

SUBSET AND SUBSEQUENCE SUMS WITH BOUNDED NUMBERS OF TERMS

Raj Kumar Mistri Department of Mathematics, Indian Institute of Technology Bhilai, Durg, Chhattisgarh, India rkmistri@iitbhilai.ac.in

Received: 11/3/23, Accepted: 12/13/24, Published: 12/23/24

Abstract

Let A be a nonempty finite set of integers, and let α and β be nonnegative integers such that $\alpha + \beta \leq |A|$, where |A| denotes the cardinality of the set A. Let $\Sigma^{\beta}_{\alpha}(A)$ denote the set of those integers which can be represented as a sum of a subset of A with at least α elements and at most $|A| - \beta$ elements. The usual sets of subsums $\Sigma(A)$ and $\Sigma_0(A)$ are special cases of $\Sigma_{\alpha}^{\beta}(A)$ for $(\alpha, \beta) = (1, 0)$ and $(\alpha, \beta) = (0, 0)$, respectively. If $\beta = 0$, then we denote $\Sigma^0_\alpha(A)$ simply by $\Sigma_\alpha(A)$. We establish the optimal lower bound for the cardinality of $\Sigma^{\beta}_{\alpha}(A)$. We also prove inverse theorems for the set of subsums $\Sigma_{\alpha}^{\beta}(A)$ which characterize the sets $A \subseteq \mathbb{Z}$ for which $|\Sigma_{\alpha}^{\beta}(A)|$ achieves the optimal lower bound. These results generalize the various direct and inverse theorems for $\Sigma_{\alpha}(A)$ proved recently by Bhanja and Pandey. Furthermore, we prove direct and inverse theorems for the subsequence sums $\Sigma_{\alpha}^{\beta}(\mathscr{A})$ in \mathbb{Z} for an arbitrary finite sequence of integers $\mathscr A$ which generalize the results obtained for the set of subsums $\Sigma_{\alpha}^{\beta}(A)$ and also solve two open problems of Bhanja and Pandey related to the set of subsums $\Sigma_{\alpha}(\mathscr{A})$.

1. Introduction

Throughout the paper, let G denote an additive abelian group, and let $|S|$ denote the cardinality of the set $S \subseteq G$. For a nonzero integer c and a set $S \subseteq G$, the dilated set $\{cs : s \in S\}$ is denoted by $c * S$, and we simply write $-S$ for $(-1) * S$. Let A be a nonempty finite subset of G. For nonnegative integers α and β with $\alpha + \beta \leq |A|$, define

$$
\Sigma_{\alpha}^{\beta}(A) = \{ \sigma(B) : B \subseteq A \text{ and } \alpha \le |B| \le |A| - \beta \},\
$$

where $\sigma(B)$ denotes the sum of all the elements of the set B. The usual sets of subsums $\Sigma(A)$ and $\Sigma_0(A)$ are special cases of $\Sigma_\alpha^\beta(A)$ for $(\alpha, \beta) = (1, 0)$ and $(\alpha, \beta) = (0, 0)$, respectively. If $\beta = 0$, then $\Sigma^0_{\alpha}(A)$ is simply denoted by $\Sigma_{\alpha}(A)$.

DOI: 10.5281/zenodo.14547971

Estimation of the optimal lower bound for the cardinality of $\Sigma^{\beta}_{\alpha}(A)$ in terms of α , β and |A| is one of the important problems, called the *direct problem*. Another important problem of interest is the characterization of the sets A for which $|\Sigma^{\beta}_{\alpha}(A)|$ achieves the optimal lower bound, called the inverse problem. These problems are extremely important in additive combinatorics and have many applications in zerosum problems (see $[3, 4, 9, 14, 15, 16, 23, 25, 26]$ $[3, 4, 9, 14, 15, 16, 23, 25, 26]$ $[3, 4, 9, 14, 15, 16, 23, 25, 26]$ $[3, 4, 9, 14, 15, 16, 23, 25, 26]$ $[3, 4, 9, 14, 15, 16, 23, 25, 26]$ $[3, 4, 9, 14, 15, 16, 23, 25, 26]$ $[3, 4, 9, 14, 15, 16, 23, 25, 26]$ $[3, 4, 9, 14, 15, 16, 23, 25, 26]$ $[3, 4, 9, 14, 15, 16, 23, 25, 26]$ $[3, 4, 9, 14, 15, 16, 23, 25, 26]$ $[3, 4, 9, 14, 15, 16, 23, 25, 26]$ $[3, 4, 9, 14, 15, 16, 23, 25, 26]$ $[3, 4, 9, 14, 15, 16, 23, 25, 26]$ $[3, 4, 9, 14, 15, 16, 23, 25, 26]$ $[3, 4, 9, 14, 15, 16, 23, 25, 26]$ $[3, 4, 9, 14, 15, 16, 23, 25, 26]$ $[3, 4, 9, 14, 15, 16, 23, 25, 26]$ and the references given therein).

Nathanson [\[23\]](#page-33-5) proved direct and inverse results for the sumset $\Sigma(A)$ in the additive group of integers \mathbb{Z} . Balandraud [\[3\]](#page-32-0) studied the direct problems for $\Sigma(A)$ and $\Sigma_0(A)$ in the finite prime field \mathbb{F}_p , where p is a prime number. The direct and inverse problems for $\Sigma_{\alpha}(A)$ in Z have been studied recently by Bhanja and Pandey [\[5,](#page-33-6) [6\]](#page-33-7) and by Dwivedi and Mistri [\[13\]](#page-33-8). The lower bound for the cardinality of the set of subsums $\Sigma_{\alpha}(A)$ in \mathbb{F}_p was obtained by Balandraud [\[4\]](#page-33-0). For a set $A \subseteq \mathbb{F}_p$ such that $A \cap (-A) = \emptyset$, Balandraud [\[4\]](#page-33-0) conjectured that

$$
|\Sigma_{\alpha}^{\beta}(A)| \ge \min \bigg\{ p, \frac{|A|(|A|+1)}{2} - \frac{\alpha(\alpha+1)}{2} - \frac{\beta(\beta+1)}{2} + 1 \bigg\},\
$$

unless

$$
A = \lambda * \{1, -2, 3, \dots, |A|\}
$$

with $0 \neq \lambda \in \mathbb{F}_p$, $\frac{|A|(|A|+1)}{2} = p+4$ and $(\alpha, \beta) \in \{(1, 1), (1, 2), (2, 1)\}.$

Motivated by this conjecture, we study the direct and inverse problems for $\Sigma^{\beta}_{\alpha}(A)$ in Z. In Section [2,](#page-5-0) we study the direct problem and obtain the optimal lower bound for $|\Sigma^{\beta}_{\alpha}(A)|$ considering the following cases:

- (a) the set A contains only positive integers,
- (b) the set A contains only nonnegative integers including zero,
- (c) the set contains both positive and negative integers,
- (d) the set A contains positive integers, negative integers and zero.

In Section [3,](#page-14-0) we study the inverse problem for $\Sigma^{\beta}_{\alpha}(A)$. The results in this section characterize the sets A for which $|\Sigma^{\beta}_{\alpha}(A)|$ achieves the optimal lower bound. In Section [4,](#page-20-0) we generalize the definition of the set of subsums $\Sigma^{\beta}_{\alpha}(A)$ to the set of subseuence sums $\Sigma_{\alpha}^{\beta}(\mathscr{A})$ for a sequence \mathscr{A} in G. We also establish several direct and inverse theorems for $\Sigma_{\alpha}^{\beta}(\mathscr{A}),$ which also generalize and solve two open problems of Bhanja and Pandey [\[6,](#page-33-7) Open problems (1) and (2), Section 4] .

We remark that the various known direct and inverse theorems for $\Sigma(A)$, $\Sigma_0(A)$ and $\Sigma_{\alpha}(A)$ [\[23,](#page-33-5) [5,](#page-33-6) [6,](#page-33-7) [13\]](#page-33-8) can be obtained as special cases of the direct and inverse theorems for $\Sigma_{\alpha}^{\beta}(A)$ or $\Sigma_{\alpha}^{\beta}(\mathscr{A})$ proved in Section [2,](#page-5-0) Section [3](#page-14-0) and Section [4.](#page-20-0)

The proofs of the direct and inverse theorems for $\Sigma^{\beta}_{\alpha}(A)$ and $\Sigma^{\beta}_{\alpha}(\mathscr{A})$ require several preliminary results (see Subsection [1.1\)](#page-2-0) for the generalized h -fold sumset defined as follows. Given a nonempty finite set $A \subseteq G$ and an ordered $|A|$ -tuple $\bar{\mathbf{r}} = (r_a : a \in A)$ of positive integers associated with the set A, we define the *generalized h-fold sumset* $h^{(\bar{r})}A$ as follows:

$$
h^{(\bar{\mathbf{r}})}A = \left\{ \sum_{a \in A} s_a a : s_a \in \mathbb{Z}, 0 \le s_a \le r_a, \text{ and } \sum_{a \in A} s_a = h \right\}.
$$

If $r_a = r$ for each $a \in A$, then $h^{(\bar{r})}A$ is simply denoted by $h^{(r)}A$. The direct and inverse problems for $h^{(r)}A$ have been studied by Mistri and Pandey [\[18\]](#page-33-9) in $\mathbb Z$ and by Monopoli [\[22\]](#page-33-10) in \mathbb{F}_p (see [\[21\]](#page-33-11) also). Yang and Chen [\[28\]](#page-34-2) have studied the direct and inverse problems for the sumset $h^{(\bar{r})}A$ in \mathbb{Z} .

The classical h-fold sumset hA and the restricted h-fold sumset h^A are special cases of this sumset for $r = h$ and $r = 1$, respectively. These sumsets have been studied extensively in the literature (see $[1, 2, 8, 10, 11, 12, 24, 27]$ $[1, 2, 8, 10, 11, 12, 24, 27]$ $[1, 2, 8, 10, 11, 12, 24, 27]$ $[1, 2, 8, 10, 11, 12, 24, 27]$ $[1, 2, 8, 10, 11, 12, 24, 27]$ $[1, 2, 8, 10, 11, 12, 24, 27]$ $[1, 2, 8, 10, 11, 12, 24, 27]$ $[1, 2, 8, 10, 11, 12, 24, 27]$ $[1, 2, 8, 10, 11, 12, 24, 27]$ $[1, 2, 8, 10, 11, 12, 24, 27]$ $[1, 2, 8, 10, 11, 12, 24, 27]$ $[1, 2, 8, 10, 11, 12, 24, 27]$ $[1, 2, 8, 10, 11, 12, 24, 27]$ $[1, 2, 8, 10, 11, 12, 24, 27]$ $[1, 2, 8, 10, 11, 12, 24, 27]$ and the references given therein).

Facts 1. The following facts allow us to consider the sumset $\Sigma^{\beta}_{\alpha}(A)$ only for the pairs (α, β) satisfying $1 \leq \alpha \leq |A| - 1$ and $0 \leq \beta \leq |A| - 1$.

- (i) It is easy to see that $\Sigma_{\alpha}^{\beta}(A) = \alpha \hat{A}$ if $\alpha + \beta = |A|$. Since the direct and inverse theorems are well known for the restricted h-fold sumset in \mathbb{Z} [\[23\]](#page-33-5), we always assume that $\alpha + \beta \leq |A| - 1$, and so $0 \leq \alpha \leq |A| - 1$ and $0 \leq \beta \leq |A| - 1$.
- (ii) It is easy to verify that $\Sigma^{\beta}_{\alpha}(A) = \sigma(A) \Sigma^{\alpha}_{\beta}(A)$, and thus $|\Sigma^{\beta}_{\alpha}(A)| = |\Sigma^{\alpha}_{\beta}(A)|$.
- (iii) Furthermore, $\Sigma_0^{\beta}(A) = \Sigma_1^{\beta}(A)$ if $0 \in \Sigma_1^{\beta}(A)$, and $\Sigma_0^{\beta}(A) = \Sigma_1^{\beta}(A) \cup \{0\}$ if $0 \notin \Sigma_1^{\beta}(A)$. Therefore, we consider only positive values of α .

Since in the definition of the sumset $h^{(\bar{r})}A$, the relative order of the elements of the set A is taken into consideration, from now onwards, while using the sumset $h^{(\bar{r})}A$ in a statement or in a proof, we will assume that the order of the elements in the set A is fixed.

1.1. Notation and Preliminary Results

Here we fix some notation which will be used throughout the paper. For integers a and b, where $a \leq b$, we denote the interval of integers $\{n \in \mathbb{Z} : a \leq n \leq b\}$ by [a, b]. For a function f, we take $\sum_{n=1}^{v}$ $i = u$ $f(i) = 0$, whenever u and v are integers such that $u > v$.

With slight deviation from the notation used by Yang and Chen [\[28\]](#page-34-2), we use the following notation as in Dwivedi and Mistri [\[13\]](#page-33-8). Given positive integers h and k , and an ordered k-tuple $\bar{\mathbf{r}} = (r_0, r_1, \dots, r_{k-1})$ of positive integers, let $\mu = \mu(\bar{\mathbf{r}}, h)$ be the largest integer and $\eta = \eta(\bar{\mathbf{r}}, h)$ be the least integers such that

$$
\sum_{j=0}^{\mu-1} r_j \le h \text{ and } \sum_{j=\eta+1}^{k-1} r_j \le h,
$$

INTEGERS: 24 (2024) 4

respectively. Now define

$$
\delta = \delta(\bar{\mathbf{r}}, h) = h - \sum_{j=0}^{\mu-1} r_j \text{ and } \theta = \theta(\bar{\mathbf{r}}, h) = h - \sum_{j=\eta+1}^{k-1} r_j.
$$

Furthermore, define

$$
L(\bar{\mathbf{r}}, h) = \left(\sum_{j=\eta+1}^{k-1} jr_j - \sum_{j=0}^{\mu-1} jr_j\right) + \eta \theta - \mu \delta + 1.
$$

A k-term arithmetic progression in Z is a set of the form $\{a, a+d, \ldots, a+(k-1)d\}$ for some integer a and a nonzero integer d . We will require the direct and inverse theorems for $h^{(\bar{r})}A$ due to Yang and Chen [\[28\]](#page-34-2) to prove the direct and inverse theorems for $\Sigma_{\alpha}^{\beta}(A)$ and $\Sigma_{\alpha}^{\beta}(\mathscr{A})$. For the sake of completeness, we state these results here.

