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Abstract

A key ingredient in deriving upper bounds for odd perfect numbers, dependent only
on their number of prime divisors, has been to establish that, for a, d ∈ N, if {pi}ki=1

is any increasing set of integers such that

k∏
i=1

(
1− 1

pi

)
≤ a

a+ d
<

k−1∏
i=1

(
1− 1

pi

)
(1)

then
∏k

i=1 pi ≤ C(k) for some quantity C(k) determined solely by k. Heath-Brown

first proved such a bound with C(k) = (4a)2
k−1, and this has since been improved

to C(k) = (1/a){(a+ 1)2
k − (a+ 1)2

k−1} = (1/a)Fk(a+ 1) where Fk : R≥1 → R≥0

is defined by Fk(x) = x2k − x2k−1

. While this represents the best current estimate,
and is known to be sharp for the case d = 1, it has remained open whether – and,
if so, how – it may be strengthened for cases where d > 1, or where the {pi}ki=1 are
required to be odd primes, not merely integers (as will be the case in applications to
odd perfect numbers). In this paper we demonstrate how both these obstacles may
be overcome, and begin the process of applying our results to the task of finding
improved upper bounds for odd perfect numbers. In particular, we prove that for
odd primes {pi}ki=1 satisfying (1) with a/(a+ d) = 1/2, if p1 ̸= 3, we must have

k∏
i=1

pi ≤

(√ 8

331/32

)2k

−

(√
8

331/32

)2k−1 ≈ Fk(1.66127).

Separately, we also derive a new bound on the smallest prime divisor, p1, of an odd
perfect number with m distinct prime divisors. This bound, that p1 < (3m/7) + 3,
is markedly tighter than the long-standing bound of Grün that p1 < (2m/3) + 2.
It also complements the recent strengthening of Grün’s estimate by Zelinsky, that
p1 < (m − 1)/2, being tighter than Zelinsky’s bound for all (putative) odd perfect
numbers with more than 49 distinct prime divisors.

DOI: 10.5281/zenodo.14547960
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1. Background

A perfect number is a positive integer, the sum of whose divisors (excluding itself)

equals itself. Equivalently, it is a positive integer, N , for which σ(N) = 2N , where

σ(·) is the usual sum of divisors function.

The first few perfect numbers are 6 = 2(22 − 1) (since 1 + 2 + 3 = 6), 28 =

22(23 − 1), and 496 = 24(25 − 1). Consistent with these examples, it has been

known since antiquity that any prime of the form p = 2q − 1 with q prime – which

later became known as Mersenne primes after the French priest and polymath Marin

Mersenne (1588-1648 AD) – gives rise to a corresponding even perfect number, N ,

of the form

N = 2q−1p = 2q−1(2q − 1).

In light of this construction, which dates back to Euclid around 300 BC, there are

currently 51 known perfect numbers, all even, corresponding to one for each known

Mersenne prime. Moreover, it was established by Euler in the 1700s, having earlier

been asserted by Lefèvre in 1496 and again by Descartes in 1638, that all even

perfect numbers must be of this form (so that there is a one-to-one correspondence

between even perfect numbers and Mersenne primes).

In contrast to the even case, the question of the existence or non-existence of odd

perfect numbers remains open – representing arguably the oldest unsolved problem

in mathematics. Many partial results are known, including a range of algebraic

constraints on the form an odd perfect number can have, as well as computational

results on the minimum size and/or number of distinct prime divisors of such a

number. Although far too numerous to list in their entirety, a selection of the more

noteworthy such partial results is presented in the following lemma.

Lemma 1. Suppose N =
∏m

i=1 p
ei
i is an odd perfect number, for some positive

integer m and associated set of positive exponents {ei}mi=1 for the distinct prime

divisors {pi}mi=1 of N . Then the following results must hold.

i. (Euler) All but one of the exponents ei must be even, while the remaining expo-

nent must be odd. Furthermore, if ej denotes this odd exponent, then ej must

equal one modulo four, as must the associated prime pj. This associated prime

is generally referred to as the “special prime” for N .

ii. (Sylvester 1888 [28]) There is no odd perfect number having fewer than five

distinct prime divisors.

iii. (Dickson 1913 [5]) For any given m, the number of odd perfect numbers with

m distinct prime divisors is finite.

iv. (Steuerwald 1937 [23]) The even exponents of an odd perfect number cannot all

be two.
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v. (McDaniel 1970 [16]) If N is an odd perfect number less than 109118 then the

exponent of at least one prime divisor of N must be at least six.

vi. (Kishore 1981 [13]; Hagis 1983 [9]) Any odd perfect number not divisible by

three must have at least 11 distinct prime divisors.

vii. (Nielsen 2015 [18]) Any odd perfect number N must have at least 10 distinct

prime divisors; and if N is not divisible by three then the number of distinct

prime divisors must be at least 12.

viii. (Zelinsky 2021 [30]) If N is an odd perfect number with m distinct prime divi-

sors then at least one of these divisors must be less than (m− 1)/2.

ix. (Ochem and Rao 2012 [20]) Any odd perfect number must exceed 101500 in size.

x. (Goto and Ohno 2008 [7]; Ianucci 1999 [11]; Ianucci 2000 [12]) The largest

prime divisor of an odd perfect number must be at least 108, the second largest

must be at least 104, and the third largest must be at least 100.

Independent of efforts to obtain algebraic or computational constraints on any

putative odd perfect number, an alternative approach to the odd perfect number

problem has sought bounds on the potential size of such numbers, or components

of them, as a function of their key characteristics. Most notably, for the purposes

of this paper, over the past half-century a series of authors have succeeded in estab-

lishing absolute upper bounds on the size of an odd perfect number, N =
∏m

i=1 p
ei
i ,

as a function purely of m, the number of distinct prime divisors it contains.

The first such result was derived by Pomerance [22] in 1977, who showed that if

N is an odd perfect number with at most m prime divisors then

N ≤ (4m)(4m)2
m2

.

In the mid-1990s this estimate was sharply improved (and generalized) by Heath-

Brown [10], who established that in fact we must have

N ≤ 44
m

.

As he drily noted, however, while this bound is “clearly much less than that given

by Pomerance”, it remains “unfortunately, still too large for practical use”.

Over the following 20-odd years, the elegant method of proof established by

Heath-Brown has given rise to something of a cottage industry – including papers

from Cook [4], Chen and Tang [3], and Nielsen ([17] and [18]) – focussed on tight-

ening his procedure to further improve his upper bound. Most notably, Nielsen

established the strengthened estimate

N ≤ 22
2m − 22

2m−1

(22m+1 − 22m)
< 24

m

. (2)
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As outlined in the next section, efforts to further improve Estimate (2) face a number

of obstacles which have thus far stubbornly resisted resolution. In particular, the

techniques used to date exploit only the oddness of the factors {pi}, and even then

only in a mild way, without exploiting their primeness at all.

To describe these obstacles, and set them in the context of Heath-Brown’s es-

timation procedure and subsequent refinements of it, we next outline his general

estimation approach. This is done to both motivate, and make clear, the innovations

introduced in this paper to overcome some of these key obstacles.

These innovations form the main content of this paper and of three associated

companion papers ([24], [25] and [26]). As will become apparent, these innovations

allow for a substantial tightening of Estimate (2) – especially in special cases where,

for example, an odd perfect number is not divisible by three.

2. Where Things Stand – Heath-Brown’s Estimation Approach

To obtain his uniform upper bound for odd perfect numbers N =
∏m

i=1 p
ei
i with

m distinct prime divisors, Heath-Brown considered the broader problem of finding

bounds for (b/a)-multiply perfect numbers satisfying σ(N) = (b/a)N where a, b are

relatively prime positive integers with b > a and a odd.1 In this broader context

he developed an elegant two-stage estimation approach, since refined further by

authors such as Cook and Nielsen.

2.1. Heath-Brown’s Procedure

Central to Heath-Brown’s approach were two observations.

Observation A. If N =
∏m

i=1 p
ei
i satsifies σ(N) = (b/a)N then, since

σ

(
m∏
i=1

peii

)
=

m∏
i=1

σ(peii ) =

m∏
i=1

(
1 + pi + p2i + · · ·+ peii

)
=

m∏
i=1

(
pei+1
i − 1

pi − 1

)

=

m∏
i=1

p
ei
i

(
1− 1

p
ei+1

i

)
(
1− 1

pi

)
 ,

1Throughout this paper, as well as in [24], [25] and [26], we use the term “(b/a)-multi-perfect”
to mean simply that σ(N)/N = b/a, a given rational number not necessarily an integer.
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we must have that
m∏
i=1

(
1− 1

pi

)
=

a

b

m∏
i=1

(
1− 1

pei+1
i

)
<

a

b
. (3)

Observation B. We cannot have that
∏l

i=1

(
1− 1

pi

)
= a/b for any positive integer

l ≤ m since, after reduction to lowest terms, the left-hand side here is a fraction with

at least one factor of two in the numerator, which would contradict the assumption

that a is odd.2

In view of these two observations, if N =
∏m

i=1 p
ei
i satisfies σ(N) = (b/a)N then

the following three properties must always hold.

(i) There must be a unique positive integer k ≤ m such that

k∏
i=1

(
1− 1

pi

)
<

a

b
<

k−1∏
i=1

(
1− 1

pi

)
. (4)

(ii) Secondly, by rearranging the equality in (3), we must also then have that

k∏
i=1

(
1− 1

pei+1
i

)
=

[
b

a

(
k∏

i=1

(
1− 1

pi

))] m∏
i=k+1

[(
1− 1

pi

)(
1− 1

pei+1
i

)−1
]

≤ b

a

(
k∏

i=1

(
1− 1

pi

))
< 1

by Inequality (4), with equality if and only if k = m. Hence, if we define

b∗ = b
∏k

i=1(pi − 1) and a∗ = a
∏k

i=1 pi, and also specify subscripts j1, . . . , jk
such that p

ej1
j1

< p
ej2
j2

< · · · < p
ejk
jk

, then there must be some unique positive

integer 1 ≤ r ≤ k such that

r∏
i=1

(
1− 1

p
eji+1

ji

)
≤
(
b∗

a∗

)
<

r−1∏
i=1

(
1− 1

p
eji+1

ji

)
. (5)

(iii) Finally, by rearranging the identity σ(N) = (b/a)N to extract all those factors

from N that involve {pejiji
}ri=1, and all those factors from σ(N) that involve

{σ(pejiji
)}ri=1, and then re-grouping these with the fraction b/a, we must also

then have that

σ(Ñ) =

(
b̃

ã

)
Ñ

2Note that this is the sole place where Heath-Brown and subsequent authors use the requirement
that the {pi}mi=1 be odd primes. Even then this uses only the oddness of each pi, not that they
are also required to be prime.
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where Ñ = N/(
∏r

i=1 p
eji
ji

) denotes the “remaining” part of N after this ex-

traction, and the positive integers ã, b̃ are defined by

ã = a

r∏
i=1

σ
(
p
eji
ji

)
and b̃ = b

r∏
i=1

p
eji
ji

.

