0110

Table 2: Representation of small integers in the Dumont-Thomas complement
numeration system based on the periodic point ω with seed c|a of the Tribonacci
substitution ψT .

Definition 4.7 (quotient, remainder). Let η : A∗ → A∗ be a substitution and
u ∈ Per(η) be a two-sided periodic point with growing seed s = u−1|u0. Let p ≥ 1

be the period of u. Let n ∈ Z \ {−1, 0} be an integer and k = k(n) be the unique
integer and (mi, ai)i=0,...,k−1 be the unique sequence obtained from Theorem 4.1
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(Theorem 4.2) applied on u|Z≥0
(u|Z<0

) if n ≥ 1 (if n ≤ −2, respectively) both with
period p. We define the u-quotient of n as

q =

{
|ηk−p−1(mk−1)η

k−p−2(mk−2) · · · η0(mp)|, if n ≥ 1,

|ηk−p−1(mk−1)η
k−p−2(mk−2) · · · η0(mp)| − |ηk−p(u−1)|, if n ≤ −2,

and the u-remainder of n as r = |ηp−1(mp−1)η
p−2(mp−2) · · · η0(m0)|.

Notice that the u-quotient q and u-remainder r of an integer n ∈ Z \ {−1, 0}
fulfill the condition that if n ≥ 1 then 0 ≤ q < n and if n ≤ −2 then n < q ≤ −1.
Consequently, |q| < |n|. Also, if η is d-uniform, then the u-quotient and u-remainder
of n correspond to the quotient and remainder of the division of n by dp.

Remark 4.8. Note that if we know the u-quotient q and the u-remainder r, we can
recover the sequence |mp−1| ⊙ |mp−2| ⊙ . . .⊙ |m0|. Indeed, it is equal to tailη,p,uq (r).

Lemma 4.9. Let η : A∗ → A∗ be a substitution and u ∈ Per(η) be a two-sided
periodic point with growing seed. Let p ≥ 1 be the period of u. Let n ∈ Z \ {−1, 0}
be an integer. If q ∈ Z is the u-quotient and r ∈ N is the u-remainder of n, then

un = ηp(uq)[r] and repu(n) = repu(q)⊙ tailη,p,uq
(r).

Proof. Let a, b ∈ A denote the letters b = u−1 and a = u0. Let n ∈ Z \ {−1, 0} and
let q be the u-quotient and r the u-remainder of n.

Suppose n ≥ 1. From Theorem 4.1, there exists a unique a-admissible se-
quence (mi, ai)i=0,...,k−1 such that u0 . . . un−1 = ηk−1(mk−1) . . . η

0(m0). Also,
ηk−1(mk−1) . . . η

0(m0)a0 is a prefix of ηk(a), which is a prefix of u0u1 · · ·u|ηk(a)|−1,
thus un = a0. Since u has period p, the word

ηk−p−1(mk−1)η
k−p−2(mk−2) · · · η0(mp)ap

is a prefix of ηk−p(a), which is a prefix of u0u1 · · ·u|ηk−p(a)|−1. Thus ap = uq. Since
ηp−1(mp−1) · · · η0(m0)a0 is a prefix of ηp(ap), we deduce that un = a0 = ηp(ap)[r] =

ηp(uq)[r].
Suppose n ≤ −2. From Theorem 4.2, there exists a unique b-admissible se-

quence (mi, ai)i=0,...,k−1 such that u−|ηk(b)| . . . un−1 = ηk−1(mk−1) . . . η
0(m0). Also,

ηk−1(mk−1) . . . η
0(m0)a0 is a prefix of ηk(b), which is a prefix of u−|ηk(b)| . . . u−1,

thus un = a0. Since u has period p, the word

ηk−p−1(mk−1)η
k−p−2(mk−2) · · · η0(mp)ap

is a prefix of ηk−p(a), which is a prefix of u−|ηk−p(b)| . . . u−1, thus ap = uq. Since
ηp−1(mp−1) · · · η0(m0)a0 is a prefix of ηp(ap), we deduce that un = a0 = ηp(ap)[r] =

ηp(uq)[r].
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To finish the proof for both cases simultaneously, if n ≥ 1 (n ≤ −2), applying
Theorem 4.1 (Theorem 4.2) on the u-quotient q gives for d = 0 (d = 1)

repu(q) = d⊙ |mk−1| ⊙ |mk−2| ⊙ . . .⊙ |mp|.