Theorem 2 ([\[28\]](#page-34-2)). Let $A = \{a_0, a_1, \ldots, a_{k-1}\}\$ be a set of integers with $a_0 < a_1 <$ $\cdots < a_{k-1}$, where k is a positive integer. Let $\bar{\mathbf{r}} = (r_0, r_1, \ldots, r_{k-1})$ be an ordered k-tuple of positive integers, and h be an integer satisfying $2 \leq h \leq$ \sum^{k-1} $j=0$ r_j . Then

$$
|h^{(\bar{\mathbf{r}})}A| \ge L(\bar{\mathbf{r}}, h).
$$

This lower bound is best possible.

Theorem 3 ([\[28\]](#page-34-2)). Let $k \geq 5$ be an integer. Let $\bar{\mathbf{r}} = (r_0, \ldots, r_{k-1})$ be an ordered k-tuple of positive integers, and let h be an integer satisfying

$$
2 \le h \le \sum_{j=0}^{k-1} r_j - 2.
$$

If A is a set of k integers, then

$$
|h^{(\bar{\mathbf{r}})}A| = L(\bar{\mathbf{r}}, h)
$$

if and only if A is a k-term arithmetic progression.

Theorem 4 ([\[28\]](#page-34-2)). Let $A = \{a_0, a_1, a_2\}$ be a set of integers with $a_0 < a_1 < a_2$ and $\bar{\mathbf{r}} = (r_0, r_1, r_2)$ be an ordered 3-tuple of positive integers. Suppose that h is an integer with $2 \leq h \leq r_0 + r_1 + r_2 - 2$. Then

- (i) for $r_1 = 1$, we have $|h^{(\bar{r})}A| = L(\bar{r}, h);$
- (ii) for $r_1 \geq 2$, we have $|h^{(\bar{r})}A| = L(\bar{r}, h)$ if and only if A is a 3-term arithmetic progression.

Theorem 5 ([\[28\]](#page-34-2)). Let $A = \{a_0, a_1, a_2, a_3\}$ be a set of integers with $a_0 < a_1 <$ $a_2 < a_3$ and $\bar{\mathbf{r}} = (r_0, r_1, r_2, r_3)$ be an ordered 4-tuple of positive integers. Suppose that h is an integer with $2 \le h \le r_0 + r_1 + r_2 + r_3 - 2$. Then

- (i) for $r_1 = r_2 = 1$, we have $|h^{(\bar{r})}A| = L(\bar{r}, h)$ if and only if $a_1 a_0 = a_3 a_2$;
- (ii) for $r_1 \geq 2$ or $r_2 \geq 2$, we have $|h^{(\bar{r})}A| = L(\bar{r}, h)$ if and only if A is a 4-term arithmetic progression.

To prove some inverse theorems for the set of subsums $\Sigma_{\alpha}(A)$, Dwivedi and Mistri [\[13\]](#page-33-8) expressed this subsums as a certain generalized h-fold sumset. We extend this idea to the set of subsums $\Sigma_{\alpha}^{\beta}(A)$, and also for the set of subsequence sums $\Sigma_{\alpha}^{\beta}(\mathscr{A})$ for a sequence $\mathscr A$ (see Section [4\)](#page-20-0). The following lemmas which can be proved easily by simple set-theoretic arguments are crucial for the proof of direct and inverse theorems for $\Sigma^{\beta}_{\alpha}(A)$.

Lemma 1. Let $A = \{a_1, \ldots, a_k\}$ be a nonempty finite subset of G with $0 \notin A$, where k is a positive integer. Let α and β be integers such that $0 \leq \alpha \leq k-1$, $0 \leq \beta \leq k-1$, and $\alpha + \beta \leq k-1$. Let $A_0 = \{a_0, a_1, \ldots, a_k\} \subseteq G$, where $a_0 = 0$, and let $\bar{\mathbf{r}} = (k - \alpha - \beta, 1, \dots, 1)$ \overline{k} times). Then

$$
\Sigma^{\beta}_{\alpha}(A) = (k - \beta)^{(\bar{\mathbf{r}})} A_0.
$$

Lemma 2. Let $A = \{a_0, a_1, \ldots, a_{k-1}\}$ be a nonempty finite subset of G with $a_0 = 0$, where k is a positive integer. Let α and β be integers such that $1 \leq \alpha \leq k$, $0 \leq \beta \leq k-1$, and $\alpha + \beta \leq k$. Let $\bar{\mathbf{r}} = (k - \alpha - \beta + 1, 1, \dots, 1)$ $\overline{k-1 \text{ times}}$). Then

$$
\Sigma^{\beta}_{\alpha}(A) = (k - \beta)^{(\bar{\mathbf{r}})} A.
$$

Let $\pi : [1, k] \to [1, k]$ be a permutation, where k is a positive integer. Following the notation in [\[13\]](#page-33-8), for a set $A = \{a_1, a_2, \ldots, a_k\}$ and an ordered k-tuple \bar{r} = (r_1, r_2, \ldots, r_k) of positive integers, we write

$$
A_{\pi} = \{a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(k)}\}
$$

and

$$
\bar{\mathbf{r}}_{\pi} = (r_{\pi(1)}, r_{\pi(2)}, \ldots, r_{\pi(k)}).
$$

Note that the order of the elements in the set A is assumed to be fixed in the definition of $h^{(\bar{r})}A$. In the proofs, sometimes we will require to consider the elements of the set A in a different order. In that situation, we will need the following obvious lemma to apply the above results.

Lemma 3 ([\[13\]](#page-33-8)). Let $A = \{a_1, a_2, \ldots, a_k\}$ be an ordered nonempty finite subset of G, where k is a positive integer. Let $\bar{\mathbf{r}} = (r_1, r_2, \ldots, r_k)$ an ordered k-tuple of positive integers. Let $h \geq 2$ be an integer, and let π be a permutation of [1, k]. Then

$$
h^{(\bar{\mathbf{r}})}A = h^{(\bar{\mathbf{r}}_{\pi})}A_{\pi}.
$$

2. Direct Theorems for Subsums $\Sigma^{\beta}_{\alpha}(A)$

Theorem 6. Let $k \geq 2$ be an integer. Let α and β be integers such that

$$
1 \le \alpha \le k - 1, 0 \le \beta \le k - 1, and \alpha + \beta \le k - 1.
$$

If A is a set of k positive integers, then

$$
|\Sigma_{\alpha}^{\beta}(A)| \ge \frac{k(k+1)}{2} - \frac{\alpha(\alpha+1)}{2} - \frac{\beta(\beta+1)}{2} + 1.
$$
 (2.1)

If A is a set of k nonnegative integers and $0 \in A$, then

$$
|\Sigma_{\alpha}^{\beta}(A)| \ge \frac{k(k-1)}{2} - \frac{\alpha(\alpha-1)}{2} - \frac{\beta(\beta-1)}{2} + 1.
$$
 (2.2)

The lower bounds in (2.1) and (2.2) are best possible.

We remark that Theorem [6](#page-5-3) is a special case of a result of Bhanja [\[7,](#page-33-17) Theorem 6 and Corollary 7]. But the proof presented here is original and the idea of the proof enables us to prove some new direct theorems.

Proof of Theorem [6.](#page-5-3) First assume that A is a set of $k \geq 2$ positive integers. Let $A = \{a_1, \ldots, a_k\}$, and let $A_0 = \{a_0, a_1, \ldots, a_k\}$, where $a_0 = 0$. Let

$$
\bar{\mathbf{r}}=(r_0,r_1,\ldots,r_k),
$$

where $r_0 = k - \alpha - \beta$ and $r_1 = r_2 = \cdots = r_k = 1$ $r_1 = r_2 = \cdots = r_k = 1$ $r_1 = r_2 = \cdots = r_k = 1$. Then Lemma 1 implies that

$$
\Sigma^{\beta}_{\alpha}(A) = (k - \beta)^{(\bar{\mathbf{r}})} A_0.
$$

It is easy to see that $\mu = \alpha + 1$ and $\eta = \beta$. Therefore,

$$
\delta = (k - \beta) - \sum_{j=0}^{\alpha} r_j = (k - \beta) - (k - \beta) = 0
$$

and

$$
\theta = (k - \beta) - \sum_{j = \beta + 1}^{k} r_j = (k - \beta) - (k - \beta) = 0.
$$

Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=\beta+1}^{k} jr_j - \sum_{j=0}^{\alpha} jr_j\right) + 0 - 0 + 1
$$

=
$$
\left(\sum_{j=\beta+1}^{k} j - \sum_{j=1}^{\alpha} j\right) + 1
$$

=
$$
\frac{k(k+1)}{2} - \frac{\alpha(\alpha+1)}{2} - \frac{\beta(\beta+1)}{2} + 1.
$$

Therefore, it follows from Theorem [2](#page-3-0) that

$$
|\Sigma_{\alpha}^{\beta}(A)| = |(k - \beta)^{(\bar{\mathbf{r}})}A_0| \ge L(\bar{\mathbf{r}}, k - \beta) = \frac{k(k+1)}{2} - \frac{\alpha(\alpha+1)}{2} - \frac{\beta(\beta+1)}{2} + 1.
$$

We can see that the lower bound in (2.1) is best possible by taking the set $A = [1, k]$, where $k \geq 2$. This proves the first part of the theorem.

Now assume that A is a set of $k \geq 2$ nonnegative integers with $0 \in A$. Let $A = \{a_0, a_1, \ldots, a_{k-1}\},\$ where $0 = a_0 < a_1 < \cdots < a_{k-1}$. Let $\bar{\mathbf{r}} = (r_0, r_1, \ldots, r_{k-1}),$ where $r_0 = k - \alpha - \beta + 1$ and $r_1 = r_2 = \cdots = r_{k-1} = 1$ $r_1 = r_2 = \cdots = r_{k-1} = 1$ $r_1 = r_2 = \cdots = r_{k-1} = 1$. It follows from Lemma 2 that

$$
\Sigma^{\beta}_{\alpha}(A) = (k - \beta)^{(\bar{\mathbf{r}})} A.
$$

It is easy to see that $\mu = \alpha$ and $\eta = \beta - 1$. Therefore,

$$
\delta = (k - \beta) - \sum_{j=0}^{\alpha-1} r_j = 0
$$
 and $\theta = (k - \beta) - \sum_{j=\beta}^{k-1} r_j = 0$.

Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=\beta}^{k-1} jr_j - \sum_{j=0}^{\alpha-1} jr_j\right) + 0 - 0 + 1
$$

=
$$
\left(\sum_{j=\beta}^{k-1} j - \sum_{j=1}^{\alpha-1} j\right) + 1
$$

=
$$
\frac{k(k-1)}{2} - \frac{\alpha(\alpha-1)}{2} - \frac{\beta(\beta-1)}{2} + 1.
$$

Therefore, it follows from Theorem [2](#page-3-0) that

$$
|\Sigma_{\alpha}^{\beta}(A)| = |(k - \beta)^{(\bar{\mathbf{r}})}A| \ge L(\bar{\mathbf{r}}, k - \beta) = \frac{k(k - 1)}{2} - \frac{\alpha(\alpha - 1)}{2} - \frac{\beta(\beta - 1)}{2} + 1.
$$

We can see that the lower bound in (2.2) is best possible by taking the set $A =$ $[0, k-1]$, where $k \geq 2$. This proves the second part of the theorem and completes the proof. \Box **Theorem 7.** Let A be a finite set containing p positive integers and n negative integers, where $1 \leq n \leq p$. Let $k = p + n$, and let α and β be integers such that $1 \leq \alpha \leq k-1, \ 0 \leq \beta \leq k-1, \ and \ \alpha + \beta \leq k-1.$ Then

$$
|\Sigma_{\alpha}^{\beta}(A)| \ge \mathcal{L}(\alpha, \beta, A), \tag{2.3}
$$

where $\mathcal{L}(\alpha, \beta, A)$ is defined as follows.

1. If $1 \leq \alpha < k - \beta < n \leq p$, then

$$
\mathcal{L}(\alpha, \beta, A) = \frac{p(p + 1)}{2} + \frac{n(n + 1)}{2} - \frac{(\beta - n)(\beta - n + 1)}{2} - \frac{(\beta - p)(\beta - p + 1)}{2} + 1.
$$

2. If either $1 \leq \alpha < n \leq k - \beta < p$ or $1 \leq \alpha = n < k - \beta \leq p$, then

$$
\mathcal{L}(\alpha, \beta, A) = \frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\beta - n)(\beta - n + 1)}{2} + 1.
$$

3. If either $1 \leq \alpha < n \leq p \leq k - \beta$ or $1 \leq \alpha = n < p < k - \beta$ or $1 \leq \alpha = n =$ $p < k - \beta$, then

$$
\mathcal{L}(\alpha, \beta, A) = \frac{p(p+1)}{2} + \frac{n(n+1)}{2} + 1.
$$

4. If $1 \leq n < \alpha < k - \beta \leq p$, then

$$
\mathcal{L}(\alpha, \beta, A) = \frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\beta - n)(\beta - n + 1)}{2} - \frac{(\alpha - n)(\alpha - n + 1)}{2} + 1.
$$

5. If either $1 \leq n < \alpha < p < k - \beta$ or $1 \leq n < \alpha = p < k - \beta$, then

$$
\mathcal{L}(\alpha, \beta, A) = \frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\alpha - n)(\alpha - n + 1)}{2} + 1.
$$

6. If $1 \leq n \leq p < \alpha < k - \beta$, then

$$
\mathcal{L}(\alpha,\beta,A)=\frac{p(p+1)}{2}+\frac{n(n+1)}{2}-\frac{(\alpha-n)(\alpha-n+1)}{2}-\frac{(\alpha-p)(\alpha-p+1)}{2}+1.
$$

The lower bound in [\(2.3\)](#page-7-0) is best possible.