With these three properties in hand, Heath-Brown was able to implement his

iterative two-stage estimation procedure for odd numbers N =
∏m

i=1 p
ei
i satisfying

σ(N) = (b/a)N .

Stage one involved establishing a general upper bound on the product,
∏k

i=1 yi,

of any increasing set of positive integers {yi}ki=1 for which the joint inequalities

k∏
i=1

(
1− 1

yi

)
≤ a

b
<

k−1∏
i=1

(
1− 1

yi

)
(6)

hold. The relevance of such a bound in the context of odd (b/a)-multiply perfect

numbers flows from Property (i) above (see, in particular, Inequality (4)). Using

an inductive argument, Heath-Brown derived that in such circumstances, for any

positive integers a, b with a < b, the product of the yi must satisfy3

k∏
i=1

yi ≤ (4a)2
k−1. (7)

Next, invoking Property (ii), stage two then involved carrying over this same

estimation procedure to the quantity
∏r

i=1 p
eji+1

ji
, where (5) holds. Finally, Heath-

Brown then used a careful iterative procedure, invoking Property (iii) above, to

arrive (after a finite number of steps) at a uniform (in m) upper bound for the

quantity PN , where P denotes
∏m

i=1 pi. The quantity PN naturally arises in

Heath-Brown’s iterative procedure, as part of the stage two estimation process,

from successive application of Estimate (7) to the quantities {yi = p
eji+1

ji
}ri=1, not-

ing that Property (ii) yields that the joint inequalities required to invoke Estimate

(7) for
∏r

i=1 yi =
∏r

i=1 p
eji+1

ji
hold with respect to the fraction (b∗/a∗) < 1.

3 It is worth noting that, at first glance, Heath-Brown’s proof of this bound seems only to use
the integrality of a and b very weakly – viz. to conclude that (b− a) must be at least one. Hence,
one might naively hope to improve Estimate (7) simply by dropping the requirement that a, b be
integers, and applying Heath-Brown’s method of proof using ã = a/(b − a) and b̃ = b/(b − a) in
place of a and b (noting that ã, b̃ ∈ Q still satisfy ã/b̃ = a/b and b̃− ã ≥ 1).

One quickly sees, however, that such an approach breaks down during the inductive step of
Heath-Brown’s argument – where he needs that, for any 1 ≤ l ≤ k−1, the quantities a′ = a

∏l
i=1 yi

and b′ = b
∏l

i=1(yi − 1) also satisfy (b′ − a′) ≥ 1. This trivially must hold if a and b are integers,

but need not necessarily hold if a and b have been replaced in the working by ã and b̃. We mention
this here because an analogous issue arises, and hence needs to be overcome, in relation to the
approach we ultimately do adopt to strengthen Estimate (7) for cases where (b− a) > 1.
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2.2. Improving Heath-Brown’s Stage One Estimate

Subsequent efforts to improve Heath-Brown’s upper bound for odd perfect numbers

have worked to tighten both stages of his estimation procedure, as well as their

iterative application. In the remainder of this paper, however, as well as its two

immediate sequels ([24] and [25]), we shall focus solely on methods to strengthen

Heath-Brown’s stage one estimate, for sets of integers {yi}ki=1 satisfying joint in-

equalities of the form (6).

Only in the last of these four companion papers, [26], do we turn to the task of

further optimising stage two and the iterative aspects of Heath-Brown’s procedure

– to allow us to carry our improved stage one estimates through to substantially

tightened overall upper bounds for odd perfect numbers.

2.2.1. Some Preliminary Definitions

To provide a convenient shorthand to help streamline our discussion of Heath-Brown

stage one-type estimates, it is useful to introduce a number of definitions.

Definition 1. Suppose a, d ∈ N are given, with a and d relatively prime (so that

the fraction a/(a+d) is in lowest terms). For any positive integer k we will say that

{yi}ki=1 is an HBC-admissible k-tuple for the fraction a/(a + d) if the yi satisfy:4

yi ∈ N for all i = 1, . . . , k; y1 < y2 < · · · < yk; and

k∏
i=1

(
1− 1

yi

)
≤ a

a+ d
<

k−1∏
i=1

(
1− 1

yi

)
. (8)

Definition 2. If, in addition, the positive integers yi in Definition 1 are required to

be odd then we will say that {yi}ki=1 is an HBC-admissible odd k-tuple for a/(a+d);

while if they are required to be prime then we will say that {yi}ki=1 is an HBC-

admissible prime k-tuple for a/(a+ d) (and similarly for other subsets of the space

of HBC-admissible k-tuples).

We will also refer to a k-tuple as simply being HBC-admissible where it is clear

from the context if oddness or primality (or some other condition) is also required,

and where the integer k and fraction a/(a+ d) are also understood.

With these definitions in hand, Estimate (7) may be compactly referred to as a

bound on
∏k

i=1 yi for HBC-admissible k-tuples {yi}ki=1 for the fraction a/(a + d).

Our goal is to improve this bound, especially in cases where d > 1 or where we

restrict our attention to HBC-admissible odd prime k-tuples.

4Note that this notion of admissible is unrelated to concepts of admissible k-tuples studied
in other number-theoretic contexts; the prefix “HBC-”, standing for “Heath-Brown-Cook-”, is
included to make this distinction clear.
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2.2.2. Cook’s Strengthening of Heath-Brown’s Stage One Estimate

Estimate (7) was soon improved by Cook [4] to the tighter bound

k∏
i=1

yi ≤
1

a

[
(a+ 1)2

k

− (a+ 1)2
k−1
]

(9)

for HBC-admissible k-tuples {yi}ki=1 for a/(a+ d). Central to Cook’s approach was

the following lemma, a proof of which is given by Nielsen in [18] (see Lemma 1.2 of

that article).

Lemma 2 ([4]). Suppose that {zi}ki=1 and {yi}ki=1 are non-decreasing k-tuples of

real numbers greater than one such that

l∏
i=1

zi ≤
l∏

i=1

yi for all 1 ≤ l ≤ k. (10)

Then we must have
k∏

i=1

(1− 1/zi) ≤
k∏

i=1

(1− 1/yi),

with equality if and only if zi = yi for all i ≥ 1.

Remark 1. Note that geometrically this lemma says that, given some comparison

set of non-decreasing real numbers {zi}ki=1, the quantity
∏k

i=1(1− 1/yi) cannot be

forced to the left of the corresponding quantity
∏k

i=1(1− 1/zi) on the number line,

unless at least one of the partial products,
∏l

i=1 yi, is smaller than its counterpart,∏l
i=1 zi.

By choosing an appropriate set of “calibrating” numbers (our terminology), Cook

then showed that this is enough to enable an inductive proof of Estimate (9). Specif-

ically, for any given k Cook considered the calibrating set of increasing integers

{zi}ki=1 given by

zi =

{
(a+ 1)2

i−1

+ 1 for i = 1, 2, . . . , k − 1

(a+ 1)2
k−1

for i = k

so that, by construction,

k∏
i=1

(
1− 1

zi

)
=

a

a+ 1
≥ a

a+ d
(11)

for any integer d ≥ 1 (with equality if and only if d = 1).
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Then if yi = zi for all 1 ≤ i ≤ k we have, by direct calculation, that

a

k∏
i=1

yi = a

k∏
i=1

zi = (a+ 1)2
k

− (a+ 1)2
k−1

,

so Estimate (9) holds.

On the other hand, if the k-tuples {yi}ki=1 and {zi}ki=1 are not identical then,

comparing (11) with the HBC-admissibility condition (8), Lemma 2 yields that we

must have
∏l

i=1 yi <
∏l

i=1 zi for some 1 ≤ l ≤ k. Yet then if l = k we are once

again done; while if l < k then we may consider the “auxiliary problem”, obtained

by re-arranging (8), of bounding
∏k

i=l+1 yi where the {yi}ki=l+1 satisfy

k∏
i=l+1

(
1− 1

yi

)
≤ ã

ã+ d̃
<

k−1∏
i=l+1

(
1− 1

yi

)
, (12)

and where the numerator and denominator of the “auxiliary fraction” in (12), ã/(ã+

d̃), are given by ã = a
∏l

i=1 yi and (ã+ d̃) = (a+ d)
∏l

i=1(yi − 1).

Yet then, by the inductive assumption, Cook’s improved bound holds for this

auxiliary problem, yielding

ã

k∏
i=l+1

yi ≤ (ã+ 1)2
k−l

− (ã+ 1)2
k−l−1

.

Hence, Estimate (9) also holds in this case (using that
∏l

i=1 yi <
∏l

i=1 zi and that,

by construction, a
∏l

i=1 zi = (a+ 1)2
l − 1).

2.2.3. Extending Cook’s Approach

Estimate (9) is stronger than (7), and is sharp for fractions a/(a+ d) where d = 1.

For cases where d > 1, however, Cook’s approach does not exploit this in any way to

tighten the bound on
∏k

i=1 yi in such situations. Indeed, we see that in cases where

d > 1 Cook’s procedure only uses the geometric constraint implicit in Lemma 2

very weakly – with his choice of calibrating k-tuple tailored to force
∏k

i=1(1− 1/yi)

to remain all the way to the right of a/(a+1), not merely to the right of a/(a+ d),

unless one of the conditions (10) is violated.

This geometric perspective strongly suggests that, in cases where d > 1, it might

be worthwhile, in seeking a stronger bound on
∏k

i=1 yi, to consider the use of a

different calibrating k-tuple – chosen so that (amongst other things)
∏k

i=1(1−1/zi)

equals a/(a + d) rather than a/(a + 1). This is the key insight which allows us to

obtain such a strengthened bound, for fractions a/(a+ d) where d > 1.

This use of a different calibrating k-tuple should not be done, however, in ex-

pectation of being able to push through the whole of Cook’s inductive approach, to

obtain a strengthened version of Estimate (9) for fractions with d > 1.
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The complication is that, in the latter part of Cook’s argument, he was able,

by induction, to assume Bound (9) holds for any auxiliary (k − l)-tuple (for some

l ≥ 1) that is HBC-admissible for the associated auxiliary fraction (a
∏l

i=1 yi)/((a+

d)
∏l

i=1(yi − 1)). In the d > 1 case, however, there is no guarantee that, for this

auxiliary fraction, the difference between denominator and numerator need remain

greater than or equal to d.5

Given this obstacle, the key to strengthening (9) in cases where d > 1 is the

following:

(a) use a different calibrating k-tuple, carefully tailored to the fraction a/(a + d),

in the part of Cook’s approach where he invokes Lemma 2;

(b) then simply invoke Estimate (9), even though it is only sharp for fractions

where the denominator and numerator differ by one, in handling the auxiliary

bounding problem which the estimation procedure then naturally gives rise to.

