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Abstract

Let A be a nonempty finite set of integers, and let α and β be nonnegative integers
such that α + β ≤ |A|, where |A| denotes the cardinality of the set A. Let Σβ

α(A)
denote the set of those integers which can be represented as a sum of a subset of A
with at least α elements and at most |A| − β elements. The usual sets of subsums
Σ(A) and Σ0(A) are special cases of Σβ

α(A) for (α, β) = (1, 0) and (α, β) = (0, 0),
respectively. If β = 0, then we denote Σ0

α(A) simply by Σα(A). We establish the
optimal lower bound for the cardinality of Σβ

α(A). We also prove inverse theorems
for the set of subsums Σβ

α(A) which characterize the sets A ⊆ Z for which |Σβ
α(A)|

achieves the optimal lower bound. These results generalize the various direct and
inverse theorems for Σα(A) proved recently by Bhanja and Pandey. Furthermore,
we prove direct and inverse theorems for the subsequence sums Σβ

α(A ) in Z for
an arbitrary finite sequence of integers A which generalize the results obtained for
the set of subsums Σβ

α(A) and also solve two open problems of Bhanja and Pandey
related to the set of subsums Σα(A ).

1. Introduction

Throughout the paper, let G denote an additive abelian group, and let |S| denote
the cardinality of the set S ⊆ G. For a nonzero integer c and a set S ⊆ G, the

dilated set {cs : s ∈ S} is denoted by c ∗ S, and we simply write −S for (−1) ∗ S.
Let A be a nonempty finite subset of G. For nonnegative integers α and β with

α+ β ≤ |A|, define

Σβ
α(A) = {σ(B) : B ⊆ A and α ≤ |B| ≤ |A| − β},

where σ(B) denotes the sum of all the elements of the set B. The usual sets

of subsums Σ(A) and Σ0(A) are special cases of Σβ
α(A) for (α, β) = (1, 0) and

(α, β) = (0, 0), respectively. If β = 0, then Σ0
α(A) is simply denoted by Σα(A).
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Estimation of the optimal lower bound for the cardinality of Σβ
α(A) in terms of

α, β and |A| is one of the important problems, called the direct problem. Another

important problem of interest is the characterization of the sets A for which |Σβ
α(A)|

achieves the optimal lower bound, called the inverse problem. These problems are

extremely important in additive combinatorics and have many applications in zero-

sum problems (see [3, 4, 9, 14, 15, 16, 23, 25, 26] and the references given therein).

Nathanson [23] proved direct and inverse results for the sumset Σ(A) in the

additive group of integers Z. Balandraud [3] studied the direct problems for Σ(A)

and Σ0(A) in the finite prime field Fp, where p is a prime number. The direct and

inverse problems for Σα(A) in Z have been studied recently by Bhanja and Pandey

[5, 6] and by Dwivedi and Mistri [13]. The lower bound for the cardinality of the

set of subsums Σα(A) in Fp was obtained by Balandraud [4]. For a set A ⊆ Fp such

that A ∩ (−A) = ∅, Balandraud [4] conjectured that

|Σβ
α(A)| ≥ min

{
p,

|A|(|A|+ 1)

2
− α(α+ 1)

2
− β(β + 1)

2
+ 1

}
,

unless

A = λ ∗ {1,−2, 3, . . . , |A|}

with 0 ̸= λ ∈ Fp,
|A|(|A|+1)

2 = p+ 4 and (α, β) ∈ {(1, 1), (1, 2), (2, 1)}.
Motivated by this conjecture, we study the direct and inverse problems for Σβ

α(A)

in Z. In Section 2, we study the direct problem and obtain the optimal lower bound

for |Σβ
α(A)| considering the following cases:

(a) the set A contains only positive integers,

(b) the set A contains only nonnegative integers including zero,

(c) the set contains both positive and negative integers,

(d) the set A contains positive integers, negative integers and zero.

In Section 3, we study the inverse problem for Σβ
α(A). The results in this section

characterize the sets A for which |Σβ
α(A)| achieves the optimal lower bound. In

Section 4, we generalize the definition of the set of subsums Σβ
α(A) to the set of

subseuence sums Σβ
α(A ) for a sequence A in G. We also establish several direct

and inverse theorems for Σβ
α(A ), which also generalize and solve two open problems

of Bhanja and Pandey [6, Open problems (1) and (2), Section 4] .

We remark that the various known direct and inverse theorems for Σ(A), Σ0(A)

and Σα(A) [23, 5, 6, 13] can be obtained as special cases of the direct and inverse

theorems for Σβ
α(A) or Σβ

α(A ) proved in Section 2, Section 3 and Section 4.

The proofs of the direct and inverse theorems for Σβ
α(A) and Σβ

α(A ) require

several preliminary results (see Subsection 1.1) for the generalized h-fold sumset

defined as follows. Given a nonempty finite set A ⊆ G and an ordered |A|-tuple
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r̄ = (ra : a ∈ A) of positive integers associated with the set A, we define the

generalized h-fold sumset h(r̄)A as follows:

h(r̄)A =

{∑
a∈A

saa : sa ∈ Z, 0 ≤ sa ≤ ra, and
∑
a∈A

sa = h

}
.

If ra = r for each a ∈ A, then h(r̄)A is simply denoted by h(r)A. The direct and

inverse problems for h(r)A have been studied by Mistri and Pandey [18] in Z and

by Monopoli [22] in Fp (see [21] also). Yang and Chen [28] have studied the direct

and inverse problems for the sumset h(r̄)A in Z.
The classical h-fold sumset hA and the restricted h-fold sumset h Â are special

cases of this sumset for r = h and r = 1, respectively. These sumsets have been

studied extensively in the literature (see [1, 2, 8, 10, 11, 12, 24, 27] and the references

given therein).

Facts 1. The following facts allow us to consider the sumset Σβ
α(A) only for the

pairs (α, β) satisfying 1 ≤ α ≤ |A| − 1 and 0 ≤ β ≤ |A| − 1.

(i) It is easy to see that Σβ
α(A) = α Â if α+β = |A|. Since the direct and inverse

theorems are well known for the restricted h-fold sumset in Z [23], we always

assume that α+ β ≤ |A| − 1, and so 0 ≤ α ≤ |A| − 1 and 0 ≤ β ≤ |A| − 1.

(ii) It is easy to verify that Σβ
α(A) = σ(A)−Σα

β(A), and thus |Σβ
α(A)| = |Σα

β(A)|.

(iii) Furthermore, Σβ
0 (A) = Σβ

1 (A) if 0 ∈ Σβ
1 (A), and Σβ

0 (A) = Σβ
1 (A) ∪ {0} if

0 ̸∈ Σβ
1 (A). Therefore, we consider only positive values of α.

Since in the definition of the sumset h(r̄)A, the relative order of the elements of

the set A is taken into consideration, from now onwards, while using the sumset

h(r̄)A in a statement or in a proof, we will assume that the order of the elements in

the set A is fixed.

1.1. Notation and Preliminary Results

Here we fix some notation which will be used throughout the paper. For integers

a and b, where a ≤ b, we denote the interval of integers {n ∈ Z : a ≤ n ≤ b} by

[a, b]. For a function f , we take

v∑
i=u

f(i) = 0, whenever u and v are integers such

that u > v.

With slight deviation from the notation used by Yang and Chen [28], we use the

following notation as in Dwivedi and Mistri [13]. Given positive integers h and k,

and an ordered k-tuple r̄ = (r0, r1, . . . , rk−1) of positive integers, let µ = µ(r̄, h) be

the largest integer and η = η(r̄, h) be the least integers such that

µ−1∑
j=0

rj ≤ h and

k−1∑
j=η+1

rj ≤ h,
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respectively. Now define

δ = δ(r̄, h) = h−
µ−1∑
j=0

rj and θ = θ(r̄, h) = h−
k−1∑

j=η+1

rj .

Furthermore, define

L(r̄, h) =

( k−1∑
j=η+1

jrj −
µ−1∑
j=0

jrj

)
+ ηθ − µδ + 1.

A k-term arithmetic progression in Z is a set of the form {a, a+ d, . . . , a+(k− 1)d}
for some integer a and a nonzero integer d. We will require the direct and inverse

theorems for h(r̄)A due to Yang and Chen [28] to prove the direct and inverse

theorems for Σβ
α(A) and Σβ

α(A ). For the sake of completeness, we state these

results here.

Theorem 2 ([28]). Let A = {a0, a1, . . . , ak−1} be a set of integers with a0 < a1 <

· · · < ak−1, where k is a positive integer. Let r̄ = (r0, r1, . . . , rk−1) be an ordered

k-tuple of positive integers, and h be an integer satisfying 2 ≤ h ≤
k−1∑
j=0

rj. Then

|h(r̄)A| ≥ L(r̄, h).

This lower bound is best possible.