Proof. Let

$$
A = \{-b_n, -b_{n-1}, \dots, -b_1, a_1, \dots, a_p\}
$$

and

$$
A_0 = \{-b_n, -b_{n-1}, \ldots, -b_1, 0, a_1, \ldots, a_p\},\,
$$

where $-b_n < -b_{n-1} < \ldots < -b_1 < 0 < a_1 < \ldots < a_p$. Let $k = |A| = p + n$, $k_0 = |A_0| = p + n + 1$, and

$$
\bar{\mathbf{r}} = (r_0, r_1, \dots, r_{n-1}, r_n, r_{n+1}, \dots, r_{n+p}),
$$

where $r_0 = r_1 = \cdots = r_{n-1} = r_{n+1} = \cdots = r_{n+p} = 1$ and $r_n = k - \alpha - \beta$. Then it follows from Lemma [1](#page-4-0) and Lemma [3](#page-5-4) that $\Sigma_{\alpha}^{\beta}(A) = (k - \beta)^{(\bar{r})}A_0$. Therefore, it follows from Theorem [2](#page-3-0) that

$$
|\Sigma_{\alpha}^{\beta}(A)| = |(k - \beta)^{(\bar{\mathbf{r}})} A_0| \ge L(\bar{\mathbf{r}}, k - \beta).
$$

Hence it suffices to prove that $L(\bar{\mathbf{r}}, k - \beta) = \mathcal{L}(\alpha, \beta, A)$. Case 1: $1 \leq \alpha < k - \beta < n \leq p$. In this case, we have $1 \leq \alpha < n \leq p < \beta$. We can easily determine that $\mu = k - \beta$, $\eta = \beta$, and $\delta = \theta = 0$. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=\beta+1}^{p+n} jr_j - \sum_{j=0}^{k-\beta-1} jr_j\right) + 1
$$

=
$$
\left(\sum_{j=\beta+1}^{k} j - \sum_{j=1}^{k-\beta-1} j\right) + 1
$$

=
$$
\frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\beta-n)(\beta-n+1)}{2} - \frac{(\beta-p)(\beta-p+1)}{2} + 1.
$$

Case 2(i): $1 \le \alpha < n \le k - \beta < p$. In this case, we have $1 \le \alpha < n < \beta \le p$. We can easily determine that $\mu = n$, $\eta = \beta$, $\delta = p - \beta$, and $\theta = 0$. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=\beta+1}^{k} jr_j - \sum_{j=0}^{n-1} jr_j\right) + 0 - n(p - \beta) + 1
$$

=
$$
\left(\sum_{j=\beta+1}^{k} j - \sum_{j=1}^{n-1} j\right) - pn + \beta n + 1
$$

=
$$
\frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\beta - n)(\beta - n + 1)}{2} + 1.
$$

Case 2(ii): $1 \leq \alpha = n < k - \beta \leq p$. In this case, we have $0 \leq \beta < p$ and $1 \leq n \leq \beta < p$. We can easily determine that $\mu = n + 1$, $\eta = \beta$, and $\delta = \theta = 0$. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=\beta+1}^{k} jr_j - \sum_{j=0}^{n} jr_j\right) + 1
$$

=
$$
\left(\sum_{j=\beta+1}^{k} j - \sum_{j=1}^{n-1} j - nr_n\right) + 1
$$

=
$$
\frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\beta - n)(\beta - n + 1)}{2} + 1.
$$

Case 3(i): $1 \le \alpha < n \le p \le k - \beta$. In this case, we have $0 \le \beta \le n \le p$. We can easily determine that $\mu = \eta = n$, $\delta = p - \beta$, and $\theta = n - \beta$. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=n+1}^{p+n} jr_j - \sum_{j=0}^{n-1} jr_j\right) + n(n - \beta) - n(p - \beta) + 1
$$

=
$$
\left(\sum_{j=n+1}^{p+n} j - \sum_{j=1}^{n-1} j\right) + n^2 - pn + 1
$$

=
$$
\frac{p(p+1)}{2} + \frac{n(n+1)}{2} + 1.
$$

Case 3(ii): $1 \leq \alpha = n < p < k - \beta$. In this case, we have $0 \leq \beta < n$ and $0 \leq \beta < p$. We can easily determine that $\mu = n + 1$, $\eta = n$, $\delta = 0$, and $\theta = n - \beta$. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=n+1}^{k} jr_j - \sum_{j=0}^{n} jr_j\right) + n(n - \beta) - 0 + 1
$$

=
$$
\left(\sum_{j=n+1}^{p+n} j - \sum_{j=1}^{n-1} j - nr_n\right) + n^2 - \beta n + 1
$$

=
$$
\frac{p(p+1)}{2} + \frac{n(n+1)}{2} + 1.
$$

Case 3(iii): $1 \le \alpha = n = p < k - \beta$. We can easily determine that $\mu = n + 1$, $\eta = n - 1$, and $\delta = \theta = 0$. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=n}^{k} jr_j - \sum_{j=0}^{n} jr_j\right) + 1
$$

= $nr_n + \sum_{j=n+1}^{p+n} j - \sum_{j=1}^{n-1} j - nr_n + 1$
= $\frac{p(p+1)}{2} + \frac{n(n+1)}{2} + 1.$

Case 4: $1 \leq n < \alpha < k - \beta \leq p$. In this case, we have $1 \leq n \leq \beta < p$. We can easily determine that $\mu = \alpha + 1$, $\eta = \beta$, and $\delta = \theta = 0$. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=\beta+1}^{k} jr_j - \sum_{j=0}^{\alpha} jr_j\right) + 1
$$

=
$$
\left(\sum_{j=\beta+1}^{k} j - \sum_{j=1}^{n-1} j - nr_n - \sum_{j=n+1}^{\alpha} j\right) + 1
$$

=
$$
\frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\beta - n)(\beta - n + 1)}{2} - \frac{(\alpha - n)(\alpha - n + 1)}{2} + 1.
$$

Case 5(i): $1 \le n < \alpha < p < k-\beta$. In this case, we have $0 \le \beta < n$ and $0 \le \beta < p$. We can easily determine that $\mu = \alpha + 1$, $\eta = n$, $\delta = 0$, and $\theta = n - \beta$. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=n+1}^{k} jr_j - \sum_{j=0}^{\alpha} jr_j\right) + n(n - \beta) + 1
$$

=
$$
\left(\sum_{j=n+1}^{n+p} j - \sum_{j=1}^{n-1} j - nr_n - \sum_{j=n+1}^{\alpha} j\right) + n^2 - \beta n + 1
$$

=
$$
\frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\alpha - n)(\alpha - n + 1)}{2} + 1.
$$

Case 5(ii): $1 \leq n < \alpha = p < k - \beta$. In this case, we have $0 \leq \beta < n$ and $0 \leq \beta < p$. We can easily determine that $\mu = \alpha + 1$, $\eta = n - 1$, and $\delta = \theta = 0$. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=n}^{k} jr_j - \sum_{j=0}^{\alpha} jr_j\right) + 1
$$

= $nr_n + \sum_{j=n+1}^{p+n} j - \sum_{j=1}^{n-1} j - nr_n - \sum_{j=n+1}^{\alpha} j + 1$
= $\frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\alpha - n)(\alpha - n + 1)}{2} + 1.$

Case 6: $1 \le n \le p < \alpha < k - \beta$. In this case, we have $0 \le \beta < n$ and $0 \le \beta < p$. We can easily determine that $\mu = \alpha + 1$, $\eta = k - \alpha - 1$, and $\delta = \theta = 0$. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=k-\alpha}^{k} jr_j - \sum_{j=0}^{\alpha} jr_j\right) + 1
$$

=
$$
\sum_{j=k-\alpha}^{n-1} j + nr_n + \sum_{j=n+1}^{k} j - \sum_{j=1}^{n-1} j - nr_n - \sum_{j=n+1}^{\alpha} j + 1
$$

=
$$
\frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\alpha - n)(\alpha - n + 1)}{2} - \frac{(\alpha - p)(\alpha - p + 1)}{2} + 1.
$$

Combining all the cases, we get $L(\bar{\mathbf{r}}, k - \beta) = \mathcal{L}(\alpha, \beta, A)$, which proves the inequality (2.3) . We can see that the lower bound in (2.3) is best possible by taking the set $A = [-n, p] \setminus \{0\}$. This completes the proof. \Box

Theorem 8. Let A be a finite set containing p positive integers, n negative integers and zero, where $1 \le n \le p$. Let $k = p + n + 1$, and let α and β be integers such that $1 \leq \alpha \leq k-1, 0 \leq \beta \leq k-1$ and $\alpha + \beta \leq k-1$. Then

$$
|\Sigma_{\alpha}^{\beta}(A)| \ge \mathcal{L}_0(\alpha, \beta, A), \tag{2.4}
$$

where $\mathcal{L}_0(\alpha, \beta, A)$ is defined as follows.

- 1. If $1 \leq \alpha < k \beta < n \leq p$, then $\mathcal{L}_0(\alpha, \beta, A) = \frac{p(p+1)}{2} + \frac{n(n+1)}{2}$ $\frac{(n+1)}{2} - \frac{(n-1)(n-1)}{2}$ $\frac{\beta-n-1)}{2} - \frac{(\beta-p)(\beta-p-1)}{2}$
- 2. If either $1 \leq \alpha < n \leq k \beta < p$ or $1 \leq \alpha = n < k \beta \leq p$, then

$$
\mathcal{L}_0(\alpha,\beta,A) = \frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\beta-n)(\beta-n-1)}{2} + 1.
$$

3. If either $1 \leq \alpha < n \leq p \leq k - \beta$ or $1 \leq \alpha = n < p < k - \beta$ or $1 \leq \alpha = n =$ $p < k - \beta$, then

$$
\mathcal{L}_0(\alpha, \beta, A) = \frac{p(p+1)}{2} + \frac{n(n+1)}{2} + 1.
$$

4. If $1 \leq n < \alpha < k - \beta \leq p$, then

$$
\mathcal{L}_0(\alpha, \beta, A) = \frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\beta - n)(\beta - n - 1)}{2} - \frac{(\alpha - n)(\alpha - n - 1)}{2} + 1.
$$

5. If either $1 \leq n < \alpha < p < k - \beta$ or $1 \leq n < \alpha = p < k - \beta$, then

$$
\mathcal{L}_0(\alpha, \beta, A) = \frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\alpha - n)(\alpha - n - 1)}{2} + 1.
$$

6. If
$$
1 \le n \le p < \alpha < k - \beta
$$
, then

$$
\mathcal{L}_0(\alpha, \beta, A) = \frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\alpha - n)(\alpha - n - 1)}{2} - \frac{(\alpha - p)(\alpha - p - 1)}{2} + 1.
$$

The lower bound in [\(2.4\)](#page-10-0) is best possible.

Proof. Let

$$
A = \{-b_n, -b_{n-1}, \dots, -b_1, 0, a_1, \dots, a_p\},\
$$

where $-b_n < -b_{n-1} < \ldots < -b_1 < 0 < a_1 < \ldots < a_p$. Let $k = |A| = p + n + 1$ and

$$
\bar{\mathbf{r}} = (r_0, r_1, \dots, r_{n-1}, r_n, r_{n+1}, \dots, r_{n+p}),
$$

where $r_0 = r_1 = \cdots = r_{n-1} = r_{n+1} = \cdots = r_{n+p} = 1$ and $r_n = k - \alpha - \beta + 1$. Then it follows from Lemma [2](#page-4-1) and Lemma [3](#page-5-4) that $\Sigma_{\alpha}^{\beta}(A) = (k - \beta)^{(\bar{r})}A$. Therefore, it follows from Theorem [2](#page-3-0) that

$$
|\Sigma_{\alpha}^{\beta}(A)| = |(k - \beta)^{(\bar{\mathbf{r}})}A| \ge L(\bar{\mathbf{r}}, k - \beta).
$$

Hence it suffices to prove that $L(\bar{\mathbf{r}}, k - \beta) = \mathcal{L}_0(\alpha, \beta, A)$.

 $\frac{2}{2}$ +1.

Case 1: $1 \leq \alpha < k - \beta < n \leq p$. In this case, we have $1 \leq \alpha < n \leq p < \beta$. We can easily determine that $\mu = k - \beta$, $\eta = \beta - 1$, and $\delta = \theta = 0$. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=\beta}^{k-1} jr_j - \sum_{j=0}^{k-\beta-1} jr_j\right) + 1
$$

=
$$
\left(\sum_{j=\beta}^{k-1} j - \sum_{j=1}^{k-\beta-1} j\right) + 1
$$

=
$$
\frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\beta - n)(\beta - n - 1)}{2} - \frac{(\beta - p)(\beta - p - 1)}{2} + 1.
$$

Case 2(i): $1 \leq \alpha < n \leq k - \beta < p$. In this case, we have $1 \leq \alpha < n < \beta \leq p + 1$. We can easily determine that $\mu = n$, $\eta = \beta - 1$, $\delta = p - \beta + 1$, and $\theta = 0$. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=\beta}^{k-1} jr_j - \sum_{j=0}^{n-1} jr_j\right) + 0 - n(p - \beta + 1) + 1
$$

=
$$
\left(\sum_{j=\beta}^{k-1} j - \sum_{j=1}^{n-1} j\right) - pn + \beta n - n + 1
$$

=
$$
\frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\beta - n)(\beta - n - 1)}{2} + 1.
$$

Case 2(ii): $1 \le \alpha = n < k - \beta \le p$. In this case, we have $1 \le \alpha = n < n + 1 \le$ $\beta \leq p$. Now the computation is the same as in Case 2. We can easily determine that $\mu = n$, $\eta = \beta - 1$, $\delta = p - \beta + 1$, and $\theta = 0$. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=\beta}^{k-1} jr_j - \sum_{j=0}^{n-1} jr_j\right) + 0 - n(p - \beta + 1) + 1
$$

=
$$
\left(\sum_{j=\beta}^{k-1} j - \sum_{j=1}^{n-1} j\right) - pn + \beta n - n + 1
$$

=
$$
\frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\beta - n)(\beta - n - 1)}{2} + 1.
$$

Case 3(i): $1 \le \alpha < n \le p \le k - \beta$. In this case, we have $0 \le \beta \le n + 1 \le p + 1$. We can easily determine that $\mu = \eta = n$, $\delta = p - \beta + 1$, and $\theta = n - \beta + 1$. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=n+1}^{p+n} jr_j - \sum_{j=0}^{n-1} jr_j\right) + n(n - \beta + 1) - n(p - \beta + 1) + 1
$$