This is exactly the approach we use in Section 3 below to establish a new Heath-

Brown stage one-type estimate that, while coinciding with Estimate (9) for fractions

of the form a/(a+ 1), is markedly stronger for fractions where d > 1.

3. Main Result

Definition 3. Suppose a, d ∈ N are given, with a and d relatively prime (so that

the fraction a/(a+ d) is in lowest terms). For any such fraction a/(a+ d) and any

k ∈ N let α and {ni = ni(a, d)}ki=1 be the positive real numbers defined by

α = (a+ d)/d = 1 +
a

d
(13)

and

ni =

{
1 + α2i−1

for i = 1, 2, . . . , k − 1

α2k−1

for i = k.
(14)

The key properties of these numbers for our purposes, and hence the reason for

their choice, are set out in the following lemma.

Lemma 3. The real numbers ni simultaneously satisfy

k∏
i=1

(
1− 1

ni

)
=

a

a+ d
(15)

5This complication is exactly analogous to the issue discussed earlier in footnote 3.
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and also

j∏
i=1

ni =
d

a

(
α2j − 1

)
for each j = 1, . . . , k − 1; (16)

k∏
i=1

ni =
d

a

(
α2k − α2k−1

)
. (17)

Proof. We first establish identities (16) and(17). To see (16), observe that by direct

computation, for any j = 1, . . . , k − 1, we have

j∏
i=1

ni = (1 + α)(1 + α2) . . . (1 + α2j−1

)

= 1 + α+ α2 + α3 + · · ·+ α2j−2 + α2j−1 =
α2j − 1

α− 1
=

d

a

(
α2j − 1

)
since (α− 1) = a/d, as desired. As for (17), it then follows that

k∏
i=1

ni = nk

k−1∏
i=1

ni = α2k−1

[
d

a

(
α2k−1

− 1
)]

=
d

a

(
α2k − α2k−1

)
as claimed.

Finally, to see identity (15), by (17) and the definition of the ni we have

k∏
i=1

(
1− 1

ni

)
=

∏k
i=1(ni − 1)∏k

i=1 ni

=
αα2α4 . . . α2k−2

(
α2k−1 − 1

)
[
d
a

(
α2k−1 − 1

)
α2k−1

]
=

a

d

(
α2k−1−1

α2k−1

)
=

a

d

(
1

α

)
=

a

d

(
d

a+ d

)
=

a

a+ d

as claimed.

We are now in a position to state our main theorem.

Theorem 1. Suppose {yi}ki=1 is an increasing sequence of positive integers such

that
k∏

i=1

(
1− 1

yi

)
≤ a

a+ d
<

k−1∏
i=1

(
1− 1

yi

)
. (18)
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Then there exists at least one κ ∈ {1, . . . , k} such that

κ∏
i=1

yi ≤
κ∏

i=1

ni. (19)

Moreover, let κmax denote the largest κ such that (19) holds; and also, for any

κ = 1, 2, . . . , k, define 6

α(κ) =

{
(a+ d)/d(1−1/2κ) = αd1/2

κ

for κ = 1, 2, . . . , k − 1

(a+ d)/d = α for κ = k .
(20)

Then

a

k∏
i=1

yi ≤ d η
(
α2k

(κmax)
− α2k−1

(κmax)

)
= d ηFk

(
α(κmax)

)
(21)

where η is defined to equal one if κmax = k and zero if κmax < k.

Before turning to the proof of Theorem 1, it is helpful to note the following two

observations.

Remark 2. In case d = 1 in Theorem 1, then α(κ) = α = (a + 1) for any κ, and

hence (21) just becomes the “usual” bound

a

k∏
i=1

yi ≤ (a+ 1)2
k

− (a+ 1)2
k−1

.

Remark 3. In case k = 1 in Theorem 1, then we must have κmax = k = 1, so

α(κmax) = (a+ d)/d = α. Hence (21) becomes the estimate that ay1 ≤ d(α2 − α) =

dα(α− 1) = aα or, in other words, y1 ≤ α. Yet this is easily seen directly since, for

k = 1, the left-hand half of the HBC-admissibility condition (18) implies

1− 1

y1
≤ a

a+ d
= 1− d

a+ d
= 1− 1

α
,

which clearly holds if and only if y1 ≤ α.

Proof. If k = 1, it follows from Remark 3 that Estimate (21), and hence also the

claim embodied in (19), must hold. So now suppose k ≥ 2.

In this case, to see the first claim of the theorem, suppose (19) were not true for

any κ. Then we would have

κ∏
i=1

yi >

κ∏
i=1

ni for all κ = 1, 2, . . . , k.

6We use the notation α(κ) here rather than ακ because we wish to reserve the latter for a
different concept – see Definition 3.7 of [24].
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Yet then, by Lemma 2 and identity (15) from Lemma 3, we would have

k∏
i=1

(
1− 1

yi

)
>

k∏
i=1

(
1− 1

ni

)
=

a

a+ d
,

which would contradict (18).7

To see the second claim, let κmax be as defined. Then if κmax = k, and noting

α(κmax) = α in this case, we immediately have by identity (17) that

a

k∏
i=1

yi ≤ a

k∏
i=1

ni = d
(
α2k − α2k−1

)
which is the desired bound (21) in this case.

On the other hand, if κmax ̸= k, then κmax ∈ {1, 2, . . . , k−1} and so we will have

κmax∏
i=1

yi ≤
κmax∏
i=1

ni =
d

a

(
α2κmax − 1

)
(22)

by Lemma 3, and

k∏
i=κmax+1

(
1− 1

yi

)
≤

a (
∏κmax

i=1 yi)

a (
∏κmax

i=1 yi) + d∗
<

k−1∏
i=κmax+1

(
1− 1

yi

)
(23)

where d∗ is a positive integer given by

d∗ = (a+ d)

κmax∏
i=1

(yi − 1)− a

κmax∏
i=1

yi .

7To invoke Lemma 2 here requires that the sequence {ni}ki=1 be non-decreasing. It is readily

checked, however, that: (i) {ni}ki=1 is non-decreasing if and only if nk ≥ nk−1, which holds if

and only if 1 + α2k−2 ≤ α2k−1
, or equivalently α ≥ ((1 +

√
5)/2)1/2

k−2
; and (ii) for y1 ≥ 3

the fraction a/(a + d) must, by the left-hand inequality of the HBC-admissibility condition (18),
satisfy a/(a + d) ≥ (2/3)(3/4) . . . ((k + 1)/(k + 2)) = 2/(k + 2), whence in turn α must satsify
α ≥ (k + 2)/k = 1 + 2/k.

Yet it is easily seen that, for all k ≥ 2, (1 + 2/k)2
k−2 ≥ 1 + 2k−2(2/k) = 1 + (2k−1/k) ≥ 2 >

(1 +
√
5)/2, and hence 1 + 2/k > ((1 +

√
5)/2)1/2

k−2
; so it follows that for k ≥ 2 the sequence

{ni}ki=1 must indeed be non-decreasing for y1 ≥ 3, as required.
On the other hand, for k ≥ 2 we cannot have y1 = 1, as this would lead to a contradiction to

the right-hand inequality in (18); while if y1 = 2 then we automatically have y1 < 1 + α = n1,
since α = 1 + a/d > 1, so the first claim of the theorem holds directly in this case without the
need to invoke Lemma 2.
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But then, just by the “usual” estimate applied to (23), we will have(
a

κmax∏
i=1

yi

)
k∏

i=κmax+1

yi ≤ Fk−κmax

(
1 + a

κmax∏
i=1

yi

)

≤ Fk−κmax

(
1 + a

κmax∏
i=1

ni

)
= Fk−κmax

(
dα2κmax − d+ 1

)
≤ Fk−κmax

(
dα2κmax

)
= Fk−κmax

((
d1/2

κmax
α
)2κmax

)
= Fk−κmax

(
α2κmax

(κmax)

)
where we have twice used the monotonicity of Fk−κmax(·) (in deriving the second

and fourth lines), and also twice invoked Estimate (22) (to obtain the second and

third lines). Hence, directly from the definition of Fk−κmax
(·), we obtain

a

k∏
i=1

yi ≤
(
α2κmax

(κmax)

)2k−κmax

−
(
α2κmax

(κmax)

)2k−κmax−1

=
(
α2k

(κmax)
− α2k−1

(κmax)

)
which is again the desired bound (21) in this case.

With the proof of Theorem 1 in hand, we are now in a position to establish two

immediate corollaries of this theorem, based on the following observation.

Remark 4. Observe that, since d ≥ 1, we have

(a+ d)

d
= α = α(k) ≤ α(k−1) ≤ · · · ≤ α(3) ≤ α(2) ≤ α(1) =

(a+ d)√
d

with strict inequalities at every stage if d > 1. Since Fr(x) = x2r − x2r−1

is a

monotonically increasing function of x for all r ∈ N and x ≥ 1 (see Lemma 9 of

Appendix A), we therefore in turn have

Fk(α(k)) ≤ Fk(α(k−1)) ≤ · · · ≤ Fk(α(2)) ≤ Fk(α(1)) .

Moreover, the first inequality may be strengthened since, if we further define a

quantity ᾱ(k) lying between α(k) and α(k−1) by

ᾱ(k) = (a+ d)/d(1−1/2k) = αd1/2
k

, (24)
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then

dFk(α(k)) = d
[
α2k − α2k−1

]
= d

[(
1

d

)(
αd1/2

k
)2k

−
(

1√
d

)(
αd1/2

k
)2k−1]

≤
[
ᾱ2k

(k) − ᾱ2k−1

(k)

]
= Fk(ᾱ(k)) .

Hence, we even have

dFk(α(k)) ≤ Fk(ᾱ(k)) ≤ Fk(α(k−1)) ≤ · · · ≤ Fk(α(2)) ≤ Fk(α(1)) , (25)

with strict inequalities throughout unless d = 1.

In view of (25), we immediately have the following results.

Corollary 1. Suppose a, d and {yi}ki=1 are as in Theorem 1. Then

a

k∏
i=1

yi ≤

[(
a+ d√

d

)2k

−
(
a+ d√

d

)2k−1]
. (26)

Proof. This follows directly from (21) and (25), noting that α(1) = (a+ d)/
√
d.

Corollary 2. Suppose a, d and {yi}ki=1 are as in Theorem 1, with k ≥ 2, and let

⌊(1 + α)⌋ = ⌊n1⌋ denote the greatest integer less than or equal to (1 + α). Then

unless y1 = ⌊(1 + α)⌋, the product
∏k

i=1 yi must in fact satisfy the stronger bound

a

k∏
i=1

yi ≤

[(
a+ d

d3/4

)2k

−
(
a+ d

d3/4

)2k−1]
. (27)

Proof. Under the hypotheses of Theorem 1, we cannot (for k ≥ 2) have y1 ≤ α =

(a+d)/d, or we would have
∏k−1

i=1 (1−1/yi) ≤ 1−1/y1 ≤ 1−d/(a+d) = a/(a+d),

contradicting the right-hand inequality in (18). On the other hand, if y1 > 1+α =

n1 then (19) does not hold for κ = 1, and hence we must have κmax ≥ 2. Combining

these two observations, it follows immediately from (25) and Theorem 1 that, unless

y1 = ⌊(1 + α)⌋, Estimate (27) must hold.