Theorem 3 ([28]). Let k ≥ 5 be an integer. Let r̄ = (r0, . . . , rk−1) be an ordered

k-tuple of positive integers, and let h be an integer satisfying

2 ≤ h ≤
k−1∑
j=0

rj − 2.

If A is a set of k integers, then

|h(r̄)A| = L(r̄, h)

if and only if A is a k-term arithmetic progression.

Theorem 4 ([28]). Let A = {a0, a1, a2} be a set of integers with a0 < a1 < a2
and r̄ = (r0, r1, r2) be an ordered 3-tuple of positive integers. Suppose that h is an

integer with 2 ≤ h ≤ r0 + r1 + r2 − 2. Then

(i) for r1 = 1, we have |h(r̄)A| = L(r̄, h);

(ii) for r1 ≥ 2, we have |h(r̄)A| = L(r̄, h) if and only if A is a 3-term arithmetic

progression.
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Theorem 5 ([28]). Let A = {a0, a1, a2, a3} be a set of integers with a0 < a1 <

a2 < a3 and r̄ = (r0, r1, r2, r3) be an ordered 4-tuple of positive integers. Suppose

that h is an integer with 2 ≤ h ≤ r0 + r1 + r2 + r3 − 2. Then

(i) for r1 = r2 = 1, we have |h(r̄)A| = L(r̄, h) if and only if a1 − a0 = a3 − a2;

(ii) for r1 ≥ 2 or r2 ≥ 2, we have |h(r̄)A| = L(r̄, h) if and only if A is a 4-term

arithmetic progression.

To prove some inverse theorems for the set of subsums Σα(A), Dwivedi and Mistri

[13] expressed this subsums as a certain generalized h-fold sumset. We extend this

idea to the set of subsums Σβ
α(A), and also for the set of subsequence sums Σβ

α(A )

for a sequence A (see Section 4). The following lemmas which can be proved easily

by simple set-theoretic arguments are crucial for the proof of direct and inverse

theorems for Σβ
α(A).

Lemma 1. Let A = {a1, . . . , ak} be a nonempty finite subset of G with 0 ̸∈ A,

where k is a positive integer. Let α and β be integers such that 0 ≤ α ≤ k − 1,

0 ≤ β ≤ k − 1, and α + β ≤ k − 1. Let A0 = {a0, a1, . . . , ak} ⊆ G, where a0 = 0,

and let r̄ = (k − α− β, 1, . . . , 1︸ ︷︷ ︸
k times

). Then

Σβ
α(A) = (k − β)(r̄)A0.

Lemma 2. Let A = {a0, a1, . . . , ak−1} be a nonempty finite subset of G with a0 = 0,

where k is a positive integer. Let α and β be integers such that 1 ≤ α ≤ k,

0 ≤ β ≤ k − 1, and α+ β ≤ k. Let r̄ = (k − α− β + 1, 1, . . . , 1︸ ︷︷ ︸
k−1 times

). Then

Σβ
α(A) = (k − β)(r̄)A.

Let π : [1, k] → [1, k] be a permutation, where k is a positive integer. Following

the notation in [13], for a set A = {a1, a2, . . . , ak} and an ordered k-tuple r̄ =

(r1, r2, . . . , rk) of positive integers, we write

Aπ = {aπ(1), aπ(2), . . . , aπ(k)}

and

r̄π = (rπ(1), rπ(2), . . . , rπ(k)).

Note that the order of the elements in the set A is assumed to be fixed in the

definition of h(r̄)A. In the proofs, sometimes we will require to consider the elements

of the set A in a different order. In that situation, we will need the following obvious

lemma to apply the above results.
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Lemma 3 ([13]). Let A = {a1, a2, . . . , ak} be an ordered nonempty finite subset

of G, where k is a positive integer. Let r̄ = (r1, r2, . . . , rk) an ordered k-tuple of

positive integers. Let h ≥ 2 be an integer, and let π be a permutation of [1, k]. Then

h(r̄)A = h(r̄π)Aπ.

2. Direct Theorems for Subsums Σβ
α(A)

Theorem 6. Let k ≥ 2 be an integer. Let α and β be integers such that

1 ≤ α ≤ k − 1, 0 ≤ β ≤ k − 1, and α+ β ≤ k − 1.

If A is a set of k positive integers, then

|Σβ
α(A)| ≥ k(k + 1)

2
− α(α+ 1)

2
− β(β + 1)

2
+ 1. (2.1)

If A is a set of k nonnegative integers and 0 ∈ A, then

|Σβ
α(A)| ≥ k(k − 1)

2
− α(α− 1)

2
− β(β − 1)

2
+ 1. (2.2)

The lower bounds in (2.1) and (2.2) are best possible.

We remark that Theorem 6 is a special case of a result of Bhanja [7, Theorem 6

and Corollary 7]. But the proof presented here is original and the idea of the proof

enables us to prove some new direct theorems.

Proof of Theorem 6. First assume that A is a set of k ≥ 2 positive integers. Let

A = {a1, . . . , ak}, and let A0 = {a0, a1, . . . , ak}, where a0 = 0. Let

r̄ = (r0, r1, . . . , rk),

where r0 = k − α− β and r1 = r2 = · · · = rk = 1. Then Lemma 1 implies that

Σβ
α(A) = (k − β)(r̄)A0.

It is easy to see that µ = α+ 1 and η = β. Therefore,

δ = (k − β)−
α∑

j=0

rj = (k − β)− (k − β) = 0

and

θ = (k − β)−
k∑

j=β+1

rj = (k − β)− (k − β) = 0.
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Hence

L(r̄, k − β) =

(
k∑

j=β+1

jrj −
α∑

j=0

jrj

)
+ 0− 0 + 1

=

(
k∑

j=β+1

j −
α∑

j=1

j

)
+ 1

=
k(k + 1)

2
− α(α+ 1)

2
− β(β + 1)

2
+ 1.

Therefore, it follows from Theorem 2 that

|Σβ
α(A)| = |(k − β)(r̄)A0| ≥ L(r̄, k − β) =

k(k + 1)

2
− α(α+ 1)

2
− β(β + 1)

2
+ 1.

We can see that the lower bound in (2.1) is best possible by taking the set A = [1, k],

where k ≥ 2. This proves the first part of the theorem.

Now assume that A is a set of k ≥ 2 nonnegative integers with 0 ∈ A. Let

A = {a0, a1, . . . , ak−1}, where 0 = a0 < a1 < · · · < ak−1. Let r̄ = (r0, r1, . . . , rk−1),

where r0 = k − α − β + 1 and r1 = r2 = · · · = rk−1 = 1. It follows from Lemma 2

that

Σβ
α(A) = (k − β)(r̄)A.

It is easy to see that µ = α and η = β − 1. Therefore,

δ = (k − β)−
α−1∑
j=0

rj = 0 and θ = (k − β)−
k−1∑
j=β

rj = 0.

Hence

L(r̄, k − β) =

(
k−1∑
j=β

jrj −
α−1∑
j=0

jrj

)
+ 0− 0 + 1

=

(
k−1∑
j=β

j −
α−1∑
j=1

j

)
+ 1

=
k(k − 1)

2
− α(α− 1)

2
− β(β − 1)

2
+ 1.

Therefore, it follows from Theorem 2 that

|Σβ
α(A)| = |(k − β)(r̄)A| ≥ L(r̄, k − β) =

k(k − 1)

2
− α(α− 1)

2
− β(β − 1)

2
+ 1.

We can see that the lower bound in (2.2) is best possible by taking the set A =

[0, k − 1], where k ≥ 2. This proves the second part of the theorem and completes

the proof.
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Theorem 7. Let A be a finite set containing p positive integers and n negative

integers, where 1 ≤ n ≤ p. Let k = p + n, and let α and β be integers such that

1 ≤ α ≤ k − 1, 0 ≤ β ≤ k − 1, and α+ β ≤ k − 1. Then

|Σβ
α(A)| ≥ L(α, β,A), (2.3)

where L(α, β,A) is defined as follows.

1. If 1 ≤ α < k − β < n ≤ p, then

L(α, β,A) = p(p+ 1)

2
+
n(n+ 1)

2
− (β − n)(β − n+ 1)

2
− (β − p)(β − p+ 1)

2
+1.

2. If either 1 ≤ α < n ≤ k − β < p or 1 ≤ α = n < k − β ≤ p, then

L(α, β,A) = p(p+ 1)

2
+

n(n+ 1)

2
− (β − n)(β − n+ 1)

2
+ 1.

3. If either 1 ≤ α < n ≤ p ≤ k − β or 1 ≤ α = n < p < k − β or 1 ≤ α = n =

p < k − β, then

L(α, β,A) = p(p+ 1)

2
+

n(n+ 1)

2
+ 1.