=
$$
\left(\sum_{j=n+1}^{p+n} j - \sum_{j=1}^{n-1} j\right) + n^2 - pn + 1
$$

=
$$
\frac{p(p+1)}{2} + \frac{n(n+1)}{2} + 1.
$$

Case 3(ii): $1 \le \alpha = n < p < k - \beta$. In this case, we have $0 \le \beta \le n < p$. We can easily determine that $\mu = n$, $\eta = n$, $\delta = p - \beta + 1$, and $\theta = n - \beta + 1$. Now all computations are the same as in Case 3. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=n+1}^{p+n} jr_j - \sum_{j=0}^{n-1} jr_j\right) + n(n - \beta + 1) - n(p - \beta + 1) + 1
$$

=
$$
\left(\sum_{j=n+1}^{p+n} j - \sum_{j=1}^{n-1} j\right) + n^2 - pn + 1
$$

=
$$
\frac{p(p+1)}{2} + \frac{n(n+1)}{2} + 1.
$$

Case 3(iii): $1 \le \alpha = n = p < k - \beta$. We can easily determine that $\mu = n, \eta = n$, $\delta = p - \beta + 1$, and $\theta = n - \beta + 1$. Now all computations are the same as in Case 5. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=n+1}^{p+n} jr_j - \sum_{j=0}^{n-1} jr_j\right) + n(n - \beta + 1) - n(p - \beta + 1) + 1
$$

=
$$
\left(\sum_{j=n+1}^{p+n} j - \sum_{j=1}^{n-1} j\right) + n^2 - pn + 1
$$

=
$$
\frac{p(p+1)}{2} + \frac{n(n+1)}{2} + 1.
$$

Case 4: $1 \leq n < \alpha < k - \beta \leq p$. In this case, we have $1 \leq n < n + 1 \leq \beta \leq p$. We can easily determine that $\mu = \alpha$, $\eta = \beta - 1$, and $\delta = \theta = 0$. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=\beta}^{k-1} jr_j - \sum_{j=0}^{\alpha-1} jr_j\right) + 1
$$

= $\frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\beta-n)(\beta-n-1)}{2} - \frac{(\alpha-n)(\alpha-n-1)}{2} + 1.$

Case 5(i): $1 \leq n < \alpha < p < k - \beta$. In this case, we have $0 \leq \beta \leq n \leq p$. We can easily determine that $\mu = \alpha$, $\eta = n$, $\delta = 0$, and $\theta = n - \beta + 1$. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=n+1}^{k-1} jr_j - \sum_{j=0}^{\alpha-1} jr_j\right) + n(n - \beta + 1) + 1
$$

= $\frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\alpha - n)(\alpha - n - 1)}{2} + 1.$

Case 5(ii): $1 \leq n < \alpha = p < k - \beta$. In this case, we have $0 \leq \beta \leq n < p$. We can easily determine that $\mu = \alpha$, $\eta = n$, $\delta = 0$, and $\theta = n - \beta + 1$. Now all computations are the same as in Case 8. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=n+1}^{k-1} jr_j - \sum_{j=0}^{\alpha-1} jr_j\right) + n(n - \beta + 1) + 1
$$

= $\frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\alpha - n)(\alpha - n - 1)}{2} + 1.$

Case 6: $1 \le n \le p < \alpha < k - \beta$. In this case, we have $0 \le \beta \le n \le p < \alpha$. We can easily determine that $\mu = \alpha$, $\eta = k - \alpha - 1$, and $\delta = \theta = 0$. Hence

$$
L(\bar{\mathbf{r}}, k - \beta) = \left(\sum_{j=k-\alpha}^{k-1} jr_j - \sum_{j=0}^{\alpha-1} jr_j\right) + 1
$$

= $\frac{p(p+1)}{2} + \frac{n(n+1)}{2} - \frac{(\alpha-n)(\alpha-n-1)}{2} - \frac{(\alpha-p)(\alpha-p-1)}{2} + 1.$

Combining all the cases, we get $L(\bar{\mathbf{r}}, k - \beta) = \mathcal{L}_0(\alpha, \beta, A)$, which proves the inequality (2.4) . We can see that the lower bound in (2.4) is best possible by taking the set $A = [-n, p]$. This completes the proof. \Box

Remark 1. The lower bounds in Theorem [7](#page-7-1) and Theorem [8](#page-10-1) are obtained under the assumption that $n \leq p$. If $n > p$, then we can find the corresponding lower bound by replacing the set A by $-A$ and applying the above theorems.

3. Inverse Theorems for Subsums $\Sigma^{\beta}_{\alpha}(A)$

Theorem 9. Let $k \geq 3$ be an integer. Let α and β be integers such that $1 \leq \alpha \leq$ $k-2, 0 \leq \beta \leq k-2, and \alpha + \beta \leq k-1.$

If A is a set of k positive integers such that

$$
|\Sigma_{\alpha}^{\beta}(A)| = \frac{k(k+1)}{2} - \frac{\alpha(\alpha+1)}{2} - \frac{\beta(\beta+1)}{2} + 1, \tag{3.1}
$$

then

$$
A = d * [1, k]
$$

for some positive integer d except in the case $k = 3$ when we have

$$
A = \{a_1, a_2, a_1 + a_2\},\
$$

where $0 < a_1 < a_2$.

If A is a set of k nonnegative integers such that $0 \in A$ and

$$
|\Sigma_{\alpha}^{\beta}(A)| = \frac{k(k-1)}{2} - \frac{\alpha(\alpha-1)}{2} - \frac{\beta(\beta-1)}{2} + 1, \tag{3.2}
$$

then

$$
A = d * [0, k - 1]
$$

for some positive integer d except in the cases $k = 3$ and $k = 4$ when we have $A = \{0, a_1, a_2\}$ and $A = \{0, a_1, a_2, a_1 + a_2\}$, respectively, where $0 < a_1 < a_2$.

We remark that Theorem [9](#page-14-1) is a special case of a result of Bhanja [\[7,](#page-33-17) Theorem 9 and Corollary 10]. But the following proof presented here is original and the idea of the proof enables us to prove some new inverse theorems. Moreover, Theorem 9 and Corollary 10 of Bhanja [\[7\]](#page-33-17) are valid for $k \geq 6$ and $k \geq 7$, respectively. But Theorem [9](#page-14-1) gives complete description for $k \geq 3$.

Proof of Theorem [9.](#page-14-1) First assume that the set A contains only positive integers. Write $A = \{a_1, \ldots, a_k\}$ and $A_0 = \{a_0, a_1, \ldots, a_k\}$, where $0 = a_0 < a_1 < \cdots < a_k$. Let $\bar{\mathbf{r}} = (r_0, r_1, \dots, r_k)$, where $r_0 = k - \alpha - \beta$ and $r_1 = \dots = r_k = 1$. Then it follows from Lemma [1](#page-4-0) that $\Sigma_{\alpha}^{\beta}(A) = (k - \beta)^{(\bar{\mathbf{r}})} A_0$. Therefore,

$$
|(k-\beta)^{(\bar{\mathbf{r}})}A_0| = |\Sigma_{\alpha}^{\beta}(A)| = \frac{k(k+1)}{2} - \frac{\alpha(\alpha+1)}{2} - \frac{\beta(\beta+1)}{2} + 1 = L(\bar{\mathbf{r}}, k-\beta).
$$

Now if $k = 3$, then it follows from Theorem [5](#page-4-2) that

$$
|(k - \beta)^{(\bar{\mathbf{r}})}A_0| = L(\bar{\mathbf{r}}, k - \beta) = \frac{k(k+1)}{2} - \frac{\alpha(\alpha+1)}{2} - \frac{\beta(\beta+1)}{2} + 1
$$

if and only if $a_1 - a_0 = a_3 - a_2$, which implies that $a_3 = a_1 + a_2$. Therefore, $A = \{a_1, a_2, a_1 + a_2\}.$

If $k \geq 4$, then it follows from Theorem [3](#page-3-1) that

$$
|(k-\beta)^{(\bar{\mathbf{r}})}A_0| = L(\bar{\mathbf{r}},k) = \frac{k(k+1)}{2} - \frac{\alpha(\alpha+1)}{2} - \frac{\beta(\beta+1)}{2} + 1
$$

if and only if A_0 is an arithmetic progression. Hence

$$
a_1 - a_0 = a_2 - a_1 = \cdots = a_k - a_{k-1},
$$

which implies that $a_i = ia_1$ for $i = 1, ..., k$. Therefore, $A = a_1 * [1, k]$.

Now assume that $0 \in A$ and write

$$
A = \{a_0, a_1, \ldots, a_{k-1}\},\,
$$

where $0 = a_0 < a_1 < \cdots < a_{k-1}$. Let $\bar{\mathbf{r}} = (r_0, r_1, \ldots, r_{k-1})$, where $r_0 = k - \alpha - \beta + 1$ and $r_1 = \cdots = r_{k-1} = 1$. Then it follows from Lemma [2](#page-4-1) that

$$
\Sigma_{\alpha}^{\beta}(A) = (k - \beta)^{(\bar{\mathbf{r}})} A.
$$

Therefore,

$$
|(k-\beta)^{(\bar{\mathbf{r}})}A| = |\Sigma_{\alpha}^{\beta}(A)| = \frac{k(k-1)}{2} - \frac{\alpha(\alpha-1)}{2} - \frac{\beta(\beta-1)}{2} + 1 = L(\bar{\mathbf{r}}, k-\beta).
$$

Now if $k = 3$, then it follows from Theorem [4](#page-3-2) that any set A with three elements satisfies

$$
|(k-\beta)^{(\bar{\mathbf{r}})}A| = L(\bar{\mathbf{r}}, k-\beta) = \frac{k(k-1)}{2} - \frac{\alpha(\alpha-1)}{2} - \frac{\beta(\beta-1)}{2} + 1.
$$

Since $0 \in A$, it follows that $A = \{0, a_1, a_2\}.$

Now if $k = 4$, then it follows from Theorem [5](#page-4-2) that

$$
|(k-\beta)^{(\bar{\mathbf{r}})}A| = L(\bar{\mathbf{r}}, k-\beta) = \frac{k(k-1)}{2} - \frac{\alpha(\alpha-1)}{2} - \frac{\beta(\beta-1)}{2} + 1
$$

if and only if $a_1 - a_0 = a_3 - a_2$, which implies that $a_3 = a_1 + a_2$. Since $0 \in A$, it follows that $A = \{0, a_1, a_2, a_1 + a_2\}.$

If $k \geq 5$, then it follows from Theorem [3](#page-3-1) that

$$
|(k-\beta)^{(\bar{\mathbf{r}})}A| = L(\bar{\mathbf{r}}, k-\beta) = \frac{k(k-1)}{2} - \frac{\alpha(\alpha-1)}{2} - \frac{\beta(\beta-1)}{2} + 1
$$

if and only if A is an arithmetic progression. Hence

$$
a_1 - a_0 = a_2 - a_1 = \cdots = a_{k-1} - a_{k-2},
$$

which implies that $a_i = ia_1$ for $i = 1, ..., k - 1$. Hence $A = a_1 * [0, k - 1]$. This \Box completes the proof.

Remark 2. Let A be a finite set of $k \geq 3$ positive integers, and let α and β be nonnegative integers. The following remarks show that the equality in (3.1) may hold even if A is not an arithmetic progression.

- (i) If $\alpha = k 1$ and $\beta = 0$, then $|\Sigma^{\beta}_{\alpha}(A)| = k + 1$. Thus the equality in [\(3.1\)](#page-14-2) holds.
- (ii) If $\alpha = k 1$ and $\beta = 1$, then $|\Sigma^{\beta}_{\alpha}(A)| = k$. Thus the equality in [\(3.1\)](#page-14-2) holds.
- (iii) If $\alpha = k$ and $\beta = 0$, then $|\sum_{\alpha}^{\beta}(A)| = 1$. Thus the equality in [\(3.1\)](#page-14-2) holds.
- (iv) For the remaining values of α and β , one can draw the the conclusion using Facts [1.](#page-2-1)

Remark 3. Let A be a finite set of $k \geq 3$ nonnegative integers with $0 \in A$, and let α and β be nonnegative integers. The following remarks show that the equality in [\(3.2\)](#page-14-3) may hold even if A is not an arithmetic progression.

- (i) If $\alpha = k 1$ and $\beta = 0$, then $|\sum_{\alpha}^{\beta} (A)| = k$. Thus the equality in [\(3.2\)](#page-14-3) holds.
- (ii) If $\alpha = k 1$ and $\beta = 1$, then $|\Sigma^{\beta}_{\alpha}(A)| = k$. Thus the equality in [\(3.2\)](#page-14-3) holds.
- (iii) If $\alpha = k$ and $\beta = 0$, then $|\sum_{\alpha}^{\beta}(A)| = 1$. Thus the equality in [\(3.2\)](#page-14-3) holds.

(iv) For the remaining values of α and β , one can draw the conclusion using Facts [1.](#page-2-1)

Theorem 10. Let A be a finite set containing p positive integers and n negative integers, where $1 \leq n \leq p$. Let α and β be integers such that $1 \leq \alpha \leq k-2$, $0 \leq \beta \leq k-2$, and $\alpha + \beta \leq k-1$, where $k = p+n$. Let $\mathcal{L}(\alpha, \beta, A)$ be defined as in Theorem [7.](#page-7-1) Then the following conclusions hold.

- (i) If $k = 3, \alpha = 1$, and $\beta = 0$, then $|\Sigma^{\beta}_{\alpha}(A)| = \mathcal{L}(\alpha, \beta, A)$ if and only if $A =$ $d * \{-1, 1, 2\}$, where d is the smallest positive element of A.
- (ii) If $k = 3, \alpha = 1$, and $\beta = 1$, then $|\Sigma^{\beta}_{\alpha}(A)| = \mathcal{L}(\alpha, \beta, A)$ if and only if $A =$ ${a_0, a_0 + a_3, a_3}$ with $a_0 < 0 < a_0 + a_3 < a_3$.
- (iii) If $k \geq 4$, then $|\Sigma^{\beta}_{\alpha}(A)| = \mathcal{L}(\alpha, \beta, A)$ if and only if $A = d * \{-n, -(n 1)\}$ $1), \ldots, -1, 1, \ldots, p\}$, where d is the smallest positive element of A.