The following example illustrates the strength of Corollaries 1 and 2, and hence

of the more general bound (21) in Theorem 1.

Example 1. Consider the case a = 7 and d = 3 (i.e., the fraction 7/10). Then, for

any HBC-admissible {yi}ki=1 for this fraction, Corollary 1 gives us the bound

k∏
i=1

yi ≤
1

7

[(
10√
3

)2k

−
(

10√
3

)2k−1]
≈ 1

7

[
5.77352

k

− 5.77352
k−1
]
, (28)
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which is a much tighter bound than the “standard” estimate

k∏
i=1

yi ≤
1

7

[
82

k

− 82
k−1
]
. (29)

Moreover, by Corollary 2 we must have that, if y1 ̸= 4, then

k∏
i=1

yi ≤
1

7

[(
10

33/4

)2k

−
(

10

33/4

)2k−1]
≈ 1

7

[
4.386912

k

− 4.386912
k−1
]
. (30)

Estimates (28) and (30) represent substantial improvements over the “standard”

bound, (29), for this example. With only a little additional work, however, we can

significantly tighten them still further, based on the following important general

observation about the proof of Theorem 1.

Remark 5. In the latter part of the proof of Theorem 1 we simply used the “stan-

dard” (i.e., difference equals one) estimate, applied to (23). In particular situations,

however, we will often be able to do vastly better when d∗ > 1 – that is, get a much

tighter bound – by instead iteratively using our improved estimate (i.e., Theorem

1) at this point in the estimation process. In other words, in many circumstances

it will be more useful to think of the proof of Theorem 1 as a process for getting

better upper bounds for
∏k

i=1 yi, rather than thinking of Theorem 1 (or Corollaries

1 or 2) simply as “formal results to be invoked without further ado”.

This principle will be fruitfully invoked repeatedly in the proof of Lemma 8 in

Section 5 below. However, as an immediate concrete illustration of it, consider

again the task of finding an upper bound for the product of the components of

any HBC-admissible k-tuple for the fraction 7/10. For presentational simplicity,

suppose also that k ≥ 3 here, to avoid having to deal with additional subcases in

the event k = 1 or 2.

Example 1 Revisited. Consider again the fraction 7/10, for which we have a = 7

and d = 3. For this fraction we then have α = 10/3, and hence in turn{
n1 = 1 + α = 13/3 ≈ 4.333

n2 = 1 + α2 = 109/9 ≈ 12.111

and also n1n2 = (13/3)(109/9) ≈ 52.481.

Then for any HBC-admissible k-tuple {y1, . . . , yk} for 7/10, we clearly cannot

have y1 ≤ 3 (since 7/10 > 2/3). Moreover, if y1 = 4 then we would have that

{y2, . . . , yk} is an HBC-admissible (k − 1)-tuple for (7/10)(4/3) = 14/15, so we
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would get directly from the “usual” bound that

k∏
i=1

yi ≤ 4

[
1

14

(
152

k−1

− 152
k−2
)]

=
2

7

(
152

k−1

− 152
k−2
)
≈ 2

7

(
3.872982

k

− 3.872982
k−1
)

which is a marked improvement over simply applying the “usual” estimate to {yi}ki=1

for 7/10, namely (29).

Next, if y1 ≥ 5 then κmax(7/10) ≥ 2, so the general bound from Corollary 1 that

k∏
i=1

yi ≤
1

7

[(
10√
3

)2k

−
(

10√
3

)2k−1]
≈ 1

7

[
5.77352

k

− 5.77352
k−1
]

can be improved (as per Corollary 2) to

k∏
i=1

yi ≤
1

7

[(
10

33/4

)2k

−
(

10

33/4

)2k−1]
≈ 1

7

[
4.386912

k

− 4.386912
k−1
]
.

Moreover, if y1 = 5 then {y2, . . . , yk} is an HBC-admissible (k − 1)-tuple for

(7/10)(5/4) = 7/8, so we would get directly from the “usual” bound that

k∏
i=1

yi ≤ 5

[
1

7

(
82

k−1

− 82
k−2
)]

≈ 5

7

(
2.828432

k

− 2.828432
k−1
)
.

On the other hand, if y1 ≥ 6 and if y1y2 ≤ n1n2 < 53 then the only two

possibilities are y1 = 6, y2 = 7 or y1 = 6, y2 = 8. Yet if y2 = 8 then {y1, y3, . . . , yk}
is an HBC-admissible (k− 1)-tuple for (7/10)(8/7) = 4/5, so we would get directly

from the “usual” bound that

k∏
i=1

yi ≤ 8

[
1

4

(
52

k−1

− 52
k−2
)]

≈ 2
(
2.236072

k

− 2.236072
k−1
)
;

while if y1 = 6, y2 = 7 then {y3, . . . , yk} is an HBC-admissible (k − 2)-tuple for

(7/10)(6/5)(7/6) = 49/50, so we would get directly from the “usual” bound that

k∏
i=1

yi ≤ 42

[
1

49

(
502

k−2

− 502
k−3
)]

≈ 6

7

(
2.659152

k

− 2.659152
k−1
)
.

Finally, however, if we have instead that y1 ≥ 6 > n1 and y1y2 > n1n2 then

κmax(7/10) ≥ 3, and so we have (from Theorem 1 and (25)) the general bound

k∏
i=1

yi ≤
1

7

[(
10

37/8

)2k

−
(

10

37/8

)2k−1]
≈ 1

7

(
3.824012

k

− 3.824012
k−1
)
.



INTEGERS: 24 (2024) 18

Thus overall, combining all of the above, we obtain that without restriction, for

k ≥ 3, we must have

k∏
i=1

yi ≤
2

7

(√
15

2k

−
√
15

2k−1
)

≈ 2

7

(
3.872982

k

− 3.872982
k−1
)
.

Moreover, this estimate is actually sharp (for HBC-admissible k-tuples without

any restriction upon the yi), since the right-hand side bound here can clearly be

achieved by taking y1 = 4 and {y2, . . . , yk} to be the product-maximising HBC-

admissible (k − 1)-tuple for 14/15 (viz. y2 = 15 + 1 = 16, y3 = 152 + 1 = 226,

y4 = 154 + 1 = 50626, . . . , yk = 152
k−2

).

The following lemma summarizes these results.

Lemma 4. Suppose k ≥ 3. For any HBC-admissible k-tuple {yi}ki=1 for the fraction

7/10 we must have

k∏
i=1

yi ≤
2

7

(√
15

2k

−
√
15

2k−1
)

≈ 2

7

(
3.872982

k

− 3.872982
k−1
)
; (31)

and this estimate cannot be further improved for the general class of HBC-admissible

k-tuples.

Clearly, however, if we were to further restrict ourselves in Lemma 4 to, say, the

space of HBC-admissible prime k-tuples, we might hope to further tighten Estimate

(31) considerably. In the specific context of developing improved bounds for odd

perfect numbers, the remainder of this paper is devoted to beginning the process of

deriving tighter upper bounds for
∏k

i=1 yi for HBC-admissible odd prime k-tuples

{yi}ki=1 for the fraction 1/2. Initially this is done in the context of odd perfect

numbers N for which 3 does not divide N – see Section 5 below. These ideas are

then developed further in the next two companion papers to this one, [24] and [25],

entitled Improved Upper Bounds for Odd Perfect Numbers – Parts II and III.

In particular, in [24] we obtain new bounds for
∏k

i=1 yi, for odd prime HBC-

admissible k-tuples for 1/2 for which y1 ̸= 3. These bounds are not universally

stronger than those of this paper, but are dramatically sharper for all values of k

up to even very high levels.

In [25] we then extend these ideas to obtain an improved general bound for∏k
i=1 yi for odd prime HBC-admissible k-tuples for 1/2 without any constraint on

y1. For the first time, these papers, and the analysis in Section 5 below, exploit

the primality of the yi in a strong way to obtain improvements to the stage one

estimates of Heath-Brown, Cook, and Nielsen. Note, however, that in these settings

the primality of the yi is not made use of in an algebraic sense, but in the sense

that it allows the bounding task in each case to be transferred to one or more
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“auxiliary problems” where the fractions involved have differences d > 1 between

their numerator and denominator. This enables the strengthening of the “standard”

bound in such circumstances, provided by Theorem 1, to be exploited.

Finally, in [26] – the fourth paper in this series – we show how these various

improved stage one estimates for
∏k

i=1 yi may then be extended to substantially

improved, albeit still very large, upper bounds for any odd perfect number N itself,

purely in terms of its number of distinct prime divisors.

4. A Brief Digression – Strengthening Grün’s Bound for p1

Before embarking on the program just outlined, we briefly digress to establish a

result that is of independent interest in the study of odd perfect numbers – namely

an elementary new upper bound on the maximum possible size of the smallest prime

divisor, p1, of an odd perfect number with m distinct prime divisors. Although not

essential to the argument, we use this strengthened estimate in our proof of Lemma

7 below.

For nearly 70 years the best known such upper bound was the 1952 estimate of

Grün [8] that p1 < (2m/3) + 2. This was recently strengthened by Zelinsky [30] to

the bound p1 < (m− 1)/2.

Using an entirely different method, we show here that p1 must also satisfy the

bound p1 < (3m/7) + 3. This bound is always tighter than that of Grün, while

it is stronger than Zelinsky’s for any odd perfect number with more than 49 dis-

tinct prime divisors (and hence for all but a finite number of putative odd perfect

numbers). For example, for an odd perfect number with (say) 100 distinct prime di-

visors, Grün’s bound shows that the smallest prime divisor, p1, must satisfy p1 ≤ 68;

Zelinsky’s bound strengthens this to p1 ≤ 49; while our estimate establishes that in

fact we must have p1 ≤ 45, a further tightening.

The crux of our result is the final part of the following lemma.

Lemma 5. Suppose that {y1, . . . , yk} is an HBC-admissible k-tuple for 1/2, so that

k∏
i=1

(
1− 1

yi

)
≤ 1

2
<

k−1∏
i=1

(
1− 1

yi

)
. (32)

Then the following hold:

(i) If we require only that the yi be integers we must have y1 ≤ k + 1.

(ii) If we further require that the yi be odd integers we must have the tighter bound

(cf. Grün’s estimate) that y1 < 2(k + 3)/3 = (2k/3) + 2.
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(iii) Finally, if we require that the yi be prime we must have the even tighter bound

that: 8

y1 < (3k/7) + 3 . (33)

Remark 6. Bound (33) is still far from sharp since, for example, if k ≤ 6 we must

actually have y1 ≤ 3; if k ≤ 14 we must have y1 ≤ 5; and if k ≤ 26 we must have

y1 ≤ 7. The latter observation follows since, if y1 > 7 and k ≤ 26, then

k∏
i=1

(
1− 1

yi

)
≥
(
10

11

)(
12

13

)(
16

17

)
. . .