4. If 1 ≤ n < α < k − β ≤ p, then

L(α, β,A) = p(p+ 1)

2
+
n(n+ 1)

2
− (β − n)(β − n+ 1)

2
− (α− n)(α− n+ 1)

2
+1.

5. If either 1 ≤ n < α < p < k − β or 1 ≤ n < α = p < k − β, then

L(α, β,A) = p(p+ 1)

2
+

n(n+ 1)

2
− (α− n)(α− n+ 1)

2
+ 1.

6. If 1 ≤ n ≤ p < α < k − β, then

L(α, β,A) = p(p+ 1)

2
+
n(n+ 1)

2
− (α− n)(α− n+ 1)

2
− (α− p)(α− p+ 1)

2
+1.

The lower bound in (2.3) is best possible.

Proof. Let

A = {−bn,−bn−1, . . . ,−b1, a1, . . . , ap}

and

A0 = {−bn,−bn−1, . . . ,−b1, 0, a1, . . . , ap},
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where −bn < −bn−1 < . . . < −b1 < 0 < a1 < . . . < ap. Let k = |A| = p + n,

k0 = |A0| = p+ n+ 1, and

r̄ = (r0, r1, . . . , rn−1, rn, rn+1, . . . , rn+p),

where r0 = r1 = · · · = rn−1 = rn+1 = · · · = rn+p = 1 and rn = k − α − β. Then

it follows from Lemma 1 and Lemma 3 that Σβ
α(A) = (k − β)(r̄)A0. Therefore, it

follows from Theorem 2 that

|Σβ
α(A)| = |(k − β)(r̄)A0| ≥ L(r̄, k − β).

Hence it suffices to prove that L(r̄, k − β) = L(α, β,A).
Case 1: 1 ≤ α < k − β < n ≤ p. In this case, we have 1 ≤ α < n ≤ p < β. We can

easily determine that µ = k − β, η = β, and δ = θ = 0. Hence

L(r̄, k − β) =

(
p+n∑

j=β+1

jrj −
k−β−1∑
j=0

jrj

)
+ 1

=

(
k∑

j=β+1

j −
k−β−1∑
j=1

j

)
+ 1

=
p(p+ 1)

2
+

n(n+ 1)

2
− (β − n)(β − n+ 1)

2
− (β − p)(β − p+ 1)

2
+ 1.

Case 2(i): 1 ≤ α < n ≤ k − β < p. In this case, we have 1 ≤ α < n < β ≤ p. We

can easily determine that µ = n, η = β, δ = p− β, and θ = 0. Hence

L(r̄, k − β) =

(
k∑

j=β+1

jrj −
n−1∑
j=0

jrj

)
+ 0− n(p− β) + 1

=

(
k∑

j=β+1

j −
n−1∑
j=1

j

)
− pn+ βn+ 1

=
p(p+ 1)

2
+

n(n+ 1)

2
− (β − n)(β − n+ 1)

2
+ 1.

Case 2(ii): 1 ≤ α = n < k − β ≤ p. In this case, we have 0 ≤ β < p and

1 ≤ n ≤ β < p. We can easily determine that µ = n + 1, η = β, and δ = θ = 0.

Hence

L(r̄, k − β) =

(
k∑

j=β+1

jrj −
n∑

j=0

jrj

)
+ 1

=

(
k∑

j=β+1

j −
n−1∑
j=1

j − nrn

)
+ 1

=
p(p+ 1)

2
+

n(n+ 1)

2
− (β − n)(β − n+ 1)

2
+ 1.
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Case 3(i): 1 ≤ α < n ≤ p ≤ k − β). In this case, we have 0 ≤ β ≤ n ≤ p. We can

easily determine that µ = η = n, δ = p− β, and θ = n− β. Hence

L(r̄, k − β) =

(
p+n∑

j=n+1

jrj −
n−1∑
j=0

jrj

)
+ n(n− β)− n(p− β) + 1

=

(
p+n∑

j=n+1

j −
n−1∑
j=1

j

)
+ n2 − pn+ 1

=
p(p+ 1)

2
+

n(n+ 1)

2
+ 1.

Case 3(ii): 1 ≤ α = n < p < k − β. In this case, we have 0 ≤ β < n and

0 ≤ β < p. We can easily determine that µ = n + 1, η = n, δ = 0, and θ = n − β.

Hence

L(r̄, k − β) =

(
k∑

j=n+1

jrj −
n∑

j=0

jrj

)
+ n(n− β)− 0 + 1

=

(
p+n∑

j=n+1

j −
n−1∑
j=1

j − nrn

)
+ n2 − βn+ 1

=
p(p+ 1)

2
+

n(n+ 1)

2
+ 1.

Case 3(iii): 1 ≤ α = n = p < k − β. We can easily determine that µ = n + 1,

η = n− 1, and δ = θ = 0. Hence

L(r̄, k − β) =

(
k∑

j=n

jrj −
n∑

j=0

jrj

)
+ 1

= nrn +

p+n∑
j=n+1

j −
n−1∑
j=1

j − nrn + 1

=
p(p+ 1)

2
+

n(n+ 1)

2
+ 1.

Case 4: 1 ≤ n < α < k − β ≤ p. In this case, we have 1 ≤ n ≤ β < p. We can

easily determine that µ = α+ 1, η = β, and δ = θ = 0. Hence

L(r̄, k − β) =

(
k∑

j=β+1

jrj −
α∑

j=0

jrj

)
+ 1

=

(
k∑

j=β+1

j −
n−1∑
j=1

j − nrn −
α∑

j=n+1

j

)
+ 1

=
p(p+ 1)

2
+

n(n+ 1)

2
− (β − n)(β − n+ 1)

2
− (α− n)(α− n+ 1)

2
+ 1.
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Case 5(i): 1 ≤ n < α < p < k−β. In this case, we have 0 ≤ β < n and 0 ≤ β < p.

We can easily determine that µ = α+ 1, η = n, δ = 0, and θ = n− β. Hence

L(r̄, k − β) =

(
k∑

j=n+1

jrj −
α∑

j=0

jrj

)
+ n(n− β) + 1

=

(
n+p∑

j=n+1

j −
n−1∑
j=1

j − nrn −
α∑

j=n+1

j

)
+ n2 − βn+ 1

=
p(p+ 1)

2
+

n(n+ 1)

2
− (α− n)(α− n+ 1)

2
+ 1.

Case 5(ii): 1 ≤ n < α = p < k − β. In this case, we have 0 ≤ β < n and

0 ≤ β < p. We can easily determine that µ = α + 1, η = n − 1, and δ = θ = 0.

Hence

L(r̄, k − β) =

(
k∑

j=n

jrj −
α∑

j=0

jrj

)
+ 1

= nrn +

p+n∑
j=n+1

j −
n−1∑
j=1

j − nrn −
α∑

j=n+1

j + 1

=
p(p+ 1)

2
+

n(n+ 1)

2
− (α− n)(α− n+ 1)

2
+ 1.

Case 6: 1 ≤ n ≤ p < α < k − β. In this case, we have 0 ≤ β < n and 0 ≤ β < p.

We can easily determine that µ = α+ 1, η = k − α− 1, and δ = θ = 0. Hence

L(r̄, k − β) =

(
k∑

j=k−α

jrj −
α∑

j=0

jrj

)
+ 1

=

n−1∑
j=k−α

j + nrn +

k∑
j=n+1

j −
n−1∑
j=1

j − nrn −
α∑

j=n+1

j + 1

=
p(p+ 1)

2
+

n(n+ 1)

2
− (α− n)(α− n+ 1)

2
− (α− p)(α− p+ 1)

2
+ 1.

Combining all the cases, we get L(r̄, k − β) = L(α, β,A), which proves the in-

equality (2.3). We can see that the lower bound in (2.3) is best possible by taking

the set A = [−n, p] \ {0}. This completes the proof.

Theorem 8. Let A be a finite set containing p positive integers, n negative integers

and zero, where 1 ≤ n ≤ p. Let k = p+n+1, and let α and β be integers such that

1 ≤ α ≤ k − 1, 0 ≤ β ≤ k − 1 and α+ β ≤ k − 1. Then

|Σβ
α(A)| ≥ L0(α, β,A), (2.4)

where L0(α, β,A) is defined as follows.
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1. If 1 ≤ α < k − β < n ≤ p, then

L0(α, β,A) =
p(p+ 1)

2
+
n(n+ 1)

2
− (β − n)(β − n− 1)

2
− (β − p)(β − p− 1)

2
+1.

2. If either 1 ≤ α < n ≤ k − β < p or 1 ≤ α = n < k − β ≤ p, then

L0(α, β,A) =
p(p+ 1)

2
+

n(n+ 1)

2
− (β − n)(β − n− 1)

2
+ 1.

3. If either 1 ≤ α < n ≤ p ≤ k − β or 1 ≤ α = n < p < k − β or 1 ≤ α = n =

p < k − β, then

L0(α, β,A) =
p(p+ 1)

2
+

n(n+ 1)

2
+ 1.