Proof. Let

$$
A = \{a_0, a_1, \dots, a_{n-1}, a_{n+1}, \dots, a_{n+p}\}\
$$

and

$$
A_0 = \{a_0, a_1, \ldots, a_{n-1}, a_n, a_{n+1}, \ldots, a_{n+p}\},\,
$$

where $a_0 < a_1 < \cdots < a_{n-1} < 0 = a_n < a_{n+1} < \cdots < a_{n+p}$. Let

$$
k = |A| = p + n, \ k_0 = |A_0| = p + n + 1
$$

and

$$
\bar{\mathbf{r}} = (r_0, r_1, \dots, r_{n-1}, r_n, r_{n+1}, \dots, r_{n+p}),
$$

where $r_0 = r_1 = \cdots = r_{n-1} = r_{n+1} = \cdots = r_{n+p} = 1$ and $r_n = k - \alpha - \beta$. Then it follows from Lemma [1](#page-4-0) and Lemma [3](#page-5-4) that

$$
\Sigma_{\alpha}^{\beta}(A) = (k - \beta)^{(\bar{\mathbf{r}})} A_0.
$$

Therefore,

$$
|\Sigma_{\alpha}^{\beta}(A)| = |(k - \beta)^{(\bar{\mathbf{r}})} A_0|.
$$

We can verify that $\mathcal{L}(\alpha, \beta, A) = L(\bar{\mathbf{r}}, k - \beta)$.

If $k = 3$, then clearly we have $n = 1$ and $p = 2$. Hence $A = \{a_0, a_2, a_3\}$ and $A_0 = \{a_0, a_1, a_2, a_3\}$ with $a_0 < 0 = a_1 < a_2 < a_3$, and

$$
\bar{\mathbf{r}} = (r_0, r_1, r_2, r_3) = (1, 3 - \alpha - \beta, 1, 1).
$$

If $\alpha = 1$ and $\beta = 0$, then $r_1 = k - \alpha - \beta = 2$, and so it follows from Theorem [5](#page-4-2) that

$$
|(k - \beta)^{(\bar{\mathbf{r}})}A_0| = |\Sigma_{\alpha}^{\beta}(A)| = \mathcal{L}(\alpha, \beta, A) = L(\bar{\mathbf{r}}, k - \beta)
$$

if and only if A_0 is an arithmetic progression. Hence

$$
a_1 - a_0 = a_2 - a_1 = a_3 - a_2,
$$

which implies that $a_0 = -a_2$ and $a_3 = 2a_2$, and so $A_0 = \{-a_2, 0, a_2, 2a_2\}$. Therefore, $A = \{-a_2, a_2, 2a_2\} = a_2 \times \{-1, 1, 2\}$. Next, if $\alpha = 1$ and $\beta = 1$, then $r_1 = k - \alpha - \beta = 1$ and $r_2 = 1$, and so it follows from Theorem [5](#page-4-2) that

$$
|(k - \beta)^{(\bar{\mathbf{r}})}A_0| = |\Sigma_{\alpha}^{\beta}(A)| = \mathcal{L}(\alpha, \beta, A) = L(\bar{\mathbf{r}}, k - \beta)
$$

if and only if $a_1 - a_0 = a_3 - a_2$, which implies that $a_2 = a_3 + a_0$. Therefore, $A = \{a_0, a_0 + a_3, a_3\}$, where $a_0 < 0 < a_0 + a_3 < a_3$.

Now, if $k \geq 4$, then, it follows from Theorem [3](#page-3-1) that

$$
|(k - \beta)^{(\bar{\mathbf{r}})}A_0| = |\Sigma_{\alpha}^{\beta}(A)| = \mathcal{L}(\alpha, \beta, A) = L(\bar{\mathbf{r}}, k)
$$

if and only if A_0 is an arithmetic progression. Hence

$$
a_1 - a_0 = a_2 - a_1 = \dots = a_{n-1} - a_{n-2} = a_n - a_{n-1}
$$

= $a_{n+1} - a_n = a_{n+2} - a_{n+1} = \dots = a_{n+p} - a_{n+p-1}$,

which implies that

$$
a_{n-j} = -ja_{n+1}
$$
 for $j = 1, ..., n$

and

$$
a_{n+j} = ja_{n+1}
$$
 for $j = 2, ..., p$.

Hence $A_0 = a_{n+1} * [-n, p]$. Therefore,

$$
A = a_{n+1} * \{-n, -(n-1), \ldots, -1, 1, 2, \ldots, p\}.
$$

This completes the proof.

Remark 4. Let A be a set of $k \geq 3$ nonzero integers containing at least one positive integer and at least one negative integer. Let α and β be nonnegative integers.

- (i) If $\alpha = k 1$ and $\beta = 0$, then $|\Sigma^{\beta}_{\alpha}(A)| = k + 1$.
- (ii) If $\alpha = k 1$ and $\beta = 1$, then $|\Sigma^{\beta}_{\alpha}(A)| = k$.
- (iii) If $\alpha = k$ and $\beta = 0$, then $|\Sigma^{\beta}_{\alpha}(A)| = 1$.
- (iv) For the remaining values of α and β , one can draw the conclusion using Facts [1.](#page-2-1)

 \Box

Theorem 11. Let A be a finite set containing p positive integers, n negative integers, and zero, where $1 \leq n \leq p$. Let α and β be integers such that $1 \leq \alpha \leq k-2$, $0 \leq \beta \leq k-2$, and $\alpha + \beta \leq k-1$, where $k = p+n+1$. Let $\mathcal{L}_0(\alpha,\beta,A)$ be defined as in Theorem [8.](#page-10-1) Then

$$
|\Sigma^{\beta}_{\alpha}(A)| = \mathcal{L}_0(\alpha, \beta, A)
$$

if and only if $A = d * [-n, p]$, where d is the smallest positive element of the set A.

Proof. Let

$$
A = \{a_0, a_1, \ldots, a_{n-1}, a_n, a_{n+1}, \ldots, a_{n+p}\},\,
$$

where $a_0 < a_1 < \cdots < a_n = 0 < a_{n+1} < \cdots < a_{n+p}$. Then $k = |A| = p + n + 1$. Let

$$
\bar{\mathbf{r}}=(r_0,r_1,\ldots,r_{n-1},r_n,r_{n+1},\ldots,r_{n+p}),
$$

where $r_0 = r_1 = \cdots = r_{n-1} = r_{n+1} = \cdots = r_{n+p} = 1$ and $r_n = k - \alpha - \beta + 1$. It follows from Lemma [2](#page-4-1) and Lemma [3](#page-5-4) that

$$
\Sigma^{\beta}_{\alpha}(A) = (k - \beta)^{(\bar{\mathbf{r}})} A.
$$

We can verify that $\mathcal{L}_0(\alpha, \beta, A) = L(\bar{\mathbf{r}}, k)$. If $k = 3$, then clearly, $p = n = 1$. Hence

 $A = \{a_0, a_1, a_2\}$

with $a_0 < 0 = a_1 < a_2$ and $\bar{\mathbf{r}} = (r_0, r_1, r_2) = (1, k - \alpha - \beta + 1, 1)$. Since

$$
r_1 = k - \alpha - \beta + 1 \ge 2,
$$

it follows from Theorem [4](#page-3-2) that

$$
|(k - \beta)^{(\bar{\mathbf{r}})}A| = |\Sigma_{\alpha}^{\beta}(A)| = \mathcal{L}_0(\alpha, \beta, A) = L(\bar{\mathbf{r}}, k - \beta)
$$

if and only if A is an arithmetic progression. Hence

$$
a_1 - a_0 = a_2 - a_1,
$$

which implies that $a_0 = -a_2$, and so $A = \{-a_2, 0, a_2\} = a_2 * [-1, 1].$

If $k = 4$, then clearly we have $n = 1$ and $p = 2$. Hence $A = \{a_0, a_1, a_2, a_3\}$ with $a_0 < 0 = a_1 < a_2 < a_3$ and $\bar{\mathbf{r}} = (r_0, r_1, r_2, r_3) = (1, k - \alpha - \beta + 1, 1, 1)$. Since $r_1 = k - \alpha - \beta + 1 \geq 2$, it follows from Theorem [5](#page-4-2) that

$$
|(k - \beta)^{(\bar{\mathbf{r}})}A| = |\Sigma_{\alpha}^{\beta}(A)| = \mathcal{L}_0(\alpha, \beta, A) = L(\bar{\mathbf{r}}, k - \beta)
$$

if and only if A is an arithmetic progression. Hence

$$
a_1 - a_0 = a_2 - a_1 = a_3 - a_2,
$$

which implies that $a_0 = -a_2$ and $a_3 = 2a_2$. Therefore,

$$
A = \{-a_2, 0, a_2, 2a_2\} = a_2 * [-1, 2].
$$

If $k \geq 5$, then it follows from Theorem [3](#page-3-1) that

$$
|(k - \beta)^{(\bar{\mathbf{r}})}A| = |\Sigma^{\beta}_{\alpha}(A)| = \mathcal{L}_0(\alpha, \beta, A) = L(\bar{\mathbf{r}}, k - \beta)
$$

if and only if A is an arithmetic progression. Hence

$$
a_1 - a_0 = a_2 - a_1 = \dots = a_{n-1} - a_{n-2} = a_n - a_{n-1}
$$

= $a_{n+1} - a_n = a_{n+2} - a_{n+1} = \dots = a_{n+p} - a_{n+p-1}$,

which implies that

$$
a_{n-j} = -ja_{n+1}
$$
 for $j = 1, ..., n$

and

$$
a_{n+j} = ja_{n+1}
$$
 for $j = 2, ..., p$.

Hence $A = a_{n+1} * [-n, p]$. Thus in all cases, we have $|\Sigma^{\beta}_{\alpha}(A)| = \mathcal{L}_{0}(\alpha, \beta, A)$ if and only if $A = a_{n+1} * [-n, p]$. This completes the proof. \Box

Remark 5. Let A be a set of $k \geq 3$ integers containing zero, at least one positive integer, and at least one negative integer. Let α and β be nonnegative integers.

- (i) If $\alpha = k 1$ and $\beta = 0$, then $|\Sigma^{\beta}_{\alpha}(A)| = k$.
- (ii) If $\alpha = k 1$ and $\beta = 1$, then $|\Sigma^{\beta}_{\alpha}(A)| = k$.
- (iii) If $\alpha = k$ and $\beta = 0$, then $|\Sigma^{\beta}_{\alpha}(A)| = 1$.
- (iv) For the remaining values of α and β , one can draw the conclusion using Facts [1.](#page-2-1)

Remark 6. In Theorem [10](#page-17-0) and Theorem [11,](#page-19-0) we have assumed that $n \leq p$. If $n > p$, then we can replace the set A by $-A$ and apply the above theorems to establish the corresponding inverse theorems.

4. Subsequence Sums

For convenience, we will use braces around the elements of a sequence whenever it is clear from the context that we are referring to a sequence (as opposed to a set). A finite sequence $\mathscr{A} = \{a_0, \ldots, a_0\}$ t_0 times a_1, \ldots, a_1 t_1 times $, \ldots, a_{k-1}, \ldots, a_{k-1}$ t_{k-1} times $\}$ in G will be

denoted by (A, \bar{t}) , where $A = \{a_0, a_1, \ldots, a_{k-1}\}\$ is the set of distinct terms of the

sequence $\mathscr A$ and $\bar{\mathbf t} = (t_0, t_1, \ldots, t_{k-1})$ is the k-tuple of repetitions of each element of the set A written in the order of the appearance of the elements in the set A. If B is a subsequence of \mathscr{A} , then we write $\mathscr{B} \subseteq \mathscr{A}$. The length of a sequence \mathscr{A} is denoted by $|\mathscr{A}|$. Let α and β be nonnegative integers with $\alpha + \beta \leq |\mathscr{A}|$. Like subset sums, we define

$$
\Sigma_{\alpha}^{\beta}(\mathscr{A}) = \{ \sigma(\mathscr{B}) : \mathscr{B} \subseteq \mathscr{A} \text{ and } \alpha \leq |\mathscr{B}| \leq |\mathscr{A}| - \beta \},\
$$

where $\sigma(\mathscr{B})$ denotes the sum of all the terms of the subsequence $\mathscr{B} \subseteq \mathscr{A}$. The usual sets of subsequence sums $\Sigma(\mathscr{A})$ and $\Sigma_0(\mathscr{A})$ are special cases of $\Sigma_\alpha^\beta(\mathscr{A})$ for $(\alpha, \beta) = (1, 0)$ and $(\alpha, \beta) = (0, 0)$, respectively. If $\beta = 0$, then $\Sigma^0_{\alpha}(\mathscr{A})$ is simply denoted by $\Sigma_{\alpha}(\mathscr{A})$.

Bhanja and Pandey [\[5\]](#page-33-6) proved some direct and inverse theorems for $\Sigma_{\alpha}(\mathscr{A})$ for arbitrary α in case $\mathscr A$ is a finite sequence of nonnegative integers including or excluding zero. The case $\alpha = 1$ has been studied by Mistri and Pandey [\[19\]](#page-33-18), by Mistri, Pandey and Prakash [\[20\]](#page-33-19), and by Jiang and Li [\[17\]](#page-33-20). In this section, we prove direct and inverse theorems for the subsequence sums $\Sigma_{\alpha}^{\beta}(\mathscr{A})$ in \mathbb{Z} for an arbitrary finite sequence of integers (see Theorem [13,](#page-22-0) Theorem [14,](#page-22-1) Theorem [15,](#page-23-0) Theorem [16,](#page-23-1) Theorem [17,](#page-24-0) Theorem [18,](#page-26-0) Theorem [19](#page-27-0) and Theorem [20\)](#page-29-0). In case of $\beta = 0$, these results generalize and solve two problems of Bhanja and Pandey [\[6,](#page-33-7) Open Problems (1) and (2) , Section 4 also.

Facts 12. The following facts allow us to consider the sumset $\Sigma^{\beta}_{\alpha}(\mathscr{A})$ only for the pairs (α, β) satisfying $1 \leq \alpha \leq |\mathscr{A}| - 1$ and $0 \leq \beta \leq |\mathscr{A}| - 1$.