As n ≥ 1 if and only if q ≥ 0, we have

repu(n) = d⊙ |mk−1| ⊙ |mk−2| ⊙ . . .⊙ |mp| ⊙ |mp−1| ⊙ . . .⊙ |m0|
= repu(q)⊙ |mp−1| ⊙ . . .⊙ |m0| = repu(q)⊙ tailη,p,uq (r).

5. More Examples

We consider the following substitutions:

ψTM :

{
a 7→ ab,
b 7→ ba,

ψ2 :

 a 7→ ab,
b 7→ cb,
c 7→ ac,

φ :

{
a 7→ ab,
b 7→ a,

(Thue-Morse) (some 2-uniform) (Fibonacci)

ψT :

 a 7→ ab,
b 7→ ac,
c 7→ a,

ρ :

 a 7→ ac,
b 7→ cb,
c 7→ c.

(Tribonacci) (non-primitive)

We let

• α ∈ Per(ψTM ) denote the periodic point with the seed a|a and period 2,

• β ∈ Per(ψ2) denote the periodic point with the seed b|a and period 1,

• γ, δ ∈ Per(φ) denote the periodic point of period 2 with, respectively, the seeds
b|a and a|a,

• τ ∈ Per(ψT ) denote the periodic point with the seed c|a and period 3,

• χ ∈ Per(µ) denote the periodic point with the seed c|a and period 1 of the
substitution µ : a 7→ abc, b 7→ c, c 7→ ac defined in the introduction,

• ξ ∈ Per(ρ) denote the periodic point with the seed b|a and period 1.

The numeration systems derived from these two-sided periodic points are shown in
Table 3.
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substitution T.-Morse 2-uniform Fibo. Fibo. Tribo. Intro. non-prim.
images (ab, ba) (ab, cb, ac) (ab, a) (ab, a) (ab, ac, a) (abc, c, ac) (ac, cb, c)

per. point α β γ δ τ χ ξ
seed a|a b|a b|a a|a c|a c|a b|a

period 2 1 2 2 3 1 1
n repα(n) repβ(n) repγ(n) repδ(n) repτ (n) repχ(n) repξ(n)

10 01010 01010 0010010 0010010 0001011 0202 01000000000
9 01001 01001 0010001 0010001 0001010 0201 0100000000
8 01000 01000 0010000 0010000 0001001 0200 010000000
7 00111 0111 01010 01010 0001000 0101 01000000
6 00110 0110 01001 01001 0110 0100 0100000
5 00101 0101 01000 01000 0101 021 010000
4 00100 0100 00101 00101 0100 020 01000
3 011 011 00100 00100 0011 010 0100
2 010 010 010 010 0010 02 010
1 001 01 001 001 0001 01 01
0 0 0 0 0 0 0 0
-1 1 1 1 1 1 1 1
-2 110 10 100 101 1010 10 10
-3 101 101 10010 100 1001 102 100
-4 100 100 10001 10101 1000 101 1000
-5 11011 1011 10000 10100 1010110 100 10000
-6 11010 1010 1001010 10010 1010101 1021 100000
-7 11001 1001 1001001 10001 1010100 1020 1000000
-8 11000 1000 1001000 10000 1010011 1010 10000000
-9 10111 10111 1000101 1010101 1010010 1002 100000000
-10 10110 10110 1000100 1010100 1010001 1001 1000000000

Table 3: Numeration systems for periodic points α, β, γ, δ, τ , χ, ξ with given seed.

6. Periodic Points as Automatic Sequences

Let η : A∗ → A∗ be a substitution and u ∈ Per(η) be a two-sided periodic point with
growing seed s = u−1|u0. Let D = {0, ...,maxc∈A |η(c)| − 1}. We associate an au-
tomaton Aη,s with (η, s) by adding a new state start and two additional edges to the
automaton Aη,a defined in [4]. The automaton Aη,s = (A∪{start} ,D, δ, start, A)
has the transition function δ : A ∪ {start} → A such that

• δ(start, 0) = s0 = u0, δ(start, 1) = s−1 = u−1,

• for every c, d ∈ A, every w = w0w1 . . . wℓ−1 ∈ Aℓ and every i ∈ D, it holds
that δ(c, i) = d if and only if η(c) = w and wi = d.

Examples of automata associated with the Fibonacci substitution are shown in
Figure 5.