4. If 1 ≤ n < α < k − β ≤ p, then

L0(α, β,A) =
p(p+ 1)

2
+
n(n+ 1)

2
− (β − n)(β − n− 1)

2
− (α− n)(α− n− 1)

2
+1.

5. If either 1 ≤ n < α < p < k − β or 1 ≤ n < α = p < k − β, then

L0(α, β,A) =
p(p+ 1)

2
+

n(n+ 1)

2
− (α− n)(α− n− 1)

2
+ 1.

6. If 1 ≤ n ≤ p < α < k − β, then

L0(α, β,A) =
p(p+ 1)

2
+
n(n+ 1)

2
− (α− n)(α− n− 1)

2
− (α− p)(α− p− 1)

2
+1.

The lower bound in (2.4) is best possible.

Proof. Let

A = {−bn,−bn−1, . . . ,−b1, 0, a1, . . . , ap},

where −bn < −bn−1 < . . . < −b1 < 0 < a1 < . . . < ap. Let k = |A| = p+ n+ 1 and

r̄ = (r0, r1, . . . , rn−1, rn, rn+1, . . . , rn+p),

where r0 = r1 = · · · = rn−1 = rn+1 = · · · = rn+p = 1 and rn = k−α− β+1. Then

it follows from Lemma 2 and Lemma 3 that Σβ
α(A) = (k − β)(r̄)A. Therefore, it

follows from Theorem 2 that

|Σβ
α(A)| = |(k − β)(r̄)A| ≥ L(r̄, k − β).

Hence it suffices to prove that L(r̄, k − β) = L0(α, β,A).
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Case 1: 1 ≤ α < k − β < n ≤ p. In this case, we have 1 ≤ α < n ≤ p < β. We can

easily determine that µ = k − β, η = β − 1, and δ = θ = 0. Hence

L(r̄, k − β) =

(
k−1∑
j=β

jrj −
k−β−1∑
j=0

jrj

)
+ 1

=

(
k−1∑
j=β

j −
k−β−1∑
j=1

j

)
+ 1

=
p(p+ 1)

2
+

n(n+ 1)

2
− (β − n)(β − n− 1)

2
− (β − p)(β − p− 1)

2
+ 1.

Case 2(i): 1 ≤ α < n ≤ k − β < p. In this case, we have 1 ≤ α < n < β ≤ p+ 1.

We can easily determine that µ = n, η = β − 1, δ = p− β + 1, and θ = 0. Hence

L(r̄, k − β) =

(
k−1∑
j=β

jrj −
n−1∑
j=0

jrj

)
+ 0− n(p− β + 1) + 1

=

(
k−1∑
j=β

j −
n−1∑
j=1

j

)
− pn+ βn− n+ 1

=
p(p+ 1)

2
+

n(n+ 1)

2
− (β − n)(β − n− 1)

2
+ 1.

Case 2(ii): 1 ≤ α = n < k − β ≤ p. In this case, we have 1 ≤ α = n < n + 1 ≤
β ≤ p. Now the computation is the same as in Case 2. We can easily determine

that µ = n, η = β − 1, δ = p− β + 1, and θ = 0. Hence

L(r̄, k − β) =

(
k−1∑
j=β

jrj −
n−1∑
j=0

jrj

)
+ 0− n(p− β + 1) + 1

=

(
k−1∑
j=β

j −
n−1∑
j=1

j

)
− pn+ βn− n+ 1

=
p(p+ 1)

2
+

n(n+ 1)

2
− (β − n)(β − n− 1)

2
+ 1.

Case 3(i): 1 ≤ α < n ≤ p ≤ k − β. In this case, we have 0 ≤ β ≤ n + 1 ≤ p + 1.

We can easily determine that µ = η = n, δ = p− β + 1, and θ = n− β + 1. Hence

L(r̄, k − β) =

(
p+n∑

j=n+1

jrj −
n−1∑
j=0

jrj

)
+ n(n− β + 1)− n(p− β + 1) + 1

=

(
p+n∑

j=n+1

j −
n−1∑
j=1

j

)
+ n2 − pn+ 1

=
p(p+ 1)

2
+

n(n+ 1)

2
+ 1.
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Case 3(ii): 1 ≤ α = n < p < k − β. In this case, we have 0 ≤ β ≤ n < p. We

can easily determine that µ = n, η = n, δ = p− β + 1, and θ = n− β + 1. Now all

computations are the same as in Case 3. Hence

L(r̄, k − β) =

(
p+n∑

j=n+1

jrj −
n−1∑
j=0

jrj

)
+ n(n− β + 1)− n(p− β + 1) + 1

=

(
p+n∑

j=n+1

j −
n−1∑
j=1

j

)
+ n2 − pn+ 1

=
p(p+ 1)

2
+

n(n+ 1)

2
+ 1.

Case 3(iii): 1 ≤ α = n = p < k − β. We can easily determine that µ = n, η = n,

δ = p− β + 1, and θ = n− β + 1. Now all computations are the same as in Case 5.

Hence

L(r̄, k − β) =

(
p+n∑

j=n+1

jrj −
n−1∑
j=0

jrj

)
+ n(n− β + 1)− n(p− β + 1) + 1

=

(
p+n∑

j=n+1

j −
n−1∑
j=1

j

)
+ n2 − pn+ 1

=
p(p+ 1)

2
+

n(n+ 1)

2
+ 1.

Case 4: 1 ≤ n < α < k − β ≤ p. In this case, we have 1 ≤ n < n+ 1 ≤ β ≤ p. We

can easily determine that µ = α, η = β − 1, and δ = θ = 0. Hence

L(r̄, k − β) =

(
k−1∑
j=β

jrj −
α−1∑
j=0

jrj

)
+ 1

=
p(p+ 1)

2
+

n(n+ 1)

2
− (β − n)(β − n− 1)

2
− (α− n)(α− n− 1)

2
+ 1.

Case 5(i): 1 ≤ n < α < p < k − β. In this case, we have 0 ≤ β ≤ n ≤ p. We can

easily determine that µ = α, η = n, δ = 0, and θ = n− β + 1. Hence

L(r̄, k − β) =

(
k−1∑

j=n+1

jrj −
α−1∑
j=0

jrj

)
+ n(n− β + 1) + 1

=
p(p+ 1)

2
+

n(n+ 1)

2
− (α− n)(α− n− 1)

2
+ 1.

Case 5(ii): 1 ≤ n < α = p < k − β. In this case, we have 0 ≤ β ≤ n < p. We can

easily determine that µ = α, η = n, δ = 0, and θ = n−β+1. Now all computations
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are the same as in Case 8. Hence

L(r̄, k − β) =

(
k−1∑

j=n+1

jrj −
α−1∑
j=0

jrj

)
+ n(n− β + 1) + 1

=
p(p+ 1)

2
+

n(n+ 1)

2
− (α− n)(α− n− 1)

2
+ 1.

Case 6: 1 ≤ n ≤ p < α < k − β. In this case, we have 0 ≤ β ≤ n ≤ p < α. We can

easily determine that µ = α, η = k − α− 1, and δ = θ = 0. Hence

L(r̄, k − β) =

(
k−1∑

j=k−α

jrj −
α−1∑
j=0

jrj

)
+ 1

=
p(p+ 1)

2
+

n(n+ 1)

2
− (α− n)(α− n− 1)

2
− (α− p)(α− p− 1)

2
+ 1.

Combining all the cases, we get L(r̄, k − β) = L0(α, β,A), which proves the

inequality (2.4). We can see that the lower bound in (2.4) is best possible by taking

the set A = [−n, p]. This completes the proof.

Remark 1. The lower bounds in Theorem 7 and Theorem 8 are obtained under

the assumption that n ≤ p. If n > p, then we can find the corresponding lower

bound by replacing the set A by −A and applying the above theorems.

3. Inverse Theorems for Subsums Σβ
α(A)

Theorem 9. Let k ≥ 3 be an integer. Let α and β be integers such that 1 ≤ α ≤
k − 2, 0 ≤ β ≤ k − 2, and α+ β ≤ k − 1.

If A is a set of k positive integers such that

|Σβ
α(A)| = k(k + 1)

2
− α(α+ 1)

2
− β(β + 1)

2
+ 1, (3.1)

then

A = d ∗ [1, k]

for some positive integer d except in the case k = 3 when we have

A = {a1, a2, a1 + a2},

where 0 < a1 < a2.

If A is a set of k nonnegative integers such that 0 ∈ A and

|Σβ
α(A)| = k(k − 1)

2
− α(α− 1)

2
− β(β − 1)

2
+ 1, (3.2)
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then

A = d ∗ [0, k − 1]

for some positive integer d except in the cases k = 3 and k = 4 when we have

A = {0, a1, a2} and A = {0, a1, a2, a1 + a2}, respectively, where 0 < a1 < a2.