- (i) It is easy to see that $\Sigma_{\alpha}^{\beta}(\mathscr{A}) = \alpha^{(\bar{\mathbf{t}})}A$ if $\alpha + \beta = |\mathscr{A}|$. Since the direct and inverse theorems are well known for the restricted h-fold sumset in \mathbb{Z} [\[23\]](#page-33-5), we always assume that $\alpha + \beta \leq |\mathscr{A}| - 1$, and so $0 \leq \alpha \leq |\mathscr{A}| - 1$ and $0 \leq \beta \leq |\mathscr{A}| - 1.$
- (ii) It is easy to verify that $\Sigma_{\alpha}^{\beta}(\mathscr{A}) = \sigma(\mathscr{A}) \Sigma_{\beta}^{\alpha}(\mathscr{A})$, and thus

$$
|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = |\Sigma^{\alpha}_{\beta}(\mathscr{A})|.
$$

(iii) Furthermore, $\Sigma_0^{\beta}(\mathscr{A}) = \Sigma_1^{\beta}(\mathscr{A})$ if $0 \in \Sigma_1^{\beta}(\mathscr{A})$, and $\Sigma_0^{\beta}(\mathscr{A}) = \Sigma_1^{\beta}(\mathscr{A}) \cup \{0\}$ if $0 \notin \Sigma_1^{\beta}(\mathscr{A})$. Therefore, we consider only positive values of α .

A simple set-theoretic argument yields the following lemmas.

Lemma 4. Let $\mathscr{A} = (A, \bar{\mathbf{t}})$ be a finite sequence in G, where $A = \{a_1, \ldots, a_k\}$ is a nonempty finite subset of G with $0 \notin A$ and $\bar{\mathbf{t}} = (t_1, \ldots, t_k)$ is a k-tuple of positive integers. Let $h = t_1 + \cdots + t_k$. Let α and β be integers such that $1 \leq \alpha \leq h - 1$, $0 \leq \beta \leq h-1$, and $\alpha + \beta \leq h-1$. Let $A_0 = \{a_0, a_1, \ldots, a_k\}$ with $a_0 = 0$, and let $\bar{\mathbf{r}} = (h - \alpha - \beta, t_1, \dots, t_k)$. Then

$$
\Sigma_{\alpha}^{\beta}(\mathscr{A}) = (h - \beta)^{(\bar{\mathbf{r}})} A_0.
$$

Lemma 5. Let $\mathscr{A} = (A, \bar{t})$ be a finite sequence in G, where $A = \{a_0, a_1, \ldots, a_{k-1}\}\$ is a nonempty finite subset of G with $a_0 = 0$ and $\bar{\mathbf{t}} = (t_0, t_1, \ldots, t_{k-1})$ is a k-tuple of positive integers. Let $h = t_0 + \cdots + t_{k-1}$. Let α and β be integers such that $1 \leq \alpha \leq h, \ 0 \leq \beta \leq h-1, \ and \ \alpha + \beta \leq h. \ Let \ \bar{\mathbf{r}} = (h-\alpha-\beta+t_0,t_1,\ldots,t_{k-1}).$ Then

$$
\Sigma^{\beta}_{\alpha}(\mathscr{A}) = (h - \beta)^{(\bar{\mathbf{r}})} A.
$$

We prove the following direct theorems which give the optimal lower bound for the cardinality of $\Sigma^{\beta}_{\alpha}(\mathscr{A})$ in case of an arbitrary finite sequence \mathscr{A} of integers containing positive integers, negative integers and (or) zero. In case of $\beta = 0$, Theorem [15](#page-23-0) and Theorem [16](#page-23-1) solve a problem of Bhanja and Pandey [\[6,](#page-33-7) Open problems (1), Section 4].

Theorem 13. Let $k \geq 2$ be an integer. Let $\mathscr{A} = (A, \bar{t})$ be a nonempty finite sequence of integers, where $A = \{a_1, \ldots, a_k\}$ with $0 < a_1 < \cdots < a_k$ and $\bar{t} =$ (t_1, \ldots, t_k) . Let $h = t_1 + \cdots + t_k$. Let α and β be integers such that $1 \leq \alpha \leq h-1$, $0 \leq \beta \leq h-1$, and $\alpha + \beta \leq h-1$. Let $\bar{\mathbf{r}} = (h-\alpha-\beta,t_1,\ldots,t_k)$. Then

$$
|\Sigma_{\alpha}^{\beta}(\mathscr{A})| \ge L(\bar{\mathbf{r}}, h - \beta). \tag{4.1}
$$

The lower bound in [\(4.1\)](#page-22-2) is best possible.

Proof. Let $A_0 = \{a_0, a_1, \ldots, a_k\}$ with $a_0 = 0$. Then it follows from Lemma [4](#page-21-0) that $\Sigma_{\alpha}^{\beta}(\mathscr{A}) = (h - \beta)^{(\bar{\mathbf{r}})} A_0.$

Now the lower bound in (4.1) easily follows from Theorem [2.](#page-3-0) We can see that the lower bound in [\(4.1\)](#page-22-2) is best possible by taking the sequence $\mathscr{A} = (A, \bar{t})$, where $A = \begin{bmatrix} 1, k \end{bmatrix}$ with $k \geq 2$. \Box

This theorem easily implies a theorem of Bhanja and Pandey [\[5,](#page-33-6) Theorem 3.1].

Theorem 14. Let $k \geq 2$ be an integer. Let $\mathscr{A} = (A, \bar{t})$ be a nonempty finite sequence of integers, where $A = \{a_0, a_1, \ldots, a_{k-1}\}$ with $0 = a_0 < a_1 < \cdots < a_{k-1}$ and $\bar{\mathbf{t}} = (t_0, t_1, \ldots, t_{k-1})$. Let $h = t_0 + \cdots + t_{k-1}$. Let α and β be integers such that $1 \leq \alpha \leq h, \ 0 \leq \beta \leq h-1, \ and \ \alpha + \beta \leq h. \ Let \ \bar{\mathbf{r}} = (h-\alpha-\beta+t_0,t_1,\ldots,t_{k-1}).$ Then

$$
|\Sigma_{\alpha}^{\beta}(\mathscr{A})| \ge L(\bar{\mathbf{r}}, h - \beta). \tag{4.2}
$$

The lower bound in (4.2) is best possible.

Proof. It follows from Lemma [5](#page-22-4) that

$$
\Sigma_{\alpha}^{\beta}(\mathscr{A}) = (h - \beta)^{(\bar{\mathbf{r}})} A.
$$

Σ

Now the lower bound in [\(4.2\)](#page-22-3) easily follows from Theorem [2.](#page-3-0) We can see that the lower bound in [\(4.2\)](#page-22-3) is best possible by taking the sequence $\mathscr{A} = (A, \bar{t})$ of length at least 3, where $A = [0, k - 1]$ with $k \geq 2$. \Box **Theorem 15.** Let n and p be positive integers such that $n \leq p$. Let $\mathscr{A} = (A, \bar{t})$ be a finite sequence of integers, where

$$
A = \{a_0, a_1, \dots, a_{n-1}, a_{n+1}, \dots, a_{n+p}\}\
$$

with

$$
a_0 < a_1 < \cdots < a_{n-1} < 0 < a_{n+1} < \cdots < a_{n+p}
$$

and

$$
\bar{\mathbf{t}} = (t_0, t_1, \dots, t_{n-1}, t_{n+1}, \dots, t_{n+p}).
$$

Let $h = t_0 + \cdots + t_{n-1} + t_{n+1} + \cdots + t_{n+p}$. Let α and β be integers such that $1 \leq \alpha \leq h-1, 0 \leq \beta \leq h-1, and \alpha + \beta \leq h-1.$ Then

$$
|\Sigma_{\alpha}^{\beta}(\mathscr{A})| \ge L(\bar{\mathbf{r}}, h - \beta), \tag{4.3}
$$

where $\bar{\mathbf{r}} = (t_0, \ldots, t_{n-1}, h - \alpha - \beta, t_{n+1}, \ldots, t_{n+p})$. The lower bound in [\(4.3\)](#page-23-2) is best possible.

Proof. Let $A_0 = \{a_0, a_1, \ldots, a_{n-1}, a_n, a_{n+1}, \ldots, a_{n+p}\}$ with $a_n = 0$. Then it follows from Theorem [4](#page-21-0) and Lemma [3](#page-5-4) that

$$
\Sigma^{\beta}_{\alpha}(\mathscr{A}) = (h - \beta)^{(\bar{\mathbf{r}})} A_0,
$$

and so

$$
|\Sigma_{\alpha}^{\beta}(\mathscr{A})| = |(h - \beta)^{(\bar{\mathbf{r}})} A_0| \ge L(\bar{\mathbf{r}}, h - \beta).
$$

We can see that the lower bound in (4.3) is best possible by taking the sequence $\mathscr{A} = (A, \bar{\mathbf{t}}),$ where $A = [-n, p] \setminus \{0\}$ and $\bar{\mathbf{t}} = (t_0, t_1, \ldots, t_{n-1}, t_{n+1}, \ldots, t_{n+p}).$ This completes the proof. \Box

Theorem 16. Let n and p be positive integers with $n \leq p$. Let $\mathscr{A} = (A, \bar{t})$ be a nonempty finite sequence of integers, where

$$
A = \{a_0, a_1, \dots, a_{n-1}, a_n, a_{n+1}, \dots, a_{n+p}\}\
$$

with

$$
a_0 < a_1 < \cdots < a_{n-1} < 0 = a_n < a_{n+1} < \cdots < a_{n+p}
$$

and

 $\bar{\mathbf{t}} = (t_0, t_1, \ldots, t_{n-1}, t_n, t_{n+1}, \ldots, t_{n+p}).$

Let $h = t_0 + \cdots + t_{n+p}$. Let α and β be integers such that $1 \leq \alpha \leq h$, $0 \leq \beta \leq h-1$, and $\alpha + \beta \leq h - 1$. Then

$$
|\Sigma_{\alpha}^{\beta}(\mathscr{A})| \ge L(\bar{\mathbf{r}}, h - \beta), \tag{4.4}
$$

where $\bar{\mathbf{r}} = (t_0, \ldots, t_{n-1}, h - \alpha - \beta + t_n, t_{n+1}, \ldots, t_{n+p})$. The lower bound in [\(4.4\)](#page-23-3) is best possible.

Proof. It follows from Theorem [5](#page-22-4) and Lemma [3](#page-5-4) that

$$
\Sigma^{\beta}_{\alpha}(\mathscr{A}) = (h - \beta)^{(\bar{\mathbf{r}})} A,
$$

and so

$$
|\Sigma_{\alpha}^{\beta}(\mathscr{A})| = |(h - \beta)^{(\bar{\mathbf{r}})}A| \ge L(\bar{\mathbf{r}}, h - \beta).
$$

We can see that the lower bound in (4.4) is best possible by taking the sequence $\mathscr{A} = (A, \bar{\mathbf{t}}),$ where $A = [-n, p]$ and $\bar{\mathbf{t}} = (t_0, t_1, \ldots, t_{n-1}, t_n, t_{n+1}, \ldots, t_{n+p}).$ This completes the proof. \Box

The following inverse theorems for the subsequence sums describe the structure of the arbitrary finite sequences $\mathscr A$ of integers for which $|\Sigma_{\alpha}(\mathscr A)|$ achieves the optimal lower bound. In case of $\beta = 0$, Theorem [19](#page-27-0) and Theorem [20](#page-29-0) solve another problem of Bhanja and Pandey [\[6,](#page-33-7) Open problems (2), Section 4].

Theorem 17. Let $k \geq 2$ be an integer. Let $\mathscr{A} = (A, \bar{t})$ be a finite sequence of integers, where $A = \{a_1, \ldots, a_k\}$ with $0 < a_1 < \cdots < a_k$ and $\bar{\mathbf{t}} = (t_1, \ldots, t_k)$. Let $h = t_1 + \cdots + t_k$. Let α and β be integers such that $1 \leq \alpha \leq h - 2$, $0 \leq \beta \leq h - 2$, and $\alpha + \beta \leq h - 1$. Let $\bar{\mathbf{r}} = (h - \alpha - \beta, t_1, \dots, t_k)$. Then the following conclusions hold.

(a) If $k = 2$ and $t_1 = 1$, then $|\sum_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta)$. If $k = 2$ and $t_1 \geq 2$, then $|\Sigma_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta)$

if and only if $\mathscr{A} = (A, \bar{\mathbf{t}}),$ where $A = a_1 * [1, 2]$ and $\bar{\mathbf{t}} = (t_1, t_2).$

(b) If $k = 3$ and $t_1 = t_2 = 1$, then

$$
|\Sigma_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta)
$$

if and only if $\mathscr{A} = (A, \bar{t})$, where $A = \{a_1, a_2, a_1 + a_2\}$ with $0 < a_1 < a_2$ and $\bar{\mathbf{t}} = (1, 1, t_3)$. If $k = 3$ and either $t_1 \geq 2$ or $t_2 \geq 2$, then

$$
|\Sigma_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta)
$$

if and only if $\mathscr{A} = (A, \bar{t}),$ where $A = a_1 * [1, 3]$ and $\bar{t} = (t_1, t_2, t_3).$

(c) If $k \geq 4$, then $|\Sigma_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta)$ if and only if $\mathscr{A} = (A, \bar{\mathbf{t}})$, where $A = a_1 * [1, k]$ and $\bar{\mathbf{t}} = (t_1, \dots, t_k)$.

Proof. Let $A_0 = \{a_0, a_1, \ldots, a_k\}$ with $a_0 = 0$. Then it follows from Lemma [4](#page-21-0) that $\Sigma_{\alpha}^{\beta}(\mathscr{A}) = (h - \beta)^{(\bar{\mathbf{r}})} A_0$. Therefore,

$$
|(h - \beta)^{(\bar{\mathbf{r}})} A_0| = |\Sigma_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta).
$$

It is easy to see that $2 \leq h - \beta \leq r_0 + r_1 + \cdots + r_k - 2$.

Now if $k = 2$ and $t_1 = 1$, then it follows from Theorem [4](#page-3-2) that

$$
|(h - \beta)^{(\bar{\mathbf{r}})} A_0| = L(\bar{\mathbf{r}}, h - \beta),
$$

which implies that

$$
|\Sigma_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta).
$$

If $k = 2$ and $t_1 \geq 2$, then again it follows from Theorem [4](#page-3-2) that

$$
|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = |(h - \beta)^{(\bar{\mathbf{r}})} A_0| = L(\bar{\mathbf{r}}, h - \beta)
$$

if and only if A_0 is a 3-term arithmetic progression, which implies that $A = a_1 * [1, 2]$. This proves part (a) .