If the seed is s = b|a, the automaton Aη,s is related to the usual automata Aη,a

and Aη,b according to the following equalities for every w ∈ D∗:

Aη,s(0⊙ w) = Aη,a(w) and Aη,s(1⊙ w) = Aη,b(w). (7)

Also if Aη,s(w) = a for some w ∈ D+, then for every u ∈ D∗

Aη,a(u) = Aη,s(w ⊙ u). (8)
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Figure 5: Automata Aφ,a, Aφ,b and Aφ,s for φ : a 7→ ab, b 7→ a and s = b|a.

A theorem of Cobham [9] says that a sequence u = (un)n≥0 is k-automatic with
k ≥ 2 if and only if it is the image, under a coding, of a fixed point of a k-uniform
morphism [1, Section 6]. It was extended to abstract numeration systems based
on regular languages which includes numeration systems based on non-uniform
morphisms [32]; see also [4, Section 3]. The following result extends Cobham’s
theorem to the case of two-sided periodic points of non-uniform substitutions.

Theorem 6.1. Let η : A∗ → A∗ be a substitution and u ∈ Per(η) be a two-sided
periodic point with growing seed s = u−1|u0. Then for every n ∈ Z

un = Aη,s(repu(n)).

Proof. If n ∈ {0,−1} then by definition we have un = sn = Aη,s(repu(n)).
The proof is done by induction. Let n ∈ Z \ {0,−1}. Assume that for every

m ∈ Z such that |m| < |n| it holds that xm = Aη,s(repu(m)). Let q be the u-
quotient and r the u-remainder of n. As |q| < |n|, q fulfills the induction hypothesis,
i.e., uq = Aη,s(repu(q)). Let p ≥ 1 be the period of u. From Lemma 4.9 we
have un = ηp(uq)[r] and repu(n) = repu(q)⊙ tailη,p,uq

(r). Using Lemma 3.11 and
Equation (8), we have

un = ηp(uq)[r] = Aη,uq
(tailη,p,uq

(r))

= Aη,s(repu(q)⊙ tailη,p,uq (r)) = Aη,s(repu(n)).

7. Numeration Systems for Zd Based on Periodic Points

A numeration system for Zd can be deduced from the numeration system for Z
based on a periodic point. Since not all integers are represented by words of the
same length, we propose here a way to pad them to a common length.

Let η : A∗ → A∗ be a substitution and u ∈ Per(η) with period p ≥ 1 and growing
seed. Let Wmin and Wmax be the following minimum and the maximum element under
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the tail map with particular parameters:

Wmin = tailη,p,u0
(0) = 0p,

Wmax = tailη,p,u−1
(|ηp(u−1)| − 1).

The words Wmin and Wmax play the role of neutral words in the numeration system
as illustrated in the next lemma. Below the words Wmin and Wmax are concatenated
with others words from D∗ using the binary operation ⊙, which is not explicitly
written to avoid heavy notation.

Lemma 7.1. Let η : A∗ → A∗ be a substitution and u ∈ Per(η) be a two-sided
periodic point with growing seed s = u−1|u0. Let w ∈ L(Aη,s). Then

Aη,s(w) =

{
Aη,s(0(Wmin)

iv), if w = 0v,

Aη,s(1(Wmax)
iv), if w = 1v,

for every integer i ≥ 0.

Proof. Let i ≥ 0 be an integer and p ≥ 1 be the period of u. Let w ∈ L(Aη,s).
Suppose that w starts with letter 0. Let v ∈ D∗ such that w = 0v. We have

Aη,u0(0
p) = u0. Thus Aη,s(0(Wmin)

i) = u0. From Equation (7) and Equation (8) we
obtain

Aη,s(w) = Aη,s(0v)
(7)
= Aη,u0

(v)
(8)
= Aη,s(0(Wmin)

iv).

Suppose that w starts with letter 1. Let v ∈ D∗ such that w = 1v. We
have Aη,u−1

(Wmax) = u−1. Thus Aη,s(1(Wmax)
i) = u−1. From Equation (7) and

Equation (8) we obtain

Aη,s(w) = Aη,s(1v)
(7)
= Aη,u−1

(v)
(8)
= Aη,s(1(Wmax)

iv).