We remark that Theorem 9 is a special case of a result of Bhanja [7, Theorem 9

and Corollary 10]. But the following proof presented here is original and the idea

of the proof enables us to prove some new inverse theorems. Moreover, Theorem

9 and Corollary 10 of Bhanja [7] are valid for k ≥ 6 and k ≥ 7, respectively. But

Theorem 9 gives complete description for k ≥ 3.

Proof of Theorem 9. First assume that the set A contains only positive integers.

Write A = {a1, . . . , ak} and A0 = {a0, a1, . . . , ak}, where 0 = a0 < a1 < · · · < ak.

Let r̄ = (r0, r1, . . . , rk), where r0 = k−α−β and r1 = · · · = rk = 1. Then it follows

from Lemma 1 that Σβ
α(A) = (k − β)(r̄)A0. Therefore,

|(k − β)(r̄)A0| = |Σβ
α(A)| = k(k + 1)

2
− α(α+ 1)

2
− β(β + 1)

2
+ 1 = L(r̄, k − β).

Now if k = 3, then it follows from Theorem 5 that

|(k − β)(r̄)A0| = L(r̄, k − β) =
k(k + 1)

2
− α(α+ 1)

2
− β(β + 1)

2
+ 1

if and only if a1 − a0 = a3 − a2, which implies that a3 = a1 + a2. Therefore,

A = {a1, a2, a1 + a2}.
If k ≥ 4, then it follows from Theorem 3 that

|(k − β)(r̄)A0| = L(r̄, k) =
k(k + 1)

2
− α(α+ 1)

2
− β(β + 1)

2
+ 1

if and only if A0 is an arithmetic progression. Hence

a1 − a0 = a2 − a1 = · · · = ak − ak−1,

which implies that ai = ia1 for i = 1, . . . , k. Therefore, A = a1 ∗ [1, k].
Now assume that 0 ∈ A and write

A = {a0, a1, . . . , ak−1},

where 0 = a0 < a1 < · · · < ak−1. Let r̄ = (r0, r1, . . . , rk−1), where r0 = k−α−β+1

and r1 = · · · = rk−1 = 1. Then it follows from Lemma 2 that

Σβ
α(A) = (k − β)(r̄)A.

Therefore,

|(k − β)(r̄)A| = |Σβ
α(A)| = k(k − 1)

2
− α(α− 1)

2
− β(β − 1)

2
+ 1 = L(r̄, k − β).
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Now if k = 3, then it follows from Theorem 4 that any set A with three elements

satisfies

|(k − β)(r̄)A| = L(r̄, k − β) =
k(k − 1)

2
− α(α− 1)

2
− β(β − 1)

2
+ 1.

Since 0 ∈ A, it follows that A = {0, a1, a2}.
Now if k = 4, then it follows from Theorem 5 that

|(k − β)(r̄)A| = L(r̄, k − β) =
k(k − 1)

2
− α(α− 1)

2
− β(β − 1)

2
+ 1

if and only if a1 − a0 = a3 − a2, which implies that a3 = a1 + a2. Since 0 ∈ A, it

follows that A = {0, a1, a2, a1 + a2}.
If k ≥ 5, then it follows from Theorem 3 that

|(k − β)(r̄)A| = L(r̄, k − β) =
k(k − 1)

2
− α(α− 1)

2
− β(β − 1)

2
+ 1

if and only if A is an arithmetic progression. Hence

a1 − a0 = a2 − a1 = · · · = ak−1 − ak−2,

which implies that ai = ia1 for i = 1, . . . , k − 1. Hence A = a1 ∗ [0, k − 1]. This

completes the proof.

Remark 2. Let A be a finite set of k ≥ 3 positive integers, and let α and β be

nonnegative integers. The following remarks show that the equality in (3.1) may

hold even if A is not an arithmetic progression.

(i) If α = k − 1 and β = 0, then |Σβ
α(A)| = k + 1. Thus the equality in (3.1)

holds.

(ii) If α = k − 1 and β = 1, then |Σβ
α(A)| = k. Thus the equality in (3.1) holds.

(iii) If α = k and β = 0, then |Σβ
α(A)| = 1. Thus the equality in (3.1) holds.

(iv) For the remaining values of α and β, one can draw the the conclusion using

Facts 1.

Remark 3. Let A be a finite set of k ≥ 3 nonnegative integers with 0 ∈ A, and let

α and β be nonnegative integers. The following remarks show that the equality in

(3.2) may hold even if A is not an arithmetic progression.

(i) If α = k − 1 and β = 0, then |Σβ
α(A)| = k. Thus the equality in (3.2) holds.

(ii) If α = k − 1 and β = 1, then |Σβ
α(A)| = k. Thus the equality in (3.2) holds.

(iii) If α = k and β = 0, then |Σβ
α(A)| = 1. Thus the equality in (3.2) holds.
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(iv) For the remaining values of α and β, one can draw the conclusion using Facts

1.

Theorem 10. Let A be a finite set containing p positive integers and n negative

integers, where 1 ≤ n ≤ p. Let α and β be integers such that 1 ≤ α ≤ k − 2,

0 ≤ β ≤ k− 2, and α+ β ≤ k− 1, where k = p+ n. Let L(α, β,A) be defined as in

Theorem 7. Then the following conclusions hold.

(i) If k = 3, α = 1, and β = 0, then |Σβ
α(A)| = L(α, β,A) if and only if A =

d ∗ {−1, 1, 2}, where d is the smallest positive element of A.

(ii) If k = 3, α = 1, and β = 1, then |Σβ
α(A)| = L(α, β,A) if and only if A =

{a0, a0 + a3, a3} with a0 < 0 < a0 + a3 < a3.

(iii) If k ≥ 4, then |Σβ
α(A)| = L(α, β,A) if and only if A = d ∗ {−n,−(n −

1), . . . ,−1, 1, . . . , p}, where d is the smallest positive element of A.

Proof. Let

A = {a0, a1, . . . , an−1, an+1, . . . , an+p}

and

A0 = {a0, a1, . . . , an−1, an, an+1, . . . , an+p},

where a0 < a1 < · · · < an−1 < 0 = an < an+1 < · · · < an+p. Let

k = |A| = p+ n, k0 = |A0| = p+ n+ 1

and

r̄ = (r0, r1, . . . , rn−1, rn, rn+1, . . . , rn+p),

where r0 = r1 = · · · = rn−1 = rn+1 = · · · = rn+p = 1 and rn = k − α− β. Then it

follows from Lemma 1 and Lemma 3 that

Σβ
α(A) = (k − β)(r̄)A0.

Therefore,

|Σβ
α(A)| = |(k − β)(r̄)A0|.

We can verify that L(α, β,A) = L(r̄, k − β).

If k = 3, then clearly we have n = 1 and p = 2. Hence A = {a0, a2, a3} and

A0 = {a0, a1, a2, a3} with a0 < 0 = a1 < a2 < a3, and

r̄ = (r0, r1, r2, r3) = (1, 3− α− β, 1, 1).

If α = 1 and β = 0, then r1 = k−α−β = 2, and so it follows from Theorem 5 that

|(k − β)(r̄)A0| = |Σβ
α(A)| = L(α, β,A) = L(r̄, k − β)
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if and only if A0 is an arithmetic progression. Hence

a1 − a0 = a2 − a1 = a3 − a2,

which implies that a0 = −a2 and a3 = 2a2, and so A0 = {−a2, 0, a2, 2a2}. There-

fore, A = {−a2, a2, 2a2} = a2 ∗ {−1, 1, 2}. Next, if α = 1 and β = 1, then

r1 = k − α− β = 1 and r2 = 1, and so it follows from Theorem 5 that

|(k − β)(r̄)A0| = |Σβ
α(A)| = L(α, β,A) = L(r̄, k − β)

if and only if a1 − a0 = a3 − a2, which implies that a2 = a3 + a0. Therefore,

A = {a0, a0 + a3, a3}, where a0 < 0 < a0 + a3 < a3.

Now, if k ≥ 4, then, it follows from Theorem 3 that

|(k − β)(r̄)A0| = |Σβ
α(A)| = L(α, β,A) = L(r̄, k)

if and only if A0 is an arithmetic progression. Hence

a1 − a0 = a2 − a1 = · · · = an−1 − an−2 = an − an−1

= an+1 − an = an+2 − an+1 = · · · = an+p − an+p−1,

which implies that

an−j = −jan+1 for j = 1, . . . , n

and

an+j = jan+1 for j = 2, . . . , p.

Hence A0 = an+1 ∗ [−n, p]. Therefore,

A = an+1 ∗ {−n,−(n− 1), . . . ,−1, 1, 2, . . . , p}.

This completes the proof.

Remark 4. Let A be a set of k ≥ 3 nonzero integers containing at least one positive

integer and at least one negative integer. Let α and β be nonnegative integers.