Now if $k = 3$ and $t_1 = t_2 = 1$, then it follows from Theorem [5](#page-4-2) that

$$
|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = |(h - \beta)^{(\bar{\mathbf{r}})} A_0| = L(\bar{\mathbf{r}}, h - \beta)
$$

if and only if $a_1 - a_0 = a_3 - a_2$. This implies that $A = \{a_1, a_2, a_1 + a_2\}$ with $0 < a_1 < a_2$. If $k = 3$ and either $t_1 \geq 2$ or $t_2 \geq 2$, then it follows from Theorem [5](#page-4-2) that

$$
|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = |(h - \beta)^{(\bar{\mathbf{r}})} A_0| = L(\bar{\mathbf{r}}, h - \beta)
$$

if and only if A is an arithmetic progression. Hence

$$
a_1 - a_0 = a_2 - a_1 = a_3 - a_2,
$$

which implies that $a_i = ia_1$ for $i = 1, 2, 3$. Hence $A = a_1 * [1, 3]$. This proves part (b).

If $k \geq 4$, then it follows from Theorem [3](#page-3-1) that

$$
|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = |(h - \beta)^{(\bar{\mathbf{r}})}A_0| = L(\bar{\mathbf{r}}, h - \beta)
$$

if and only if A is an arithmetic progression. Hence

$$
a_1 - a_0 = a_2 - a_1 = \cdots = a_k - a_{k-1},
$$

which implies that $a_i = ia_1$ for $i = 1, ..., k$. Hence $A = a_1 * [1, k]$. This proves part \Box $(c).$

Remark 7. Let $\mathscr{A} = (A, \bar{\mathbf{t}})$ be a finite sequence of integers, where $A = \{a_1, \ldots, a_k\}$ is a set of $k \ge 2$ positive integers with $a_1 < \cdots < a_k$ and $\bar{\mathbf{t}} = (t_1, \ldots, t_k)$. Let $h =$ $t_1 + \cdots + t_k$. Let α and β be nonnegative integers, and let $\bar{\mathbf{r}} = (h - \alpha - \beta, t_1, \ldots, t_k)$.

(i) If $\alpha = h - 1$ and $\beta = 0$, then $|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = k + 1$. It is easy to verify that $L(\bar{\mathbf{r}}, h - \beta) = L((1, t_1, \dots, t_k), h) = k + 1$. Thus $|\Sigma^{\beta}_{\alpha}(\mathscr{A})|$ achieves the lower bound $L(\bar{\mathbf{r}}, h - \beta)$ in this case.

- (ii) If $\alpha = h 1$ and $\beta = 1$, then $|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = k$.
- (iii) If $\alpha = h$ and $\beta = 0$, then $|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = 1$.
- (iv) For the remaining values of α and β , one can draw the conclusion using Facts [12.](#page-21-1)

Theorem 18. Let $k \geq 3$ be an integer. Let $\mathscr{A} = (A, \bar{t})$ be a finite sequence of integers, where $A = \{a_0, a_1, \ldots, a_{k-1}\}$ with $0 = a_0 < a_1 < \cdots < a_{k-1}$ and $\bar{\mathbf{t}} = (t_0, t_1, \ldots, t_{k-1})$. Let $h = t_0 + t_1 + \cdots + t_{k-1}$. Let α and β be integers such that $1 \leq \alpha \leq h-2, 0 \leq \beta \leq h-2, \text{ and } \alpha+\beta \leq h-1.$ Let $\bar{\mathbf{r}} = (h-\alpha-\beta+t_0, t_1, \ldots, t_{k-1}).$ Then the following conclusions hold.

- (a) If $k = 3$ and $t_1 = 1$, then $|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = L(\bar{\mathbf{r}}, h \beta)$. If $k = 3$ and $t_1 \geq 2$, then $|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta)$ if and only if $\mathscr{A} = (A, \bar{\mathbf{t}})$, where $A = a_1 * [0, 2]$ and $\bar{\mathbf{t}} = (t_0, t_1, t_2).$
- (b) If $k = 4$ and $t_1 = t_2 = 1$, then $|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = L(\bar{\mathbf{r}}, h \beta)$ if and only if $\mathscr{A} = (A, \bar{\mathbf{t}})$, where $A = \{0, a_1, a_2, a_1 + a_2\}$ with $0 < a_1 < a_2$ and $\bar{t} = (t_0, 1, 1, t_3)$. If $k = 4$ and either $t_1 \geq 2$ or $t_2 \geq 2$, then $|\Sigma_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta)$ if and only if $\mathscr{A} = (A, \bar{t}),$ where $A = a_1 * [0, 3]$ and $\bar{t} = (t_0, t_1, t_2, t_3).$
- (c) If $k \geq 5$, then $|\Sigma_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h \beta)$ if and only if $\mathscr{A} = (A, \bar{\mathbf{t}})$, where $A = a_1 * [0, k-1]$ and $\mathbf{t} = (t_0, t_1, \dots, t_{k-1}).$

Proof. The proof is similar to the proof of Theorem [18.](#page-26-0)

Remark 8. Let $\mathscr{A} = (A, \bar{t})$ be a finite sequence of integers, where

$$
A = \{a_0, a_1, \dots, a_{k-1}\}
$$

is a set of $k \geq 3$ nonnegative integers with $0 = a_0 < a_1 < \cdots < a_{k-1}$. Let $\bar{\mathbf{t}} = (t_0, t_1, \ldots, t_k)$, and let $h = t_0 + t_1 + \cdots + t_k$. Let α and β be nonnegative integers, and let $\bar{\mathbf{r}} = (h - \alpha - \beta + t_0, t_1, \dots, t_{k-1}).$

(i) If $\alpha = h - 1$ and $\beta = 0$, then $|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = k$. It is easy to verify that

$$
L(\bar{\mathbf{r}},h-\beta)=L((t_0+1,t_1,\ldots,t_k),h)=k.
$$

Thus $|\Sigma^{\beta}_{\alpha}(\mathscr{A})|$ achieves the lower bound $L(\bar{\mathbf{r}}, h - \beta)$ in this case.

(ii) If $\alpha = h - 1$ and $\beta = 1$, then $|\sum_{\alpha}^{\beta}(\mathscr{A})| = k$. It is easy to verify that

$$
L(\bar{\mathbf{r}},h-\beta)=L((t_0,t_1,\ldots,t_k),h-1)=k.
$$

Thus $|\Sigma^{\beta}_{\alpha}(\mathscr{A})|$ achieves the lower bound $L(\bar{\mathbf{r}}, h - \beta)$ in this case also.

 \Box

(iii) If $\alpha = h$ and $\beta = 0$, then $|\sum_{\alpha}^{\beta}(\mathscr{A})| = 1$. It is easy to verify that

$$
L(\bar{\mathbf{r}},h-\beta)=L((t_0,t_1,\ldots,t_k),h)=1.
$$

Thus $|\Sigma^{\beta}_{\alpha}(\mathscr{A})|$ achieves the lower bound $L(\bar{\mathbf{r}}, h - \beta)$ in this case also.

(iv) For the remaining values of α and β , one can draw the conclusion using Facts [12.](#page-21-1)

Theorem 19. Let n and p be integers such that $n \leq p$. Let $\mathscr{A} = (A, \bar{t})$ be a finite sequence of integers, where

$$
A = \{a_0, a_1, \dots, a_{n-1}, a_{n+1}, \dots, a_{n+p}\}\
$$

with

$$
a_0 < a_1 < \cdots < a_{n-1} < 0 < a_{n+1} < \cdots < a_{n+p}
$$

and

$$
\bar{\mathbf{t}} = (t_0, t_1, \dots, t_{n-1}, t_{n+1}, \dots, t_{n+p}).
$$

Let $h = t_0 + \cdots + t_{n-1} + t_{n+1} + \cdots + t_{n+p} \geq 3$. Let α and β be integers such that $1 \le \alpha \le h-2, \ 0 \le \beta \le h-2, \ and \ \alpha + \beta \le h-1.$ Let

$$
\bar{\mathbf{r}}=(t_0,\ldots,t_{n-1},h-\alpha-\beta,t_{n+1},\ldots,t_{n+p}).
$$

Then the following conclusions hold.

- (a) If $k = 3$, $\alpha + \beta = h 1$, and $t_2 = 1$, then $|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = L(\bar{\mathbf{r}}, h \beta)$ if and only if $\mathscr{A} = (A, \bar{\mathbf{t}}),$ where $A = \{a_2 - a_3, a_2, a_3\}$ with $0 < a_2 < a_3$ and $\bar{\mathbf{t}} = (t_0, 1, t_3).$
- (b) In all other cases, $|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = L(\bar{\mathbf{r}}, h \beta)$ if and only if $\mathscr{A} = (A, \bar{\mathbf{t}})$, where $A = a_{n+1} * \{-n, \ldots, -1, 1, \ldots, p\}.$

Proof. Let $A_0 = \{a_0, a_1, \ldots, a_{n-1}, a_n, a_{n+1}, \ldots, a_{n+p}\}$ with $a_n = 0$. Then it follows from Lemma [4](#page-21-0) and Lemma [3](#page-5-4) that

$$
\Sigma^{\beta}_{\alpha}(\mathscr{A}) = (h - \beta)^{(\bar{\mathbf{r}})} A_0.
$$

Let $k = |A| = p + n$. If $k = 2$, then clearly, $p = n = 1$. Hence $A = \{a_0, a_2\}$ and $A_0 = \{a_0, a_1, a_2\}$ with $a_0 < 0 = a_1 < a_2$ and $\bar{\mathbf{r}} = (r_0, r_1, r_2) = (t_0, h - \alpha - \beta, t_2),$ where $t_0 + t_3 \geq 3$. Since $r_1 = h - \alpha \geq 2$, it follows from Theorem [4](#page-3-2) that

$$
|(h - \beta)^{(\bar{\mathbf{r}})} A_0| = |\Sigma_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta)
$$

if and only if A_0 is an arithmetic progression. Hence

$$
a_1 - a_0 = a_2 - a_1,
$$

which implies that $a_0 = -a_2$, and so $A_0 = \{-a_2, 0, a_2\}$. Hence

$$
A = \{-a_2, a_2\} = a_2 * \{-1, 1\}.
$$

If $k = 3$, then clearly we have $n = 1$ and $p = 2$. Hence $A = \{a_0, a_2, a_3\}$ and $A_0 = \{a_0, a_1, a_2, a_3\}$ with $a_0 < 0 = a_1 < a_2 < a_3$, and

$$
\bar{\mathbf{r}} = (r_0, r_1, r_2, r_3) = (t_0, h - \alpha - \beta, t_2, t_3).
$$

If $\alpha + \beta = h - 1$ and $t_2 = 1$, then it follows from Theorem [5](#page-4-2) that

$$
|(h - \beta)^{(\bar{\mathbf{r}})} A_0| = |\Sigma_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta)
$$

if and only if $a_1 - a_0 = a_3 - a_2$. This implies that $a_0 = a_2 - a_3$. Therefore, $A = \{a_2 - a_3, a_2, a_3\}.$ If either $\alpha + \beta \leq h - 2$ or $t_2 \geq 2$, then it follows from Theorem [5](#page-4-2) that $|(h - \beta)^{(\bar{r})}A_0| = |\Sigma_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{r}, h - \beta)$ if and only if A_0 is an arithmetic progression. Hence

$$
a_1 - a_0 = a_2 - a_1 = a_3 - a_2.
$$

This implies that $a_0 = -a_2$ and $a_3 = 2a_2$, and so $A_0 = \{-a_2, 0, a_2, 2a_2\}$. Therefore,

$$
A = \{-a_2, a_2, 2a_2\} = a_2 * \{-1, 1, 2\}.
$$

If $k \geq 4$, then, it follows from Theorem [3](#page-3-1) that

$$
|(h - \beta)^{(\bar{\mathbf{r}})} A_0| = |\Sigma_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta)
$$

if and only if A_0 is an arithmetic progression. Hence

$$
a_1 - a_0 = a_2 - a_1 = \dots = a_{n-1} - a_{n-2} = a_n - a_{n-1}
$$

= $a_{n+1} - a_n = a_{n+2} - a_{n+1} = \dots = a_{n+p} - a_{n+p-1}$,

which implies that

$$
a_{n-j} = -ja_{n+1}
$$
 for $j = 1, ..., n$

and

$$
a_{n+j} = ja_{n+1}
$$
 for $j = 2, ..., p$.

Hence $A_0 = a_{n+1} * [-n, p]$. Therefore,

$$
A = a_{n+1} * \{-n, -(n-1), \ldots, -1, 1, 2, \ldots, p\}.
$$

This completes the proof.

 \Box

Remark 9. Let *n* and *p* be integers such that $n \leq p$. Let $\mathscr{A} = (A, \bar{t})$ be a finite sequence of integers, where

$$
A = \{a_0, a_1, \dots, a_{n-1}, a_{n+1}, \dots, a_{n+p}\}\
$$

with

$$
a_0 < a_1 < \dots < a_{n-1} < 0 < a_{n+1} < \dots < a_{n+p}
$$

and

$$
\bar{\mathbf{t}} = (t_0, t_1, \dots, t_{n-1}, t_{n+1}, \dots, t_{n+p}).
$$

Let $h = t_0 + \cdots + t_{n-1} + t_{n+1} + \cdots + t_{n+p} \geq 3$. Let α and β be nonnegative integers, and let $\bar{\mathbf{r}} = (t_0, \ldots, t_{n-1}, h - \alpha - \beta, t_{n+1}, \ldots, t_{n+p}).$

- (i) If $\alpha = h 1$ and $\beta = 0$, then $|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = k + 1$. It is easy to verify that $L(\bar{\mathbf{r}}, h - \beta) = k + 1$. Thus $|\Sigma^{\beta}_{\alpha}(\mathscr{A})|$ achieves the lower bound $L(\bar{\mathbf{r}}, h - \beta)$ in this case.
- (ii) If $\alpha = h 1$ and $\beta = 1$, then $|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = k$.
- (iii) If $\alpha = h$ and $\beta = 0$, then $|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = 1$.
- (iv) For the remaining values of α and β , one can draw the conclusion using Facts [12.](#page-21-1)

Theorem 20. Let n and p be integers such that $n \leq p$. Let $\mathscr{A} = (A, \bar{t})$ be a finite sequence of integers, where

$$
A = \{a_0, a_1, \dots, a_{n-1}, a_n, a_{n+1}, \dots, a_{n+p}\}\
$$

with

$$
a_0 < a_1 < \dots < a_{n-1} < 0 = a_n < a_{n+1} < \dots < a_{n+p}
$$

and

$$
\bar{\mathbf{t}} = (t_0, t_1, \dots, t_{n-1}, t_n, t_{n+1}, \dots, t_{n+p}).
$$

Let $h = t_0 + \cdots + t_{n+p}$. Let α and β be integers such that $1 \leq \alpha \leq h-2$, $0 \leq \beta \leq h-2$, and $\alpha + \beta \leq h$. Let $\bar{\mathbf{r}} = (t_0, \ldots, t_{n-1}, h-\alpha-\beta+t_n, t_{n+1}, \ldots, t_{n+p})$. Then the following conclusions hold.