(
108

109

)(
112

113

)
≈ 0.5021;

while the other two follow in similar fashion.

Proof. To see the first claim, note that from the left-hand inequality of (32) we

must have

1

2
≥

k∏
i=1

(
yi − 1

yi

)
≥
(
y1 − 1

y1

)(
y1

y1 + 1

)(
y1 + 1

y1 + 2

)
. . .

(
y1 + k − 2

y1 + k − 1

)
=

y1 − 1

y1 + k − 1

which implies y1 + (k − 1) ≥ 2y1 − 2, and hence y1 ≤ k + 1 as claimed.

As for the second claim, following Grün’s approach and proceeding in similar

fashion we must in this case have, from the square of the left-hand inequality of

(32), that

1

4
≥

(
k∏

i=1

(
yi − 1

yi

))2

≥
(
y1 − 1

y1

)2(
y1 + 1

y1 + 2

)2(
y1 + 3

y1 + 4

)2

. . .

(
y1 + 2k − 3

y1 + 2k − 2

)2

>

[(
y1 − 2

y1 − 1

)(
y1 − 1

y1

)][(
y1

y1 + 1

)(
y1 + 1

y1 + 2

)]
. . .[(

y1 + 2k − 4

y1 + 2k − 3

)(
y1 + 2k − 3

y1 + 2k − 2

)]
=

y1 − 2

y1 + 2k − 2
,

which holds if and only if y1 + 2k − 2 > 4y1 − 8 or, equivalently, y1 < 2(k + 3)/3,

as claimed.

8To illustrate the relative strength of these various results, for k = 26 the sharp bound is that
y1 ≤ 7 for a prime HBC-admissible k-tuple (cf. Remark 6). This compares with a bound of only
y1 ≤ 27 for a general HBC-admissible k-tuple from Lemma 5(i); y1 ≤ 19 for the case of an odd
HBC-admissible k-tuple from Lemma 5(ii); and y1 ≤ 14 from our general estimate for the prime
HBC-admissible case, Lemma 5(iii).
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Finally, to see the third claim, for HBC-admissible prime k-tuples, note that the

required bound clearly holds if y1 ≤ 3, so we may assume without loss of generality

in what follows that y1 > 3. In this case, we must then have y1 ≡ ±1 (mod 6).

Suppose first that we had y1 ≡ −1 (mod 6). Then by considering the cube of

the left-hand inequality in (32) we would have that, for k even:

1

8
≥

[(
y1 − 1

y1

)3(
y1 + 1

y1 + 2

)3
][(

y1 + 5

y1 + 6

)3(
y1 + 7

y1 + 8

)3
]
. . .[(

y1 + 3k − 7

y1 + 3k − 6

)3(
y1 + 3k − 5

y1 + 3k − 4

)3
]

>

[(
y1 − 3

y1 − 2

)(
y1 − 2

y1 − 1

)(
y1 − 1

y1

)(
y1

y1 + 1

)(
y1 + 1

y1 + 2

)(
y1 + 2

y1 + 3

)]
×[(

y1 + 3

y1 + 4

)
. . .

(
y1 + 8

y1 + 9

)]
× · · · ×

[(
y1 + 3k − 9

y1 + 3k − 8

)
. . .

(
y1 + 3k − 4

y1 + 3k − 3

)]
=

y1 − 3

y1 + 3k − 3
. (34)

Here, within each set of square brackets, we have used the trivial inequality that,

for any x > 3, (
x− 1

x

)3

>

(
x− 3

x− 2

)(
x− 2

x− 1

)(
x− 1

x

)
,

and the only slightly less trivial inequality that, for any x > 2,(
x− 1

x

)3

>

(
x− 2

x− 1

)(
x− 1

x

)(
x

x+ 1

)
. (35)

To see Inequality (35) simply observe that(
x− 1

x

)2

=
x2 − 2x+ 1

x2
>

x2 − 2x

x2 − 1
=

(
x− 2

x− 1

)(
x

x+ 1

)
from which (35) follows immediately.

Returning to (34), it is also easily checked that the exact same inequality must

hold, in the event y1 ≡ −1 (mod 6), for k odd.

On the other hand, if we instead had y1 ≡ +1 (mod 6) then, by again considering
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the cube of the left-hand inequality in (32), we would have that, for k even,

1

8
≥

[(
y1 − 1

y1

)3(
y1 + 3

y1 + 4

)3
][(

y1 + 5

y1 + 6

)3(
y1 + 9

y1 + 10

)3
]
. . .[(

y1 + 3k − 7

y1 + 3k − 6

)3(
y1 + 3k − 3

y1 + 3k − 2

)3
]

>

[(
y1 − 2

y1 − 1

)(
y1 − 1

y1

)(
y1

y1 + 1

)(
y1 + 1

y1 + 2

)(
y1 + 2

y1 + 3

)(
y1 + 3

y1 + 4

)]
×[(

y1 + 4

y1 + 5

)
. . .

(
y1 + 9

y1 + 10

)]
× · · · ×

[(
y1 + 3k − 8

y1 + 3k − 7

)
. . .

(
y1 + 3k − 3

y1 + 3k − 2

)]

=
y1 − 2

y1 + 3k − 2
>

y1 − 3

y1 + 3k − 3
,

and similarly for k odd.

Hence, overall, we must always have, for any HBC-admissible prime k-tuple for

1/2, that (1/8) > (y1 − 3)/(y1 + 3k − 3), which immediately implies the desired

bound on y1.

To see the applicability of Lemma 5 to odd perfect numbers, it remains only to

recall (see Property (i) in Subsection 2.1) that, if N =
∏m

i=1 p
ei
i is an odd perfect

number, then there must be some k ∈ {1, 2, . . . ,m} such that {pi}ki=1 is an HBC-

admissible odd prime k-tuple for 1/2.9 Hence, Part (iii) of Lemma 5 applies and

we obtain the following result.

Lemma 6. Suppose that N =
∏m

i=1 p
ei
i is an odd perfect number. Then the smallest

prime divisor of N, p1, must satisfy

p1 < (3m/7) + 3 . (36)

Remark 7. For any odd perfect number N =
∏m

i=1 p
ei
i , Estimate (36) is a notice-

able improvement over Grün’s long-standing upper bound for p1, and also a further

improvement over Zelinsky’s recent strengthening of Grün’s bound if m > 49. Even

so, this bound still increases linearly with m. Using recent results of Dusart [6],

however, it is possible to establish that, in the asymptotic case as m → ∞, p1 may

actually be bounded by a quantity that grows much more slowly in m (almost like√
m). Further details are provided in Appendix B.

9Equally, since the proofs of the various bounds in Lemma 5 only ever used the left-hand
inequality in (32), it would suffice to note Observation A in Subsection 2.1 that, if N =

∏m
i=1 p

ei
i

is odd perfect, then
∏m

i=1(1− 1/pi) < 1/2.
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5. Improved Bounds for
∏k

i=1 pi where p1 > 3

We are now in a position to return to the program outlined at the end of Section 3.

Lemma 7. Suppose {pi}ki=1 is an HBC-admissible prime k-tuple for 1/2, so that

k∏
i=1

(
1− 1

pi

)
≤ 1

2
<

k−1∏
i=1

(
1− 1

pi

)
, (37)

and suppose p1 ≥ 5 (so k ≥ 7, by Remark 6). Then

k∏
i=1

pi ≤

(√ 8

37/8

)2k

−

(√
8

37/8

)2k−1 ≈ Fk(1.74906). (38)

Moreover, if p1 ̸= 5, we have the tighter uniform bounds that if 6 ≤ p1 < 18 then

k∏
i=1

pi ≤

(√ 12

515/16

)2k

−

(√
12

515/16

)2k−1 ≈ Fk(1.62910) ; (39)

while if 18 ≤ p1 < 258 then

k∏
i=1

pi ≤

(√ 512

25531/32

)2k

−

(√
512

25531/32

)2k−1 ≈ Fk(1.54514) ; (40)

and if p1 ≥ 258 then

k∏
i=1

pi ≤

(
√

25/4
(
216 + 1

216

))2k

−

(√
25/4

(
216 + 1

216

))2k−1
 ≈ Fk(1.54222) .

(41)

Proof. Observe that by (37) we have

k∏
i=2

(
1− 1

pi

)
≤ p1

2(p1 − 1)
=

p1
p1 + (p1 − 2)

<

k−1∏
i=2

(
1− 1

pi

)
.

Hence {p2, . . . , pk} is an HBC-admissible (k − 1)-tuple for the fraction a/(a + d)

where a = p1, d = p1 − 2, p1 ≥ 5 and 7 ≤ p2 < · · · < pk−1 < pk.

Then, for this fraction a/(a+ d) we have that the associated α and {ni}k−1
i=1 are

given by

α =
a+ d

d
=

2p1 − 2

p1 − 2
= 2 +

2

p1 − 2
≤ 8

3
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and ni = 1 + α2i−1

for all i = 1, . . . , k − 2; so, in particular,

n1 = 1 + α ≤ 11/3 and n2 = 1 + α2 ≤ 73/9

and thus

n1n2 ≤
(
11

3

)(
73

9

)
≈ 29.741 .

Therefore, since p2 ≥ 7 and p3 ≥ 11, we immediately have that p2 > n1 and

p2p3 > n1n2; and hence, for our HBC-admissible (k − 1)-tuple {p2, . . . , pk} for

p1/(p1 + (p1 − 2)), we must always have κmax ≥ 3.

It then immediately follows from Theorem 1 that we have the estimate

k∏
i=1

pi = p1

k∏
i=2

pi ≤

[(
2(p1 − 1)

(p1 − 2)7/8

)2k−1

−
(

2(p1 − 1)

(p1 − 2)7/8

)2k−2]

=

(
√

2(p1 − 1)

(p1 − 2)7/8

)2k

−

(√
2(p1 − 1)

(p1 − 2)7/8

)2k−1
 (42)

which, in the case p1 = 5, yields

k∏
i=1

pi ≤

(√ 8

37/8

)2k

−

(√
8

37/8

)2k−1 ≈ Fk(1.74906) , (43)

a significant improvement over the “standard” bound of Fk(2) = (22
k − 22

k−1

).

For arbitrary p1, however, we see that (42) is not a tight enough bound to get

a uniform estimate of the desired sort, independent of p1, since the right-hand

side of (42) eventually grows slowly as p1 increases (on the order of (
√
2p

1/16
1 )2

k ∼
(256p1)

2k−4

).10 Hence, to get an improved uniform bound of the form sought,

regardless of p1, we need to fine-tune (42), by showing that as the size of p1 increases

we can also establish a correspondingly stronger lower bound for the κmax value for

our associated auxiliary problem (so that, as p1 grows, so also, in due course, must

the lower bound for κmax, sufficient to keep
∏k

i=1 pi suitably contained).