(i) If α = k − 1 and β = 0, then |Σβ
α(A)| = k + 1.

(ii) If α = k − 1 and β = 1, then |Σβ
α(A)| = k.

(iii) If α = k and β = 0, then |Σβ
α(A)| = 1.

(iv) For the remaining values of α and β, one can draw the conclusion using Facts

1.
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Theorem 11. Let A be a finite set containing p positive integers, n negative inte-

gers, and zero, where 1 ≤ n ≤ p. Let α and β be integers such that 1 ≤ α ≤ k − 2,

0 ≤ β ≤ k − 2, and α+ β ≤ k − 1, where k = p+ n+ 1. Let L0(α, β,A) be defined

as in Theorem 8. Then

|Σβ
α(A)| = L0(α, β,A)

if and only if A = d ∗ [−n, p], where d is the smallest positive element of the set A.

Proof. Let

A = {a0, a1, . . . , an−1, an, an+1, . . . , an+p},

where a0 < a1 < · · · < an = 0 < an+1 < · · · < an+p. Then k = |A| = p+ n+1. Let

r̄ = (r0, r1, . . . , rn−1, rn, rn+1, . . . , rn+p),

where r0 = r1 = · · · = rn−1 = rn+1 = · · · = rn+p = 1 and rn = k − α − β + 1. It

follows from Lemma 2 and Lemma 3 that

Σβ
α(A) = (k − β)(r̄)A.

We can verify that L0(α, β,A) = L(r̄, k). If k = 3, then clearly, p = n = 1. Hence

A = {a0, a1, a2}

with a0 < 0 = a1 < a2 and r̄ = (r0, r1, r2) = (1, k − α− β + 1, 1). Since

r1 = k − α− β + 1 ≥ 2,

it follows from Theorem 4 that

|(k − β)(r̄)A| = |Σβ
α(A)| = L0(α, β,A) = L(r̄, k − β)

if and only if A is an arithmetic progression. Hence

a1 − a0 = a2 − a1,

which implies that a0 = −a2, and so A = {−a2, 0, a2} = a2 ∗ [−1, 1].

If k = 4, then clearly we have n = 1 and p = 2. Hence A = {a0, a1, a2, a3} with

a0 < 0 = a1 < a2 < a3 and r̄ = (r0, r1, r2, r3) = (1, k − α − β + 1, 1, 1). Since

r1 = k − α− β + 1 ≥ 2, it follows from Theorem 5 that

|(k − β)(r̄)A| = |Σβ
α(A)| = L0(α, β,A) = L(r̄, k − β)

if and only if A is an arithmetic progression. Hence

a1 − a0 = a2 − a1 = a3 − a2,
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which implies that a0 = −a2 and a3 = 2a2. Therefore,

A = {−a2, 0, a2, 2a2} = a2 ∗ [−1, 2].

If k ≥ 5, then it follows from Theorem 3 that

|(k − β)(r̄)A| = |Σβ
α(A)| = L0(α, β,A) = L(r̄, k − β)

if and only if A is an arithmetic progression. Hence

a1 − a0 = a2 − a1 = · · · = an−1 − an−2 = an − an−1

= an+1 − an = an+2 − an+1 = · · · = an+p − an+p−1,

which implies that

an−j = −jan+1 for j = 1, . . . , n

and

an+j = jan+1 for j = 2, . . . , p.

Hence A = an+1 ∗ [−n, p]. Thus in all cases, we have |Σβ
α(A)| = L0(α, β,A) if and

only if A = an+1 ∗ [−n, p]. This completes the proof.

Remark 5. Let A be a set of k ≥ 3 integers containing zero, at least one positive

integer, and at least one negative integer. Let α and β be nonnegative integers.

(i) If α = k − 1 and β = 0, then |Σβ
α(A)| = k.

(ii) If α = k − 1 and β = 1, then |Σβ
α(A)| = k.

(iii) If α = k and β = 0, then |Σβ
α(A)| = 1.

(iv) For the remaining values of α and β, one can draw the conclusion using Facts

1.

Remark 6. In Theorem 10 and Theorem 11, we have assumed that n ≤ p. If n > p,

then we can replace the set A by −A and apply the above theorems to establish

the corresponding inverse theorems.

4. Subsequence Sums

For convenience, we will use braces around the elements of a sequence whenever

it is clear from the context that we are referring to a sequence (as opposed to a

set). A finite sequence A = {a0, . . . , a0︸ ︷︷ ︸
t0 times

, a1, . . . , a1︸ ︷︷ ︸
t1 times

, . . . , ak−1, . . . , ak−1︸ ︷︷ ︸
tk−1 times

} in G will be

denoted by (A, t̄), where A = {a0, a1, . . . , ak−1} is the set of distinct terms of the
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sequence A and t̄ = (t0, t1, . . . , tk−1) is the k-tuple of repetitions of each element

of the set A written in the order of the appearance of the elements in the set A.

If B is a subsequence of A , then we write B ⊆ A . The length of a sequence A

is denoted by |A |. Let α and β be nonnegative integers with α + β ≤ |A |. Like

subset sums, we define

Σβ
α(A ) = {σ(B) : B ⊆ A and α ≤ |B| ≤ |A | − β},

where σ(B) denotes the sum of all the terms of the subsequence B ⊆ A . The

usual sets of subsequence sums Σ(A ) and Σ0(A ) are special cases of Σβ
α(A ) for

(α, β) = (1, 0) and (α, β) = (0, 0), respectively. If β = 0, then Σ0
α(A ) is simply

denoted by Σα(A ).

Bhanja and Pandey [5] proved some direct and inverse theorems for Σα(A ) for

arbitrary α in case A is a finite sequence of nonnegative integers including or

excluding zero. The case α = 1 has been studied by Mistri and Pandey [19], by

Mistri, Pandey and Prakash [20], and by Jiang and Li [17]. In this section, we prove

direct and inverse theorems for the subsequence sums Σβ
α(A ) in Z for an arbitrary

finite sequence of integers (see Theorem 13, Theorem 14, Theorem 15, Theorem 16,

Theorem 17, Theorem 18, Theorem 19 and Theorem 20). In case of β = 0, these

results generalize and solve two problems of Bhanja and Pandey [6, Open Problems

(1) and (2), Section 4] also.

Facts 12. The following facts allow us to consider the sumset Σβ
α(A ) only for the

pairs (α, β) satisfying 1 ≤ α ≤ |A | − 1 and 0 ≤ β ≤ |A | − 1.

(i) It is easy to see that Σβ
α(A ) = α(t̄)A if α + β = |A |. Since the direct and

inverse theorems are well known for the restricted h-fold sumset in Z [23],

we always assume that α + β ≤ |A | − 1, and so 0 ≤ α ≤ |A | − 1 and

0 ≤ β ≤ |A | − 1.

(ii) It is easy to verify that Σβ
α(A ) = σ(A )− Σα

β(A ), and thus

|Σβ
α(A )| = |Σα

β(A )|.

(iii) Furthermore, Σβ
0 (A ) = Σβ

1 (A ) if 0 ∈ Σβ
1 (A ), and Σβ

0 (A ) = Σβ
1 (A ) ∪ {0} if

0 ̸∈ Σβ
1 (A ). Therefore, we consider only positive values of α.

A simple set-theoretic argument yields the following lemmas.

Lemma 4. Let A = (A, t̄) be a finite sequence in G, where A = {a1, . . . , ak} is a

nonempty finite subset of G with 0 ̸∈ A and t̄ = (t1, . . . , tk) is a k-tuple of positive

integers. Let h = t1 + · · · + tk. Let α and β be integers such that 1 ≤ α ≤ h − 1,

0 ≤ β ≤ h − 1, and α + β ≤ h − 1. Let A0 = {a0, a1, . . . , ak} with a0 = 0, and let

r̄ = (h− α− β, t1, . . . , tk). Then

Σβ
α(A ) = (h− β)(r̄)A0.
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Lemma 5. Let A = (A, t̄) be a finite sequence in G, where A = {a0, a1, . . . , ak−1}
is a nonempty finite subset of G with a0 = 0 and t̄ = (t0, t1, . . . , tk−1) is a k-tuple

of positive integers. Let h = t0 + · · · + tk−1. Let α and β be integers such that

1 ≤ α ≤ h, 0 ≤ β ≤ h − 1, and α + β ≤ h. Let r̄ = (h − α − β + t0, t1, . . . , tk−1).

Then

Σβ
α(A ) = (h− β)(r̄)A.

We prove the following direct theorems which give the optimal lower bound

for the cardinality of Σβ
α(A ) in case of an arbitrary finite sequence A of integers

containing positive integers, negative integers and (or) zero. In case of β = 0,

Theorem 15 and Theorem 16 solve a problem of Bhanja and Pandey [6, Open

problems (1), Section 4].