(a) Suppose that $k = 3$ and $\alpha + \beta = h$. In this case, if $t_1 = 1$, then

$$
|\Sigma_{\alpha}^{\beta}(\mathscr{A})|=L(\bar{\mathbf{r}},h-\beta).
$$

If $t_1 \geq 2$, then $|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta)$ if and only if $\mathscr{A} = (A, \bar{\mathbf{t}})$, where $A = a_2 * [-1, 1]$ and $\bar{\mathbf{t}} = (t_0, t_1, t_2)$.

(b) Suppose that $k = 3$ and $\alpha + \beta \leq h - 1$. In this case, $|\sum_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta)$ if and only if $\mathscr{A} = (A, \bar{\mathbf{t}}),$ where $A = a_2 * [-1, 1]$ and $\bar{\mathbf{t}} = (t_0, t_1, t_2).$

(c) Suppose that $k = 4$ and $\alpha + \beta = h$. In this case, if $t_1 = t_2 = 1$, then

$$
|\Sigma_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta)
$$

if and only if $\mathscr{A} = (A, \bar{t})$, where $A = \{a_2 - a_3, 0, a_2, a_3\}$ with $0 < a_2 < a_3$ and $\bar{\mathbf{t}} = (t_0, 1, 1, t_3)$. If either $t_1 \geq 2$ or $t_2 \geq 2$, then $|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta)$ if and only if $\mathscr{A} = (A, \bar{\mathbf{t}}),$ where $A = a_2 * [-1, 2].$

- (d) Suppose that $k = 4$ and $\alpha + \beta \leq h 1$. In this case, $|\sum_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h \beta)$ if and only if $\mathscr{A} = (A, \bar{t}),$ where $A = a_2 * [-1, 2]$ and $\bar{t} = (t_0, t_1, t_2, t_3).$
- (e) In all other cases, $|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = L(\bar{\mathbf{r}}, h \beta)$ if and only if $\mathscr{A} = (A, \bar{\mathbf{t}})$, where $A = a_{n+1} * [-n, p].$

Proof. It follows from Lemma [5](#page-22-4) and Lemma [3](#page-5-4) that

$$
\Sigma^{\beta}_{\alpha}(\mathscr{A}) = h^{(\bar{\mathbf{r}})} A.
$$

Let $k = |A| = p + n + 1$. First assume that $k = 3$. Then clearly, $p = n = 1$. Hence $A = \{a_0, a_1, a_2\}$ with $a_0 < 0 = a_1 < a_2$ and

$$
\bar{\mathbf{r}} = (r_0, r_1, r_2) = (t_0, h - \alpha + \beta + t_1, t_2).
$$

If $t_1 = 1$ and $\alpha + \beta = h$, then it follows from Theorem [4](#page-3-2) that

$$
|(h - \beta)^{(\bar{\mathbf{r}})}A| = |\Sigma_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta).
$$

If $t_1 \geq 2$ and $\alpha + \beta = h$, then it follows from Theorem [4](#page-3-2) that

$$
|(h - \beta)^{(\bar{\mathbf{r}})}A| = |\Sigma_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta)
$$

if and only if A is an arithmetic progression. Hence $a_1 - a_0 = a_2 - a_1$, which implies that $a_0 = -a_2$, and so $A = \{-a_2, 0, a_2\} = a_2 * [-1, 1]$. This proves part (a). If $t_1 = 1$ and $\alpha + \beta \leq h - 1$, then it follows from Theorem [4](#page-3-2) that

$$
|(h - \beta)^{(\bar{\mathbf{r}})}A| = |\Sigma_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta)
$$

if and only if A is an arithmetic progression. Hence $a_1 - a_0 = a_2 - a_1$, which implies that $a_0 = -a_2$, and so $A = \{-a_2, 0, a_2\} = a_2 * [-1, 1]$. This proves part (b).

Now assume that $k = 4$. Then clearly we have $n = 1$ and $p = 2$. Hence $A = \{a_0, a_1, a_2, a_3\}$ with $a_0 < 0 = a_1 < a_2 < a_3$ and

$$
\bar{\mathbf{r}} = (r_0, r_1, r_2, r_3) = (t_0, h - \alpha + t_1, t_2, t_3).
$$

If $t_1 = t_2 = 1$ and $\alpha + \beta = h$, then it follows from Theorem [5](#page-4-2) that

$$
|(h - \beta)^{(\bar{\mathbf{r}})}A| = |\Sigma_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta)
$$

if and only if $a_1 - a_0 = a_3 - a_2$, which implies that $A = \{a_2 - a_3, 0, a_2, a_3\}$ with $0 < a_2 < a_3.$ If $\alpha + \beta = h$ and either $t_1 \geq 2$ or $t_2 \geq 2,$ then it follows from Theorem [5](#page-4-2) that

$$
|(h - \beta)^{(\bar{\mathbf{r}})}A| = |\Sigma_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta)
$$

if and only if A is an arithmetic progression. Hence

$$
a_1 - a_0 = a_2 - a_1 = a_3 - a_2,
$$

which implies that $a_0 = -a_2$ and $a_3 = 2a_2$, and so $A = \{-a_2, 0, a_2, 2a_2\} = a_2 *$ [-1, 2]. This proves part (c). If $\alpha + \beta \leq h-1$, then since $r_1 = h-\alpha+t_1 \geq 1+t_1 \geq 2$, it follows from Theorem [5](#page-4-2) that

$$
|(h - \beta)^{(\bar{\mathbf{r}})}A| = |\Sigma_{\alpha}^{\beta}(\mathscr{A})| = L(\bar{\mathbf{r}}, h - \beta)
$$

if and only if A is an arithmetic progression. Hence

$$
a_1 - a_0 = a_2 - a_1 = a_3 - a_2,
$$

which implies that $a_0 = -a_2$ and $a_3 = 2a_2$. Therefore,

$$
A = \{-a_2, 0, a_2, 2a_2\} = a_2 * [-1, 2].
$$

This proves part (d) .

If $k \geq 5$, then, it follows from Theorem [3](#page-3-1) that

$$
|(h-\beta)^{(\bar{{\mathbf{r}}})}A|=|\Sigma_{\alpha}^{\beta}(\mathscr{A})|=L(\bar{{\mathbf{r}}},h-\beta)
$$

if and only if A is an arithmetic progression. Hence

$$
a_1 - a_0 = a_2 - a_1 = \dots = a_{n-1} - a_{n-2} = a_n - a_{n-1}
$$

= $a_{n+1} - a_n = a_{n+2} - a_{n+1} = \dots = a_{n+p} - a_{n+p-1}$,

which implies that

$$
a_{n-j} = -ja_{n+1}
$$
 for $j = 1, ..., n$

and

$$
a_{n+j} = ja_{n+1}
$$
 for $j = 2, ..., p$.

Hence $A = a_{n+1} * [-n, p]$. This proves part (e) . This completes the proof.

Remark 10. Let n and p be integers such that $n \leq p$. Let $\mathscr{A} = (A, \bar{t})$ be a finite sequence of integers, where

$$
A = \{a_0, a_1, \dots, a_{n-1}, a_n, a_{n+1}, \dots, a_{n+p}\}\
$$

with

$$
a_0 < a_1 < \dots < a_{n-1} < 0 = a_n < a_{n+1} < \dots < a_{n+p}
$$

 $\hfill \square$

and

$$
\bar{\mathbf{t}} = (t_0, t_1, \dots, t_{n-1}, t_n, t_{n+1}, \dots, t_{n+p}).
$$

Let $h = t_0 + \cdots + t_{n+p}$. Let α and β be nonnegative integers, and let

$$
\bar{\mathbf{r}} = (t_0, \ldots, t_{n-1}, h - \alpha - \beta + t_n, t_{n+1}, \ldots, t_{n+p}).
$$

(i) If $\alpha = h - 1$ and $\beta = 0$, then $|\Sigma^{\beta}_{\alpha}(\mathscr{A})| = k$. It is easy to verify that

$$
L(\bar{\mathbf{r}}, h - \beta) = k.
$$

Thus $|\Sigma^{\beta}_{\alpha}(\mathscr{A})|$ achieves the lower bound $L(\bar{\mathbf{r}}, h - \beta)$ in this case.

(ii) If $\alpha = h - 1$ and $\beta = 1$, then $|\sum_{\alpha}^{\beta}(\mathscr{A})| = k$. It is easy to verify that

$$
L(\bar{\mathbf{r}}, h - \beta) = k.
$$

Thus $|\Sigma^{\beta}_{\alpha}(\mathscr{A})|$ achieves the lower bound $L(\bar{\mathbf{r}}, h - \beta)$ in this case also.

(iii) If $\alpha = h$ and $\beta = 0$, then $|\sum_{\alpha}^{\beta}(\mathscr{A})| = 1$. It is easy to verify that

$$
L(\bar{\mathbf{r}}, h - \beta) = 1.
$$

Thus $|\Sigma^{\beta}_{\alpha}(\mathscr{A})|$ achieves the lower bound $L(\bar{\mathbf{r}}, h - \beta)$ in this case also.

(iv) For the remaining values of α and β , one can draw the conclusion using Facts [12.](#page-21-1)

Remark 11. In Theorem [15,](#page-23-0) Theorem [16,](#page-23-1) Theorem [19](#page-27-0) and Theorem [20,](#page-29-0) we have assumed that $n \leq p$. If $n > p$, then we can replace the sequence $\mathscr A$ by $-\mathscr A$ and apply the corresponding theorems to establish the inverse theorems in this case. Here the sequence $-\mathscr{A}$ is obtained by replacing each term x of \mathscr{A} by $-x$.

Acknowledgement. The author is very thankful to the anonymous referee for useful comments and suggestions which were helpful for improving the paper.

References

- [1] N. Alon, M. B. Nathanson, and I. Z. Ruzsa, Adding distinct congruence classes modulo a prime, Amer. Math. Monthly 102 (1995), 250-255.
- [2] N. Alon, M. B. Nathanson, and I. Z. Ruzsa, The polynomial method and restricted sums of congruence classes, J. Number Theory 56 (1996), 404–417.
- [3] É. Balandraud, An addition theorem and maximal zero-sum free sets in $\mathbb{Z}/p\mathbb{Z}$, Israel J. Math. 188 (2012), 405–429.
- [4] É. Balandraud, Addition theorems in F_p via the polynomial method, preprint arXiv:1702.06419v1.
- [5] J. Bhanja and R. K. Pandey, Inverse problems for certain subsequence sums in integers, Discrete Math. 343 (2020), 112148.
- [6] J. Bhanja and R. K. Pandey, On the minimum size of subset and subsequence sums in integers, C. R. Math. Acad. Sci. Paris 360 (2022), 1099–1111.
- [7] J. Bhanja, A note on sumsets and restricted sumsets, J. Integer Seq. 24 (2021), Article 21.4.2.
- [8] A. L. Cauchy, Recherches sur les nombres, *J. École polytech.* **9** (1813), 99–116.
- [9] K. Cziszter, Improvements of the Noether Bound for Polynomial Invariants of Finite Groups, PhD thesis, CEU Budapest, 2012.
- [10] H. Davenport, On the addition of residue classes, J. Lond. Math. Soc. 10 (1935), 30–32.
- [11] H. Davenport, A historical note, *J. Lond. Math. Soc.* **22** (1947), 100–101.
- [12] J. A. Dias da Silva and Y. O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bull. Lond. Math. Soc. 26 (1994), 140–146.
- [13] H. K. Dwivedi and R. K. Mistri, Direct and inverse problems for subset sums with certain restrictions, *Integers* 22 (2022), $\#$ A112.
- [14] P. Erdős and H. Heilbronn, On the addition of residue classes mod p, Acta Arith. 9 (1964), 149–159.
- [15] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math. 24 (2006), 337–369.
- [16] B. Girard and W. Schmid, Direct zero-sum problems for certain groups of rank three, J. Number Theory 197 (2019), 297–316.
- [17] X. W. Jiang and Y.-L. Li, On the cardinality of subsequence sums, Int. J. Number Theory 14 (2018), 661–668.
- [18] R. K. Mistri and R. K. Pandey, A generalization of sumsets of set of integers, J. Number Theory 143 (2014), 334–356.
- [19] R. K. Mistri, R. K. Pandey, and O. Prakash, Subsequence sums: Direct and inverse problems, J. Number Theory 148 (2015), 235–256.
- [20] R. K. Mistri, R. K. Pandey, and O. Prakash, Subset and subsequence sums in integers, J. Comb. Number Theory 8 (3) (2016), 207–223.
- [21] R. K. Mistri, R. K. Pandey, and O. Prakash, A generalization of sumset and its applications, Proc. Indian Acad. Sci. Math. Sci. 128 (5) (2018), Paper No. 55, 8 pp.
- [22] F. Monopoli, A generalization of sumsets modulo a prime, J. Number Theory 157 (2015), 271–279.
- [23] M. B. Nathanson, Inverse theorems for subset sums, Trans. Amer. Math. Soc. 347 (1995), 1409–1418.
- [24] M. B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer, 1996.
- [25] O. Ordaz, A. Philipp, I. Santos, and W. Schmid, On the Olson and the strong Davenport constants, J. Théor. Nombres Bordeaux 23 (2011), 715–750.
- [26] W. Schmid, Restricted inverse zero-sum problems in groups of rank two, Q. J. Math. 63 (2012), 477–487.
- [27] T. Tao and V. H. Vu, *Additive Combinatorics*, Cambridge University Press, 2006.
- [28] Q.-H. Yang and Y.-G. Chen, On the cardinality of general h-fold sumsets, European J. Combin. 47 (2015), 103–114.