To this end, suppose now that p1 > 5, and then for any fixed ω ∈ Z≥0 define

Aω : R>2 → R by

Aω(x) =
2(x− 1)

(x− 2)1−1/2ω+3 . (44)

10Of course, by Grün’s result (see Lemma 5) or, better still, our own sharpening of his estimate
in the previous section, it follows that for p1 to be large and for (37) to hold would require k to be
commensurately enormous. Conversely then, even for quite large k Estimate (42) would already,

with little further work, yield notably improved uniform bounds for
∏k

i=1 pi for HBC-admissible
prime k-tuples for 1/2 with p1 ≥ 5. Rather than pursue this line of reasoning here, however, we
defer exploration of this idea to [24], where it is taken up in a much more carefully optimized
fashion.
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Also, subdivide the set of integers Z≥4 into disjoint subsets Ω0,Ω1,Ω2, . . . defined

by Ωω = [22
ω

+ 2, 22
ω+1

+ 2) for ω = 0, 1, 2, . . . (so Ω0 = [4, 6), Ω1 = [6, 18),

Ω2 = [18, 258), and so on).

Then by our assumption that p1 > 5 we must have that p1 /∈ Ω0. Moreover, by

Lemma 5 we must have, for any k, that p1 < (3k/7)+3, and hence p1 /∈ Ωω for any

integer ω ≥ ωk where ωk = log2(log2((3k/7) + 1)). For if we had p1 ∈ Ωω for some

such ω we would have

3k

7
+ 3 > p1 ≥ 22

ω

+ 2 ≥ 22
ωk

+ 2 =
3k

7
+ 3,

a contradiction. Hence, for any k, if p1 ∈ Ωω then the following must hold:

(i) We must have that 1 ≤ ω < ωk.

(ii) We must also have that p1 − 2 ≥ 22
ω

by the definition of Ωω, and hence

α = 2 + 2/(p1 − 2) ≤ 2(1 + 1/22
ω

) for our auxiliary (k − 1)-tuple {pi}ki=2 for

p1/(p1 + (p1 − 2)). Therefore, for any j ≤ k − 1 we have, by Lemma 3, that

j∏
i=1

ni ≤
d

a

(
α2j − 1

)
< α2j ≤ 22

j

(
1 +

1

22ω

)2j

, (45)

with equality in the first inequality unless j = k − 1.

We now consider three cases.

Case 1: Suppose ω = 1, so p1 ∈ [6, 18). In this case we already have that n1 < p2
and n1n2 < p2p3 while, by Estimate (45),

n1n2n3 ≤ 28
(
1 +

1

4

)8

≈ 1, 526.9 < p2p3p4

since here p2 > p1 ≥ 6 so p2 ≥ 11 (since p1, p2 are prime), and thus also p3 ≥ 13

and p4 ≥ 17, whence p2p3p4 ≥ 11 · 13 · 17 = 2431. Hence we have

j∏
i=1

ni <

j∏
i=1

pi+1 for all j ≤ ω + 2 .

Case 2: Suppose ω = 2, so p1 ∈ [18, 258). In this case p1 ≥ 18 so, by primality

of the pi, we must in fact have p1 ≥ 19 and hence p2 ≥ 23, p3 ≥ 29, p4 ≥ 31 and

p5 ≥ 37. Thus here, in addition to already having that n1 < p2 and n1n2 < p2p3,

we also have by Estimate (45) that

n1n2n3 ≤ 28
(
1 +

1

16

)8

≈ 415.8 < 23 · 29 · 31 ≤ p2p3p4
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and similarly

n1n2n3n4 ≤ 216
(
1 +

1

16

)16

≈ 172, 879.3 < 765, 049 = 23 · 29 · 31 · 37 ≤ p2p3p4p5.

Thus once again we have

j∏
i=1

ni <

j∏
i=1

pi+1 for all j ≤ ω + 2 .

Case 3: Suppose 3 ≤ ω < ωk. Finally, in this case, in addition to already having

that n1 < p2 and n1n2 < p2p3, we clearly have:

1. for any 3 ≤ j ≤ ω,

j∏
i=1

ni ≤ 22
ω

(
1 +

1

22ω

)2ω

< 2.22
ω

< 2p1 <

j∏
i=1

pi+1 ;

2. for j = ω + 1,

j∏
i=1

ni < 22
ω+1

(
1 +

1

22ω

)2ω+1

< 2.22
ω+1

= 2(22
ω

)2 < 2p21 < p2p3p4 <

j∏
i=1

pi+1;

3. for j = ω + 2,

j∏
i=1

ni < 22
ω+2

(
1 +

1

22ω

)2ω+2

< 2.22
ω+2

= 2(22
ω

)4 < 2p41 < p2p3p4p5p6 ≤
j∏

i=1

pi+1 .

Thus once again we have

j∏
i=1

ni <

j∏
i=1

pi+1 for all j ≤ ω + 2 .

Hence, combining all three cases above, we have established that for all possible ω,

22
ω

+ 2 ≤ p1 < 22
ω+1

+ 2 implies κmax ≥ ω + 3 . (46)

Note that this result says exactly that, as p1 increases, the minimum possible value

for κmax also periodically increases.11

11In the working to obtain (46) it is implicitly required, since the ni are only defined here for
1 ≤ i ≤ k − 1, that we must have ω + 2 ≤ k − 1 when p1 ∈ Ωω . However, it is easy to see that
this must indeed hold since, when p1 ≥ 7 (as here), it follows from Remark 6 that we must have
that k ≥ 15. Yet then we will clearly have ω + 2 < ωk + 2 = 2 + log2(log2((3k/7) + 1)) < k − 1,
as required.
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Now suppose p1 ∈ Ωω, for some 1 ≤ ω < ωk. Then by (46) in Theorem 1 we

have

k∏
i=1

pi = p1

k∏
i=2

pi ≤

[(
2(p1 − 1)

(p1 − 2)1−1/2ω+3

)2k−1

−
(

2(p1 − 1)

(p1 − 2)1−1/2ω+3

)2k−2]
= (Aω(p1))

2k−1

− (Aω(p1))
2k−2

= Fk−1 (Aω(p1)) . (47)

Yet then, by Lemma 10 in Appendix A, either (a) or (b) below must hold:

(a) We have ω ≥ 3. Then the function Aω(p1) is monotonically increasing as

p1 ranges across Ωω. Hence, since Fk−1(·) is also monotonically increasing,

Fk−1 (Aω(p1)) is bounded above by the value it tends towards at the right-

hand endpoint of Ωω, namely Fk−1(Aω(2
2ω+1

+ 2)).

(b) We have ω ∈ {1, 2}. Then Aω(p1) is monotonically decreasing initially and

then monotonically increasing as p1 ranges across Ωω. Hence, Fk−1 (Aω(p1)) is

bounded by the larger of the achievable values it tends towards at the endpoints

of Ωω, namely Fk−1(Aω(pmin)) and Fk−1(Aω(pmax)) where pmin and pmax are

the smallest and largest primes in the interval Ωω, respectively.

Considering first the former case, we thus have that if p1 ∈ Ωω for 3 ≤ ω < ωk then

Fk−1 (Aω(p1)) < Fk−1

(
Aω(2

2ω+1

+ 2)
)

= Fk−1

(
2(22

ω+1

+ 1)

(22ω+1)(2ω+3−1)/2ω+3

)

= Fk−1

(
2(22

ω+1

+ 1)

2(2ω+3−1)/4

)

= Fk−1

(
25/4

(
22

ω+1

+ 1

22ω+1

))

≤ Fk−1

(
25/4

(
22

4

+ 1

224

))

= Fk

(√
25/4

(
216 + 1

216

))
≈ Fk(1.54222) , (48)

which is a uniform estimate of the desired sort.

Next, for ω = 2, since the largest and smallest primes in the interval Ω2 = [18, 258)
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are 257 and 19, respectively, it follows that if p1 ∈ Ω2 then

Fk−1(A2(p1)) ≤ Fk−1(max{A2(19), A2(257)}) = Fk−1

(
max

{
2(18)

1731/32
,
2(256)

25531/32

})
= Fk

(√
512

25531/32

)
≈ Fk(1.54514) . (49)

And similarly, for ω = 1, since the largest and smallest primes in the interval

Ω1 = [6, 18) are 17 and 7, respectively, it follows that if p1 ∈ Ω1 then

Fk−1 (A1(p1)) ≤ Fk−1 (max{A1(7), A1(17)}) = Fk−1

(
max

{
2(6)

515/16
,
2(16)

1515/16

})
= Fk

(√
12

515/16

)
≈ Fk(1.62910) . (50)

Yet finally then, drawing together Estimates (43), (47), (48), (49) and (50), we

have exactly the desired bounds of Lemma 7.

Lemma 7 makes a start on using Theorem 1 to obtain strengthened Heath-

Brown stage one-type estimates for
∏k

i=1 pi for HBC-admissible odd prime k-tuples

{pi}ki=1 for the fraction 1/2. We conclude this paper by showing that Estimate

(38) of Lemma 7, for the case p1 = 5, can be further improved through careful

supplementary analysis of the possible options for p2. What follows is an illustration

of Remark 5, that it may often be more useful to think of Theorem 1 in terms of a

process for getting better upper bounds for
∏k

i=1 yi, rather than simply as a result

to be invoked without further ado.

Lemma 8. Suppose {pi}ki=1 is an HBC-admissible prime k-tuple for 1/2, so that

k∏
i=1

(
1− 1

pi

)
≤ 1

2
<

k−1∏
i=1

(
1− 1

pi

)
(51)

and suppose p1 = 5. Then

k∏
i=1

pi ≤

(√ 8

331/32

)2k

−

(√
8

331/32

)2k−1 ≈ Fk(1.66127). (52)

Proof. We split our analysis into two cases – first where p1 = 5 and p2 = 7, and

second where p1 = 5 but p2 ̸= 7, so p2 ≥ 11. Consider first the case where p1 = 5

and p2 = 7. Then here, by (51), we have that

k∏
i=3

(
1− 1

pi

)
≤ 1

2

(
5

4

)(
7

6

)
=

35

48
<

k−1∏
i=3

(
1− 1

pi

)



INTEGERS: 24 (2024) 29

so {pi}ki=3 is an HBC-admissible odd prime (k−2)-tuple for the fraction a∗/(a∗+d∗)

where a∗ = 35, d∗ = 13 and p3 ≥ 11.