It is useful to pad words to a certain length using neutral words as follows using
a pad function. Let s = u−1|u0. Let w ∈ Lℓp+1(Aη,s) for some ℓ ∈ N. Let t ∈ N
such that t ≥ |w| and t mod p = 1. We define

padt(w) =

{
0(Wmin)

mv, if w = 0v,

1(Wmax)
mv, if w = 1v,

where m = (t− |w|)/p. The padding map can be used to pad words so that they all
have the same length. This allows us to represent coordinates in Zd in dimension
d ≥ 1.
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Definition 7.2 (Numeration system for Zd). Let η : A∗ → A∗ be a substitution
and u1, u2, . . . , ud ∈ Per(η) be periodic points with growing seeds and of the same
period. For every n = (n1, n2, . . . , nd) ∈ Zd, we define

repu(n) =


padt(repu1

(n1))
padt(repu2

(n2))
. . .

padt(repud
(nd))

 ∈ {0, 1}d(Dd)∗,

where t = max{| repui
(ni)| : 1 ≤ i ≤ d}.

Remark 7.3. In Definition 7.2, considering different periodic points with the same
period of the same 1-dimensional substitution in each dimension can be necessary
for instance to describe the different 2-dimensional periodic points of 2-dimensional
substitutions. This is what happens when one wants to describe the 8 configurations
of Wang tiles presented in [23] which are the periodic points of a 2-dimensional
substitution.

Of course, it is possible and simpler to use the same periodic point to represent
the entries of an integer vector. This is what is done in the example that follows.

Example 7.4. Consider the Tribonacci substitution ψT : a 7→ ab, b 7→ ac, c 7→ a as
in Example 3.10. Let τ ∈ Per(ψT ) be the periodic point with period p = 3 and seed
c|a. We have

Wmin = tailψT ,p,u0(0) = tailψT ,3,a(0) = 03 = 000,

Wmax = tailψT ,p,u−1
(|ψpT (u−1)| − 1) = tailψT ,3,c(|ψ3

T (c)| − 1) = tailψT ,3,c(3) = 011.

The words Wmin and Wmax can be used to pad words to a given length which is
a multiple of 3 plus 1. For instance, we illustrate in Table 4 the padding of the
Dumont-Thomas representation based on the periodic point τ . The representation
of integers from −10 to 10 is padded to words of length 7. Thus, the coordinate
(−1, 8) ∈ Z2 can thus be written as a word

repτ (−1, 8) =

(
pad7(repτ (−1))
pad7(repτ (8))

)
=

(
1011011

0001001

)
=

(
1

0

)(
0

0

)(
1

0

)(
1

1

)(
0

0

)(
1

0

)(
1

1

)
∈
{(

0

0

)
,

(
0

1

)
,

(
1

0

)
,

(
1

1

)}∗

whose alphabet of size 4 is the Cartesian product of the alphabet {0, 1} with itself.
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n repτ (n) pad7(repτ (n))

10 0001011 0001011
9 0001010 0001010
8 0001001 0001001
7 0001000 0001000
6 0110 0000110
5 0101 0000101
4 0100 0000100
3 0011 0000011
2 0010 0000010
1 0001 0000001
0 0 0000000
-1 1 1011011
-2 1010 1011010
-3 1001 1011001
-4 1000 1011000
-5 1010110 1010110
-6 1010101 1010101
-7 1010100 1010100
-8 1010011 1010011
-9 1010010 1010010
-10 1010001 1010001

Table 4: The Dumont-Thomas complement representation of integers from -10 to 10
using the periodic point of seed c|a of the Tribonacci substitution ψT can be padded
to obtain words of length 7.

8. A Total Order

In this section, we define a total order on {0, 1}D∗ := {0, 1} ⊙D∗ and we show that
repu is increasing with respect to this order.

The radix order on a language L ⊂ D∗ is a total order (L,<rad) such that
u <rad v if and only if |u| < |v| or |u| = |v| and u <lex v, where <lex denotes the
lexicographic order. For example, over the alphabet {0, 1}, the minimum elements
for the radix order are:

ε <rad 0 <rad 1 <rad 00 <rad 01 <rad 10 <rad 11 <rad 000 <rad 001 <rad · · · .

We define the reversed-radix order as a total order such that u <rev v if and only
if |u| > |v| or |u| = |v| and u <lex v. For example, over the alphabet {0, 1}, the
maximum elements for the reverse-radix order are:

· · · <rev 110 <rev 111 <rev 00 <rev 01 <rev 10 <rev 11 <rev 0 <rev 1 <rad ε.