Theorem 13. Let k ≥ 2 be an integer. Let A = (A, t̄) be a nonempty finite

sequence of integers, where A = {a1, . . . , ak} with 0 < a1 < · · · < ak and t̄ =

(t1, . . . , tk). Let h = t1 + · · ·+ tk. Let α and β be integers such that 1 ≤ α ≤ h− 1,

0 ≤ β ≤ h− 1, and α+ β ≤ h− 1. Let r̄ = (h− α− β, t1, . . . , tk). Then

|Σβ
α(A )| ≥ L(r̄, h− β). (4.1)

The lower bound in (4.1) is best possible.

Proof. Let A0 = {a0, a1, . . . , ak} with a0 = 0. Then it follows from Lemma 4 that

Σβ
α(A ) = (h− β)(r̄)A0.

Now the lower bound in (4.1) easily follows from Theorem 2. We can see that the

lower bound in (4.1) is best possible by taking the sequence A = (A, t̄), where

A = [1, k] with k ≥ 2.

This theorem easily implies a theorem of Bhanja and Pandey [5, Theorem 3.1].

Theorem 14. Let k ≥ 2 be an integer. Let A = (A, t̄) be a nonempty finite

sequence of integers, where A = {a0, a1, . . . , ak−1} with 0 = a0 < a1 < · · · < ak−1

and t̄ = (t0, t1, . . . , tk−1). Let h = t0+ · · ·+ tk−1. Let α and β be integers such that

1 ≤ α ≤ h, 0 ≤ β ≤ h − 1, and α + β ≤ h. Let r̄ = (h − α − β + t0, t1, . . . , tk−1).

Then

|Σβ
α(A )| ≥ L(r̄, h− β). (4.2)

The lower bound in (4.2) is best possible.

Proof. It follows from Lemma 5 that

Σβ
α(A ) = (h− β)(r̄)A.

Now the lower bound in (4.2) easily follows from Theorem 2. We can see that the

lower bound in (4.2) is best possible by taking the sequence A = (A, t̄) of length

at least 3, where A = [0, k − 1] with k ≥ 2.
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This theorem easily implies a theorem of Bhanja and Pandey [5, Corollary 3.1].

Theorem 15. Let n and p be positive integers such that n ≤ p. Let A = (A, t̄) be

a finite sequence of integers, where

A = {a0, a1, . . . , an−1, an+1, . . . , an+p}

with

a0 < a1 < · · · < an−1 < 0 < an+1 < · · · < an+p

and

t̄ = (t0, t1, . . . , tn−1, tn+1, . . . , tn+p).

Let h = t0 + · · · + tn−1 + tn+1 + · · · + tn+p. Let α and β be integers such that

1 ≤ α ≤ h− 1, 0 ≤ β ≤ h− 1, and α+ β ≤ h− 1. Then

|Σβ
α(A )| ≥ L(r̄, h− β), (4.3)

where r̄ = (t0, . . . , tn−1, h−α− β, tn+1, . . . , tn+p). The lower bound in (4.3) is best

possible.

Proof. Let A0 = {a0, a1, . . . , an−1, an, an+1, . . . , an+p} with an = 0. Then it follows

from Theorem 4 and Lemma 3 that

Σβ
α(A ) = (h− β)(r̄)A0,

and so

|Σβ
α(A )| = |(h− β)(r̄)A0| ≥ L(r̄, h− β).

We can see that the lower bound in (4.3) is best possible by taking the sequence

A = (A, t̄), where A = [−n, p] \ {0} and t̄ = (t0, t1, . . . , tn−1, tn+1, . . . , tn+p). This

completes the proof.

Theorem 16. Let n and p be positive integers with n ≤ p. Let A = (A, t̄) be a

nonempty finite sequence of integers, where

A = {a0, a1, . . . , an−1, an, an+1, . . . , an+p}

with

a0 < a1 < · · · < an−1 < 0 = an < an+1 < · · · < an+p

and

t̄ = (t0, t1, . . . , tn−1, tn, tn+1, . . . , tn+p).

Let h = t0+ · · ·+ tn+p. Let α and β be integers such that 1 ≤ α ≤ h, 0 ≤ β ≤ h−1,

and α+ β ≤ h− 1. Then

|Σβ
α(A )| ≥ L(r̄, h− β), (4.4)

where r̄ = (t0, . . . , tn−1, h−α− β+ tn, tn+1, . . . , tn+p). The lower bound in (4.4) is

best possible.
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Proof. It follows from Theorem 5 and Lemma 3 that

Σβ
α(A ) = (h− β)(r̄)A,

and so

|Σβ
α(A )| = |(h− β)(r̄)A| ≥ L(r̄, h− β).

We can see that the lower bound in (4.4) is best possible by taking the sequence

A = (A, t̄), where A = [−n, p] and t̄ = (t0, t1, . . . , tn−1, tn, tn+1, . . . , tn+p). This

completes the proof.

The following inverse theorems for the subsequence sums describe the structure of

the arbitrary finite sequences A of integers for which |Σα(A )| achieves the optimal

lower bound. In case of β = 0, Theorem 19 and Theorem 20 solve another problem

of Bhanja and Pandey [6, Open problems (2), Section 4].

Theorem 17. Let k ≥ 2 be an integer. Let A = (A, t̄) be a finite sequence of

integers, where A = {a1, . . . , ak} with 0 < a1 < · · · < ak and t̄ = (t1, . . . , tk). Let

h = t1 + · · ·+ tk. Let α and β be integers such that 1 ≤ α ≤ h− 2, 0 ≤ β ≤ h− 2,

and α+ β ≤ h− 1. Let r̄ = (h− α− β, t1, . . . , tk). Then the following conclusions

hold.

(a) If k = 2 and t1 = 1, then |Σβ
α(A )| = L(r̄, h− β). If k = 2 and t1 ≥ 2, then

|Σβ
α(A )| = L(r̄, h− β)

if and only if A = (A, t̄), where A = a1 ∗ [1, 2] and t̄ = (t1, t2).

(b) If k = 3 and t1 = t2 = 1, then

|Σβ
α(A )| = L(r̄, h− β)

if and only if A = (A, t̄), where A = {a1, a2, a1 + a2} with 0 < a1 < a2 and

t̄ = (1, 1, t3). If k = 3 and either t1 ≥ 2 or t2 ≥ 2, then

|Σβ
α(A )| = L(r̄, h− β)

if and only if A = (A, t̄), where A = a1 ∗ [1, 3] and t̄ = (t1, t2, t3).

(c) If k ≥ 4, then |Σβ
α(A )| = L(r̄, h − β) if and only if A = (A, t̄), where

A = a1 ∗ [1, k] and t̄ = (t1, . . . , tk).

Proof. Let A0 = {a0, a1, . . . , ak} with a0 = 0. Then it follows from Lemma 4 that

Σβ
α(A ) = (h− β)(r̄)A0. Therefore,

|(h− β)(r̄)A0| = |Σβ
α(A )| = L(r̄, h− β).
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It is easy to see that 2 ≤ h− β ≤ r0 + r1 + · · ·+ rk − 2.

Now if k = 2 and t1 = 1, then it follows from Theorem 4 that

|(h− β)(r̄)A0| = L(r̄, h− β),

which implies that

|Σβ
α(A )| = L(r̄, h− β).

If k = 2 and t1 ≥ 2, then again it follows from Theorem 4 that

|Σβ
α(A )| = |(h− β)(r̄)A0| = L(r̄, h− β)

if and only if A0 is a 3-term arithmetic progression, which implies that A = a1∗[1, 2].
This proves part (a).

Now if k = 3 and t1 = t2 = 1, then it follows from Theorem 5 that

|Σβ
α(A )| = |(h− β)(r̄)A0| = L(r̄, h− β)

if and only if a1 − a0 = a3 − a2. This implies that A = {a1, a2, a1 + a2} with

0 < a1 < a2. If k = 3 and either t1 ≥ 2 or t2 ≥ 2, then it follows from Theorem 5

that

|Σβ
α(A )| = |(h− β)(r̄)A0| = L(r̄, h− β)

if and only if A is an arithmetic progression. Hence

a1 − a0 = a2 − a1 = a3 − a2,

which implies that ai = ia1 for i = 1, 2, 3. Hence A = a1 ∗ [1, 3]. This proves part

(b).

If k ≥ 4, then it follows from Theorem 3 that

|Σβ
α(A )| = |(h− β)(r̄)A0| = L(r̄, h− β)

if and only if A is an arithmetic progression. Hence

a1 − a0 = a2 − a1 = · · · = ak − ak−1,

which implies that ai = ia1 for i = 1, . . . , k. Hence A = a1 ∗ [1, k]. This proves part
(c).