Then for this fraction we have that the associated α and ni values, here denoted

α∗ and {n∗
i }

k−2
i=1 , are given by

α∗ = (a∗ + d∗)/d∗ = 48/13 ≈ 3.692

and

n∗
i = 1 + (α∗)2

i

for all i = 1, . . . , k − 3

so, in particular, n∗
1 = 1 + α∗ ≈ 4.692, n∗

2 = 1 + (α∗)2 ≈ 14.633 and thus n∗
1n

∗
2 ≈

68.663. Thus, we immediately have p3 > n∗
1 and p3p4 ≥ 11 · 13 = 143 > n∗

1n
∗
2 so

that, for our HBC-admissible (k − 2)-tuple for the fraction 35/48, we must have

κmax ≥ 3. Thence, by Theorem 1, in this case

k∏
i=1

pi = 5.7

k∏
i=3

pi ≤

[(
48

137/8

)2k−2

−
(

48

137/8

)2k−3]
≈ Fk(1.50188) . (53)

Now consider the alternative case where p1 = 5 but p2 ̸= 7, so p2 ≥ 11. Here

note first that, if we go back to our earlier auxiliary setting for the case p1 = 5

from the proof of Lemma 7 (i.e., use that {pi}ki=2 must be an HBC-admissible odd

(k − 1)-tuple for 5/8), then α = 8/3 for this setting. Hence the associated {ni}k−1
i=1

satisfy n1 = 11/3, n2 = 73/9, n3 = 1+(8/3)4 ≈ 51.568, n4 = 1+(8/3)8 ≈ 2, 558.113

and n5 = 1 + (8/3)16 ≈ 6, 538, 826.029.

Hence, here we have that

n1 ≈ 3.667 < 11 ≤ p2

n1n2 ≈ 29.741 < 11 · 13 ≤ p2p3

n1n2n3 ≈ 1, 533.668 < 11 · 13 · 17 ≤ p2p3p4,

while also

n1n2n3n4 ≈ 3, 923, 294 < 41 · 43 · 47 · 53, (54)

and similarly

n1n2n3n4n5 ≈ 2.56537× 1013 < 467 · 479 · 487 · 491 · 499. (55)

It then follows directly that, for this auxiliary setting, we must have κmax ≥ 4, a

strengthening of our previous bound that κmax ≥ 3 for this case, so we immediately

obtain the improved estimate (compared with (43))

k∏
i=1

pi = 5

k∏
i=2

pi ≤

[(
8

315/16

)2k−1

−
(

8

315/16

)2k−2]
≈ Fk(1.69003) .
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However, we can tighten this still further by noting that if we had p2 ≥ 41 then,

in view of (54), we would have κmax ≥ 5 for our auxiliary setting, and hence would

obtain

k∏
i=1

pi ≤

(√ 8

331/32

)2k

−

(√
8

331/32

)2k−1 ≈ Fk(1.66127) . (56)

Yet on the other hand, if we had that 11 ≤ p2 < 41, this would leave us with just

the eight possibilities p2 = 11, 13, 17, 19, 23, 29, 31 or 37.

To handle these eight cases, observe that (51) with p1 = 5 implies that

k∏
i=3

(
1− 1

pi

)
≤ 1

2

(
5

4

)(
p2

p2 − 1

)
=

5p2
5p2 + (3p2 − 8)

<

k−1∏
i=3

(
1− 1

pi

)
,

so that {p3, . . . , pk} would be an HBC-admissible (k − 2)-tuple for the fraction

a∗∗/(a∗∗ + d∗∗) where a∗∗ = 5p2, d
∗∗ = 3p2 − 8 and p3 ≥ 13. Then clearly a∗∗ and

d∗∗ do not share p2 as a common factor. However, they do share 5 as a common

factor for p2 = 11 and p2 = 31 – so in these two cases we redefine a∗∗ = p2 and

d∗∗ = (3p2 − 8)/5. Then with these choices the fraction a∗∗/(a∗∗ + d∗∗) is in lowest

terms in all eight cases, taking the values 11/16, 65/96, 85/128, 95/144, 115/176,

145/224, 31/48 and 185/288 for p2 = 11, . . . , 37, respectively.

Moreover, for the fraction a∗∗/(a∗∗ + d∗∗) we then have that the associated α

and ni values, here denoted α∗∗ and {n∗∗
i }k−2

i=1 , are given by

α∗∗ =
a∗∗ + d∗∗

d∗∗
=

8(p2 − 1)

(3p2 − 8)
=

8

3
+

40

3(3p2 − 8)

and

n∗∗
i = 1 + (α∗∗)2

i−1

for all i = 1, . . . , k − 3 .

Hence for p2 ≥ 11 we have α∗∗ ≤ (8/3) + (40/75) = 16/5, so n∗∗
1 = 1+ α∗∗ ≤ 21/5,

n∗∗
2 = 1+(α∗∗)2 ≤ 281/25 and thus n∗∗

1 < 13 ≤ p3 and n∗∗
1 n∗∗

2 ≤ 47.208 < 13 · 17 ≤
p3p4. For our HBC-admissible odd prime (k−2)-tuple for the fraction 5p2/8(p2−1),

we must therefore always have κmax ≥ 3 (for any p2 ≥ 11); so, by Theorem 1, we

immediately get the bound

k∏
i=1

pi = p1p2

k∏
i=3

pi ≤ δ
[
(χp2

)
2k−2

− (χp2
)
2k−3

]
= δFk(χ

1/4
p2

) (57)

where

χp2
=

8(p2 − 1)

(3p2 − 8)7/8
for p2 = 13, 17, 19, 23, 29, 37

χp2
=

8(p2 − 1)

51/8(3p2 − 8)7/8
for p2 = 11, 31
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and where

δ =

{
1 for p2 = 13, 17, 19, 23, 29, 37

p1 = 5 for p2 = 11, 31.

Yet then, for our eight possible p2 values in the range 11 ≤ p2 ≤ 37, we have

respectively that, by direct calculation,

χ1/4
p2

=



(16/57/8)1/4 ≈ 1.40647

(96/317/8)1/4 ≈ 1.47684

(128/437/8)1/4 ≈ 1.47734

(144/497/8)1/4 ≈ 1.47863

(176/617/8)1/4 ≈ 1.48196

(224/797/8)1/4 ≈ 1.48750

(48/177/8)1/4 ≈ 1.41628

(288/1037/8)1/4 ≈ 1.49465 .

(58)

(Note that the reason for the marked drop-off in the χ
1/4
p2 values for p2 = 11 and

p2 = 31, compared with the other six cases, reflects that in these two cases some

cancellation was possible at the outset in the original fraction a∗∗/(a∗∗ + d∗∗),

reducing both numerator and denominator by a factor of five. This then results

in tighter bounds from (57) because the bounds we get from Theorem 1 are not

scaling-invariant!)

Finally then, bringing together Estimates (56), (57) and (58), it follows immedi-

ately that for p1 = 5 but p2 ̸= 7 we must always have

k∏
i=1

pi ≤

(√ 8

331/32

)2k

−

(√
8

331/32

)2k−1 ≈ Fk(1.66127) ,

and this, combined with Estimate (53) for the case p1 = 5, p2 = 7, completes the

proof of the lemma.

Remark 8. We could, of course, endeavour to further push the general bound in

Lemma 8 down to
∏k

i=1 pi ≤ Fk(β), where β is even closer to
√

(8/3) ≈ 1.63299,

by repeating the procedure used above to treat the cases p1 = 5, 11 ≤ p2 < 41 to

similarly strengthen the handling of the cases p1 = 5, 41 ≤ p2 < 467 (while using

(55) to allow for an improved estimate also for the cases p1 = 5, p2 ≥ 467). However,

we do not pursue this here, contenting ourselves for the present with Lemma 8.

Instead, in [24] we take up a different approach for obtaining tighter Heath-Brown

stage one-type bounds for
∏k

i=1 pi for HBC-admissible odd prime k-tuples for 1/2

for which p1 ̸= 3.
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[8] O. Grün, Über ungerade vollkommone Zahlen, Math. Zeitschrift 55 (1952), 353-354.

[9] P. Hagis, Sketch of a proof that an odd perfect number relatively prime to 3 has at least eleven
factors, Math. Comp. 40 (161) (1983), 399-404.

[10] D. R. Heath-Brown, Odd perfect numbers, Math. Proc. Cambridge Philos. Soc. 115 (2)
(1994), 191-196.

[11] D. R. Iannucci, The second largest prime divisor of an odd perfect number exceeds ten
thousand, Math. Comp. 68 (228) (1999), 1749-1760.

[12] D. R. Iannucci, The third largest prime divisor of an odd perfect number exceeds one hundred,
Math. Comp. 69 (230) (2000), 867-879.

[13] M. Kishore, On odd perfect, quasiperfect, and odd almost perfect numbers, Math. Comp. 36
(154) (1981), 583-586.



INTEGERS: 24 (2024) 33

[14] O. Klurman, Radical of perfect numbers and perfect numbers among polynomial values, Int.
J. Number Theory 12 (3) (2016), 585-591.

[15] F. Luca and C. Pomerance, On the radical of a perfect number, New York J. Math. 16 (2010),
23-30.

[16] W. L. McDaniel, On odd multiply perfect numbers, Boll. Un. Mat. Ital. 3 (4) (1970), 185-190.

[17] P. P. Nielsen, An upper bound for odd perfect numbers, Integers 3 (2003), #A14.

[18] P. P. Nielsen, Odd perfect numbers, Diophantine equations, and upper bounds, Math. Comp.
84 (295) (2015), 2549-2567.

[19] K. Norton, Remarks on the number of factors of an odd perfect number, Acta Arith. 6
(1960/61), 365-374.

[20] P. Ochem and M. Rao, Odd perfect numbers are greater than 101500, Math. Comp. 81 (279)
(2012), 1869-1877.

[21] P. Ochem and M. Rao, Another remark on the radical of an odd perfect number, Fibonacci
Quart. 52 (3) (2014), 215-217.

[22] C. Pomerance, Multiply perfect numbers, Mersenne primes and effective computability, Math.
Ann. 226 (1977), 195-206.

[23] R. Steuerwald, Verschhärfung einer notwendigen Bedingung für die Existenz einer ungeraden
vollkommenen Zahl, Bayer. Akad. Wiss. Math. Natur. (1937), 69-72.

[24] A. Stone, Improved upper bounds for odd perfect numbers – Part II, preprint.

[25] A. Stone, Improved upper bounds for odd perfect numbers – Part III, preprint.

[26] A. Stone, Improved upper bounds for odd perfect numbers – Part IV, preprint.

[27] A. Stone, New bounds for the radical of an odd perfect number, preprint.
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A. Appendix – Two Technical Lemmas

In this appendix we provide the proofs of a number of results which were deferred

from the main body of the paper, because presenting them there would have been

too much of a digression from the main flow of the argument at each point.
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Lemma 9. For any r ∈ N define Fr : R≥1 → R≥0 by

Fr(x) = x2r − x2r−1

.