Let us stress that the reversed-radix order behaves in the same manner as the radix
order on the words of the same length. Also if L has infinite cardinality, then L

has no maximal element for the radix order and has no minimum element for the
reverse-radix order.

The radix order and the reverse-radix order can be used jointly to define a total
order on a language with no minimum nor maximum element. Below, we use the
first letter of a word in {0, 1}D∗ to split the two cases.
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Definition 8.1 (total order ≺). For every u, v ∈ {0, 1}D∗, we define u ≺ v if and
only if

• u ∈ 1D∗ and v ∈ 0D∗, or

• u, v ∈ 0D∗ and u <rad v, or

• u, v ∈ 1D∗ and u <rev v.

Thus, if D = {0, 1}, we get

· · · ≺ 100 ≺ 101 ≺ 110 ≺ 111 ≺ 10 ≺ 11 ≺ 1 ≺ 0 ≺ 00 ≺ 01 ≺ 000 ≺ 001 ≺ · · · .

The total order ≺ makes sense with respect to Dumont-Thomas complement numer-
ation systems for Z because of the following result.

Proposition 8.2. Let η : A∗ → A∗ be a substitution and u ∈ Per(η) be a two-sided
periodic point with growing seed. The map repu : Z → {0, 1}D∗ is increasing with
respect to the order ≺ on {0, 1}D∗.

Proof. Let n, n′ ∈ Z be two integers such that n < n′.
Assume that n < 0 ≤ n′. Then repu(n) ∈ 1D∗ and repu(n

′) ∈ 0D∗ so that
repu(n) ≺ repu(n

′).
Assume that 0 ≤ n < n′. Then repu(n) ∈ 0D∗ and repu(n

′) ∈ 0D∗. The case
| repu(n)| > | repu(n′)| is impossible. Indeed, suppose that | repu(n)| = k + 1 and
| repu(n′)| = k′ + 1 for some integers k and k′. If | repu(n)| > | repu(n′)|, then
k − p ≥ k′, where p is the period of u. From Equation (2), we have

n′ < |ηk
′
(a)| ≤ |ηk−p(a)| ≤ n,

a contradiction. If | repu(n)| < | repu(n′)|, then repu(n) ≺ repu(n
′). Suppose now

that | repu(n)| = | repu(n′)| = k + 1 for some integer k. From Lemma 3.12, we have

repu(n) = 0⊙ tailη,k,u0
(n) <lex 0⊙ tailη,k,u0

(n′) = repu(n
′).

Thus repu(n) ≺ repu(n
′).

Assume that n < n′ < 0. Then repu(n) ∈ 1D∗ and repu(n
′) ∈ 1D∗. The case

| repu(n)| < | repu(n′)| is impossible. Indeed, suppose that | repu(n)| = k + 1 and
| repu(n′)| = k′ + 1 for some integers k and k′. If | repu(n)| < | repu(n′)|, then
k′ − p ≥ k, where p is the period of u. From Equation (4), we have

n′ < −|ηk
′−p(b)| ≤ −|ηk(b)| ≤ n,

a contradiction. If | repu(n)| > | repu(n′)|, then repu(n) ≺ repu(n
′). Suppose that

| repu(n)| = | repu(n′)| = k + 1 for some integer k. From Lemma 3.12, we have

repu(n) = 1⊙ tailη,k,u−1
(n) <lex 1⊙ tailη,k,u−1

(n′) = repu(n
′).

Thus repu(n) ≺ repu(n
′).
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It follows from Proposition 8.2 that repu : Z → {0, 1}D∗ is injective. Therefore it
is a bijection onto its image. The next result describes the image of the map repu.

Lemma 8.3. Let η : A∗ → A∗ be a substitution and u ∈ Per(η) be a two-sided
periodic point with growing seed s = u−1|u0. Let p ≥ 1 be the period of u. Then

repu(Z) =
⋃
ℓ∈N

Lℓp+1(Aη,s) \ {0Wmin, 1Wmax}D∗.

Proof. (⊆). It follows from Theorem 6.1 that repu(Z) ⊂ L(Aη,s). Also for ev-
ery n ∈ Z, repu(n) is a word of length ℓp + 1 for some ℓ ∈ N. Thus repu(Z) ⊂⋃
ℓ∈N Lℓp+1(Aη,s). It remains to show that repu(Z) ∩ {0Wmin, 1Wmax}D∗ = ∅. Sup-

pose by contradiction that there exists n ∈ Z such that repu(n) ∈ 0WminD∗.
We have repu(n) = 0 ⊙ |mk−1| ⊙ |mk−2| ⊙ . . . ⊙ |m0|, where k = ℓp. Then
|mk−1| ⊙ . . . ⊙ |mk−p| = 0p, which implies mk−1mk−2 . . .mk−p = ε, thus con-
tradicting Theorem 4.1. On the other hand, suppose by contradiction that there
exists n ∈ Z such that repu(n) ∈ 1WmaxD∗. We have repu(n) = 1⊙|mk−1|⊙|mk−2|⊙
. . .⊙ |m0|. Then |mk−1| ⊙ . . .⊙ |mk−p| = tailη,p,u−1(|ηp(u−1)| − 1), which implies
ηp−1(mk−1)η

p−2(mk−2) · · · η0(mk−p) is the prefix of ηp(u−1) of length |ηp(u−1)|− 1,
a contradiction with Theorem 4.2.

(⊇). Let ℓ ∈ N and k = ℓp. Let v = vk−1 · · · v0 such that d⊙ v ∈ Lℓp+1(Aη,s) \
{0Wmin, 1Wmax}D∗.

Suppose that d = 0. We have v ∈ L(Aη,u0). From Lemma 3.8, there exists a u0-
admissible sequence (mi, ai)i=0,...,k−1 such that |mi| = vi for every i = 0, . . . , k − 1.
Let n =

∑k−1
i=0 |ηi(mi)|. From Theorem 4.1 and using v /∈ WminD∗, we have repu(n) =

0⊙ v. Thus d⊙ v ∈ repu(Z).
Suppose that d = 1. We have v ∈ L(Aη,u−1

). From Lemma 3.8, there exists a u−1-
admissible sequence (mi, ai)i=0,...,k−1 such that |mi| = vi for every i = 0, . . . , k − 1.
Let n = −|ηk(u−1)|+

∑k−1
i=0 |ηi(mi)|. From Theorem 4.2, and using v /∈ WmaxD∗, we

have repu(n) = 1⊙ v. Thus d⊙ v ∈ repu(Z).

Results similar to Proposition 8.2 exist for other numeration systems; see [6,
Section 5] and [16, Section 4]. In some other works on numeration systems, such
an increasing bijection is not a consequence but rather a hypothesis. For example,
a bijection N → L serves as the definition of abstract numeration systems in [27].
Similarly, we have the following characterization of Dumont-Thomas complement
numeration systems for Z in terms of the total order ≺ on the language recognized
by an automaton.

Theorem 8.4. Let η : A∗ → A∗ be a substitution and u ∈ Per(η) be a two-sided
periodic point with growing seed s = u−1|u0. Let p ≥ 1 be the period of u. Let
f : Z → {0, 1}D∗ be some map. The following items are equivalent:

• f = repu,
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• f is increasing with respect to ≺, its image is f(Z) =
⋃
ℓ∈N Lℓp+1(Aη,s) \

{0Wmin, 1Wmax}D∗ and f(0) = 0.

Proof. Suppose that f = repu. Then f is increasing from Proposition 8.2. Its image
was computed in Lemma 8.3, Also, f(0) = 0 from Definition 4.3.

Let f : Z → {0, 1}D∗. Suppose f is increasing, its image is

f(Z) =
⋃
ℓ∈N

Lℓp+1(Aη,s) \ {0Wmin, 1Wmax}D∗

and f(0) = 0. The map repu satisfies the same properties. Since there is a unique
increasing bijection Z → f(Z) such that f(0) = 0, we conclude that f = repu.

9. Relation with Existing Complement Numeration Systems

In this section, we show that two existing complement numeration systems can be
recovered as a Dumont-Thomas complement numeration system using the some well-
chosen substitutions. The involved substitutions are part of the examples presented
in Section 5.

9.1. Two’s Complement Numeration System

Let D = {0, 1}. In the two’s complement representation of integers the value of a
binary word w = wk−1wk−2 · · ·w0 ∈ Dk is val2c(w) =

∑k−1
i=0 wi2

i − wk−12
k; see [22,

Section 4.1]. For every n ∈ Z there exists a unique word w ∈ D+ \ (00D∗ ∪ 11D∗)

such that n = val2c(w). The word w is called the two’s complement representation
of the integer n, and we denote it by rep2c(n). Observe that the map rep2c : Z →
D+ \ (00D∗ ∪ 11D∗) is an increasing bijection with respect to the order ≺:

· · · −5 −4 −3 −2 −1 0 1 2 3 4 · · ·

· · · 1011 100 101 10 1 0 01 010 011 0100 · · · .