Then for all r ∈ N and for all x ∈ R≥1:

i. Fr(x) is monotonically increasing in x (cf. Lemma 1.3 of [18]);

ii. Fr(x) is monotonically non-decreasing in r (and monotonically increasing if

x > 1);

iii. Fv (Fw(x)) ≤ Fv+w(x) for any v, w ∈ N (and x such that Fw(x) ≥ 1);

iv. for all λ > 0, x ≥ 1 such that λx ≥ 1 we have

Fr(λx)

{
≤ λ2rFr(x) if λ ≤ 1

> λ2rFr(x) if λ > 1 .

Proof. To see the first claim, observe that for any fixed r, F ′
r(x) = 2rx2r−1 −

2r−1x2r−1−1 = 2r−1x2r−1−1[2x2r−1 − 1] > 0 for all x ≥ 1.

As for the second claim, for any fixed x ≥ 1 we have that, for any r ∈ N,
Fr+1(x) = x2r+1 − x2r = x2r (x2r − 1) ≥ x2r − 1 ≥ x2r − x2r−1

= Fr(x), with strict

inequalities throughout if x > 1, as required.

To see the third claim, observe that by the monotonicity of Fv(·),

Fv (Fw(x)) = Fv

(
x2w − x2w−1

)
≤ Fv

(
x2w

)
=
(
x2w

)2v
−
(
x2w

)2v−1

= x2v+w

− x2v+w−1

= Fv+w(x)

as desired.

Finally, to see the fourth claim observe that, for λ < 1, then

Fr(λx) = (λx)2
r

− (λx)2
r−1

= λ2r
[
x2r − x2r−1

/λ2r−1
]

< λ2r
[
x2r − x2r−1

]
= λ2rFr(x)

as asserted; while for λ > 1 the same calculation shows that Fr(λx) > λ2rFr(x),

again as claimed.
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Lemma 10. For any fixed ω ∈ R>−3, the function Aω : R>2 → R defined by

Aω(x) =
2(x− 1)

(x− 2)1−1/2ω+3

is a decreasing function of x on the interval 2 < x < 1 + 2ω+3, and an increasing

function of x on the interval x > 1+2ω+3, with a global minimum at x = 1+2ω+3.

Proof. Simply differentiate Aω(x).

B. Appendix – An Asymptotic Version of Grün’s Bound

In this appendix we derive an asymptotic version of Grün’s bound for p1, in which

this bound grows (roughly) like
√
k rather than linearly in k. This result represents

a strengthening of an earlier asymptotic bound of Norton [19], using a method sim-

ilar to his (but making use of stronger information on the distribution of primes,

from Dusart [6], than was available at that time).12 In [30], Zelinsky also recently

established similar (but more general) improvements of Norton’s asymptotic esti-

mates.

To obtain our asymptotic bound, let {ρi}∞i=1 denote the set of all primes, labelled

in ascending order (so ρ1 = 2, ρ2 = 3, ρ3 = 5, and so on); and let γ ≈ 0.5772157

denote Euler’s constant.

B.1. Preliminaries – Dusart’s Estimates

By Theorem 5.9 of [6] we have that, for any n, k ∈ N with n ≥ n0 = 168,065 (so

that ρn > 2,278,382),

eγ ln(ρn+k)
∏

ρ≤ρn+k

(
ρ− 1

ρ

)
≥ 1− 0.2

ln3(ρn+k)
> 1− 0.2

ln3(ρn)

and
1

eγ ln(ρn)

∏
ρ≤ρn

(
ρ

ρ− 1

)
≥ 1− 0.2

ln3(ρn)

whence

ln(ρn)

ln(ρn+k)

(
1− 0.2

ln3(ρn)

)2

<
∏
ρ≤ρn

(
ρ

ρ− 1

) ∏
ρ≤ρn+k

(
ρ− 1

ρ

)
=

∏
ρn+1≤ρ≤ρn+k

(
ρ− 1

ρ

)
.

(59)

12The author thanks the anonymous referee of this paper for alerting him to Norton’s work.
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Furthermore, there clearly exists an n1 ∈ N (a quick calculation yields that

n1 = 33 will do) such that, for all n ≥ n1,

ln(ln(n))− 1 +
[(ln(ln(n))− 2.1)]

ln(n)
≥ 0 .

It then follows from Proposition 5.16 of Dusart [6] that, for any such n,

ln(ρn) ≥ ln(n ln(n)) = ln(n) + ln(ln(n)) ; (60)

while Lemma 5.10 of [6] correspondingly gives, for n ≥ 4,

ρn/ ln(ρn) ≤ n (61)

and

ρn ≤ en ln(n) . (62)

B.2. An Asymptotic Version of Grün’s Bound

Now suppose {pi}ki=1 is an HBC-admissible odd prime k-tuple for 1/2, so

k∏
i=1

(
1− 1

pi

)
≤ 1

2
<

k−1∏
i=1

(
1− 1

pi

)
, (63)

and suppose p1 = ρn+1, so then in turn p2 ≥ ρn+2, . . . , pk−1 ≥ ρn+k−1 and pk ≥
ρn+k.

Then by the left-hand inequality of (63) – which must actually be strict since pk
must occur in the denominator of the left-hand quantity – we must have

∏
ρn+1≤ρ≤ρn+k

(
ρ− 1

ρ

)
≤

k∏
i=1

(
1− 1

pi

)
<

1

2
.

Hence, if n ≥ n0, we must (by (59)) have

ln(ρn)

ln(ρn+k)

(
1− 0.4

ln3(ρn)

)
<

ln(ρn)

ln(ρn+k)

(
1− 0.2

ln3(ρn)

)2

<
1

2
,

and therefore

2 ln(ρn)−
0.8

ln2(ρn)
< ln(ρn+k) . (64)

On the other hand, however, by Estimate (62) we have (for n+ k ≥ 4)

ln(ρn+k) < ln(n+ k) + ln(ln(n+ k)) + 1

= ln(n) + ln(1 + k/n) + ln(ln(n)) + ln

(
1 +

ln(1 + k/n)

ln(n)

)
+ 1 . (65)
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So now set λ = (k + n)/n2 ∈ R, so k = λn2 − n. Then, for n ≥ n1, Estimates (60)

and (65) yield that

ln(ρn+k) < ln(n) + ln(λn) + ln(ln(n)) + ln

(
1 +

ln(λn)

ln(n)

)
+ 1

= [2 ln(n) + 2 ln(ln(n))] + 1 + ln(λ) + ln

(
2 +

ln(λ)

ln(n)

)
− ln(ln(n))

≤ 2 ln(ρn) + 1 + ln(λ) + ln

(
2 +

ln(λ)

ln(n)

)
− ln(ln(n))

whence, by Estimate (64), we must, if n ≥ max(n0, n1), have

0 <

(
1 +

0.8

ln2(ρn)
+ ln(λ) + ln

(
2 +

ln(λ)

ln(n)

))
− ln(ln(n)) . (66)

Now, for any specified ε > 0, let n2(ε) ∈ N be such that, for all n ≥ n2(ε),

ln1−ε(n) +
1

n
≤ 2 ln1−ε(n) ≤ n (67)

and

1 +
0.8

ln2(ρn)
+ ln(2) + ln(3)− ε ln(ln(n)) < 0 . (68)

Then, if n ≥ n3(ε) = max(n0, n1, n2(ε)) ∈ N, we must have

λ > ln1−ε(n) +
1

n
.

For otherwise, by (67) we would have ln(λ) ≤ ln(2) + (1− ε) ln(ln(n)) and ln(λ) ≤
ln(n). Yet then, by Inequality (66), we would have 0 < 1 + [0.8/ ln2(ρn)] + ln(2) +

ln(3)− ε ln(ln(n)), contradicting (68).

So now, let n4 = n4(ε) ∈ N be such that n2 ln1−ε(n) ≥ (n+ 1)2 ln1−2ε(n+ 1) for

all n ≥ n4, and let n5(ε) = max(n3(ε), n4(ε)); and then, if n ≥ n5(ε) we must have

k = λn2 − n > n2 ln1−ε(n) ≥ (n+ 1)2 ln1−2ε(n+ 1)

= (n+ 1)1+2ε((n+ 1) ln(n+ 1))1−2ε .

Yet then, since (n+1) ≥ ρn+1/ ln(ρn+1) and (n+1) ln(n+1) ≥ ρn+1/e by Estimates

(61) and (62) respectively, we must have that, if n ≥ n5(ε), then

k >

(
ρn+1

ln(ρn+1)

)1+2ε (ρn+1

e

)1−2ε

=
ρ2n+1

e1−2ε ln1+2ε(ρn+1)

=
p21

e1−2ε ln1+2ε(p1)
>

p21
e ln1+2ε(p1)

;
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while obviously p1 ≤ ρn5(ε) if n < n5(ε).

This establishes that, for any given ε > 0, there is a k0(ε) ∈ N – simply take

k0(ε) to be the least integer greater than ρ2n5(ε)
/e ln1+2ε(ρn5(ε)) – such that, for any

k ≥ k0(ε), if {pi}ki=1 is an HBC-admissible odd prime k-tuple for 1/2 then p1 must

satisfy
p21

e ln1+2ε(p1)
< k . (69)

In other words, asymptotically there is a Grün-style upper bound for p1 in terms

of k that almost varies only as
√
k, rather than depending linearly on k as Grün’s

original bound does (or as does our strengthening of his bound in Section 4).

C. Appendix – Bounds for the Radical of an Odd Perfect Number

In the study of odd perfect numbers, N =
∏m

i=1 p
ei
i , there is considerable literature

on upper bounds for the quantity rad(N) =
∏m

i=1 pi, the radical of N . Notable

recent contributions include Luca and Pomerance [15], Klurman [14] and Ochem

and Rao [21]. These papers all establish relative bounds for rad(N) in terms of a

power of N (for example, Luca and Pomerance proved that rad(N) < 2N17/26).13

In the case of odd perfect numbers where
∏m

i=1(1 − 1
pi
) ≤ 1

2 <
∏m−1

i=1 (1 − 1
pi
),

the results in this paper contribute to that literature – since, in that case, the

improved first-stage Heath-Brown estimate provided by Theorem 1 becomes exactly

an absolute bound for rad(N). For other (putative) odd perfect numbers, however,

for which
∏k

i=1(1 − 1
pi
) ≤ 1

2 <
∏k−1

i=1 (1 − 1
pi
) for some k < m, this identification

between
∏k

i=1 pi and rad(N) breaks down, and further work is required to translate

the results here into bounds for rad(N).

It turns out, happily, that in these cases it is still possible to derive new upper

bounds for rad(N) using the results of this paper and those of [26] (in which the focus

is on optimizing stage two and the iterative aspects of Heath-Brown’s procedure for

estimating N). These new bounds are absolute ones, rather than relative to the size

of N ; full details are provided in [27].

13Related techniques and insights have also been used by various authors to obtain relative
upper bounds for the largest few prime divisors of N in terms of a power of N – see, for example,
the result of Acquaah and Konyagin [1] that pm < (3N)1/3 and analogous bounds for pm−1 and
pm−2 in Zelinsky [29] and Bibby et al. [2].