< < < < < < < < < < <

≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺

We now show that the two’s complement numeration system coincides with the
Dumont-Thomas complement numeration system associated with a two-sided fixed
point of 2-uniform substitution.

Proposition 9.1. Let ψ : A→ A∗ be some 2-uniform substitution and let β ∈ Per(ψ)

be some two-sided periodic point of period 1. Then repβ is the two’s complement
numeration system, that is, repβ = rep2c.

Proof. From Proposition 8.2, repβ : Z → {0, 1}D∗ is an increasing map with respect
to the order ≺. Thus, it is an increasing bijection Z → repβ(Z). From Lemma 8.3,
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we have

repβ(Z) =
⋃
ℓ∈N

Lℓp+1(Aψ,s) \ {0Wmin, 1Wmax}D∗ = L≥1(Aψ,s) \ {00, 11}D∗

= D+ \ (00D∗ ∪ 11D∗) ,

since p = 1, L(Aψ,s) = D∗, Wmin = 0 and Wmax = 1. Also, repβ(0) = 0. On the
other hand, the map rep2c : Z → D+ \ (00D∗ ∪ 11D∗) is an increasing bijection
with respect to the order ≺ and rep2c(0) = 0. From Theorem 8.4, we conclude
repβ = rep2c.

Note that the Thue-Morse substitution has no two-sided fixed point, so the above
result does not hold for numeration systems based on fixed points of the Thue-Morse
substitution; see Table 3.

9.2. Fibonacci Analogue of the Two’s Complement Numeration System

In what follows, the Fibonacci sequence (Fn)n≥0, Fn = Fn−1 + Fn−2, for all n ≥ 2,
is defined with the initial conditions F0 = 1, F1 = 2. We let D denote the binary
alphabet {0, 1}.

In [24], a Fibonacci analogue of the two’s complement numeration system for
nonnegative and negative integers was defined from the value map valFc : D∗ → Z
by valFc(w) =

∑k−1
i=0 wiFi − wk−1Fk for every binary word w = wk−1 · · ·w0 ∈ Dk.

It is an analog of the two’s complement value map val2c, using Fibonacci numbers
instead of powers of 2. It was proved in [24] that for every n ∈ Z there exists a
unique odd-length word w ∈ L = D(DD)∗ \ (D∗11D∗ ∪ 000D∗ ∪ 101D∗) such that
n = valFc(w). It defines the map repFc : Z → L by the rule n 7→ w.

We show that the Dumont-Thomas complement numeration system obtained from
the two-sided Fibonacci word is the Fibonacci analogue of the two’s complement
numeration system introduced in [24].

Proposition 9.2. Let φ : a 7→ ab, b 7→ a be the Fibonacci substitution and let γ ∈
Per(φ) be the periodic point of period 2 with seed s = b|a. Then repγ is the Fibonacci
analogue of the two’s complement numeration system, that is, repγ = repFc.

Proof. From Proposition 8.2, repγ : Z → {0, 1}D∗ is an increasing map with
respect to the order ≺. Thus, it is an increasing bijection Z → repγ(Z). Let
L = D(DD)∗ \ (D∗11D∗ ∪ 000D∗ ∪ 101D∗). From Lemma 8.3, we have

repγ(Z) =
⋃
ℓ∈N

Lℓp+1(Aφ,s) \ {0Wmin, 1Wmax}D∗

= (D(DD)∗ \ D∗11D∗) \ {000, 101}D∗ = L,

since p = 2, L(Aφ,s) = D∗ \ D∗11D∗, Wmin = 00 and Wmax = 01. From [24], the
map repFc is an increasing bijection Z → L with respect to the order ≺. Moreover,
repγ(0) = 0 = repFc(0). From Theorem 8.4, repFc = repγ .
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We leave open the following question.

Question 9.3. If repγ is the Fibonacci analogue of the two’s complement numeration
system, then what is the meaning of repδ? Can we define it from some value map?
Recall that δ ∈ Per(φ) is the periodic point of period 2 of the Fibonacci substitution
φ with seed a|a; see Table 3.
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