Remark 7. Let A = (A, t̄) be a finite sequence of integers, where A = {a1, . . . , ak}
is a set of k ≥ 2 positive integers with a1 < · · · < ak and t̄ = (t1, . . . , tk). Let h =

t1+ · · ·+ tk. Let α and β be nonnegative integers, and let r̄ = (h−α−β, t1, . . . , tk).

(i) If α = h − 1 and β = 0, then |Σβ
α(A )| = k + 1. It is easy to verify that

L(r̄, h − β) = L((1, t1, . . . , tk), h) = k + 1. Thus |Σβ
α(A )| achieves the lower

bound L(r̄, h− β) in this case.
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(ii) If α = h− 1 and β = 1, then |Σβ
α(A )| = k.

(iii) If α = h and β = 0, then |Σβ
α(A )| = 1.

(iv) For the remaining values of α and β, one can draw the conclusion using Facts

12.

Theorem 18. Let k ≥ 3 be an integer. Let A = (A, t̄) be a finite sequence

of integers, where A = {a0, a1, . . . , ak−1} with 0 = a0 < a1 < · · · < ak−1 and

t̄ = (t0, t1, . . . , tk−1). Let h = t0+ t1+ · · ·+ tk−1. Let α and β be integers such that

1 ≤ α ≤ h−2, 0 ≤ β ≤ h−2, and α+β ≤ h−1. Let r̄ = (h−α−β+t0, t1, . . . , tk−1).

Then the following conclusions hold.

(a) If k = 3 and t1 = 1, then |Σβ
α(A )| = L(r̄, h − β). If k = 3 and t1 ≥ 2, then

|Σβ
α(A )| = L(r̄, h − β) if and only if A = (A, t̄), where A = a1 ∗ [0, 2] and

t̄ = (t0, t1, t2).

(b) If k = 4 and t1 = t2 = 1, then |Σβ
α(A )| = L(r̄, h−β) if and only if A = (A, t̄),

where A = {0, a1, a2, a1 + a2} with 0 < a1 < a2 and t̄ = (t0, 1, 1, t3). If k = 4

and either t1 ≥ 2 or t2 ≥ 2, then |Σβ
α(A )| = L(r̄, h − β) if and only if

A = (A, t̄), where A = a1 ∗ [0, 3] and t̄ = (t0, t1, t2, t3).

(c) If k ≥ 5, then |Σβ
α(A )| = L(r̄, h − β) if and only if A = (A, t̄), where

A = a1 ∗ [0, k − 1] and t̄ = (t0, t1, . . . , tk−1).

Proof. The proof is similar to the proof of Theorem 18.

Remark 8. Let A = (A, t̄) be a finite sequence of integers, where

A = {a0, a1, . . . , ak−1}

is a set of k ≥ 3 nonnegative integers with 0 = a0 < a1 < · · · < ak−1. Let

t̄ = (t0, t1, . . . , tk), and let h = t0 + t1 + · · · + tk. Let α and β be nonnegative

integers, and let r̄ = (h− α− β + t0, t1, . . . , tk−1).

(i) If α = h− 1 and β = 0, then |Σβ
α(A )| = k. It is easy to verify that

L(r̄, h− β) = L((t0 + 1, t1, . . . , tk), h) = k.

Thus |Σβ
α(A )| achieves the lower bound L(r̄, h− β) in this case.

(ii) If α = h− 1 and β = 1, then |Σβ
α(A )| = k. It is easy to verify that

L(r̄, h− β) = L((t0, t1, . . . , tk), h− 1) = k.

Thus |Σβ
α(A )| achieves the lower bound L(r̄, h− β) in this case also.
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(iii) If α = h and β = 0, then |Σβ
α(A )| = 1. It is easy to verify that

L(r̄, h− β) = L((t0, t1, . . . , tk), h) = 1.

Thus |Σβ
α(A )| achieves the lower bound L(r̄, h− β) in this case also.

(iv) For the remaining values of α and β, one can draw the conclusion using Facts

12.

Theorem 19. Let n and p be integers such that n ≤ p. Let A = (A, t̄) be a finite

sequence of integers, where

A = {a0, a1, . . . , an−1, an+1, . . . , an+p}

with

a0 < a1 < · · · < an−1 < 0 < an+1 < · · · < an+p

and

t̄ = (t0, t1, . . . , tn−1, tn+1, . . . , tn+p).

Let h = t0 + · · ·+ tn−1 + tn+1 + · · ·+ tn+p ≥ 3. Let α and β be integers such that

1 ≤ α ≤ h− 2, 0 ≤ β ≤ h− 2, and α+ β ≤ h− 1. Let

r̄ = (t0, . . . , tn−1, h− α− β, tn+1, . . . , tn+p).

Then the following conclusions hold.

(a) If k = 3, α+β = h− 1, and t2 = 1, then |Σβ
α(A )| = L(r̄, h−β) if and only if

A = (A, t̄), where A = {a2 − a3, a2, a3} with 0 < a2 < a3 and t̄ = (t0, 1, t3).

(b) In all other cases, |Σβ
α(A )| = L(r̄, h − β) if and only if A = (A, t̄), where

A = an+1 ∗ {−n, . . . ,−1, 1, . . . , p}.

Proof. Let A0 = {a0, a1, . . . , an−1, an, an+1, . . . , an+p} with an = 0. Then it follows

from Lemma 4 and Lemma 3 that

Σβ
α(A ) = (h− β)(r̄)A0.

Let k = |A| = p + n. If k = 2, then clearly, p = n = 1. Hence A = {a0, a2} and

A0 = {a0, a1, a2} with a0 < 0 = a1 < a2 and r̄ = (r0, r1, r2) = (t0, h − α − β, t2),

where t0 + t3 ≥ 3. Since r1 = h− α ≥ 2, it follows from Theorem 4 that

|(h− β)(r̄)A0| = |Σβ
α(A )| = L(r̄, h− β)

if and only if A0 is an arithmetic progression. Hence

a1 − a0 = a2 − a1,
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which implies that a0 = −a2, and so A0 = {−a2, 0, a2}. Hence

A = {−a2, a2} = a2 ∗ {−1, 1}.

If k = 3, then clearly we have n = 1 and p = 2. Hence A = {a0, a2, a3} and

A0 = {a0, a1, a2, a3} with a0 < 0 = a1 < a2 < a3, and

r̄ = (r0, r1, r2, r3) = (t0, h− α− β, t2, t3).

If α+ β = h− 1 and t2 = 1, then it follows from Theorem 5 that

|(h− β)(r̄)A0| = |Σβ
α(A )| = L(r̄, h− β)

if and only if a1 − a0 = a3 − a2. This implies that a0 = a2 − a3. Therefore,

A = {a2 − a3, a2, a3}. If either α + β ≤ h − 2 or t2 ≥ 2, then it follows from

Theorem 5 that |(h − β)(r̄)A0| = |Σβ
α(A )| = L(r̄, h − β) if and only if A0 is an

arithmetic progression. Hence

a1 − a0 = a2 − a1 = a3 − a2.

This implies that a0 = −a2 and a3 = 2a2, and so A0 = {−a2, 0, a2, 2a2}. Therefore,

A = {−a2, a2, 2a2} = a2 ∗ {−1, 1, 2}.

If k ≥ 4, then, it follows from Theorem 3 that

|(h− β)(r̄)A0| = |Σβ
α(A )| = L(r̄, h− β)

if and only if A0 is an arithmetic progression. Hence

a1 − a0 = a2 − a1 = · · · = an−1 − an−2 = an − an−1

= an+1 − an = an+2 − an+1 = · · · = an+p − an+p−1,

which implies that

an−j = −jan+1 for j = 1, . . . , n

and

an+j = jan+1 for j = 2, . . . , p.

Hence A0 = an+1 ∗ [−n, p]. Therefore,

A = an+1 ∗ {−n,−(n− 1), . . . ,−1, 1, 2, . . . , p}.

This completes the proof.
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Remark 9. Let n and p be integers such that n ≤ p. Let A = (A, t̄) be a finite

sequence of integers, where

A = {a0, a1, . . . , an−1, an+1, . . . , an+p}

with

a0 < a1 < · · · < an−1 < 0 < an+1 < · · · < an+p

and

t̄ = (t0, t1, . . . , tn−1, tn+1, . . . , tn+p).

Let h = t0+ · · ·+ tn−1+ tn+1+ · · ·+ tn+p ≥ 3. Let α and β be nonnegative integers,

and let r̄ = (t0, . . . , tn−1, h− α− β, tn+1, . . . , tn+p).

(i) If α = h − 1 and β = 0, then |Σβ
α(A )| = k + 1. It is easy to verify that

L(r̄, h − β) = k + 1. Thus |Σβ
α(A )| achieves the lower bound L(r̄, h − β) in

this case.

(ii) If α = h− 1 and β = 1, then |Σβ
α(A )| = k.

(iii) If α = h and β = 0, then |Σβ
α(A )| = 1.

(iv) For the remaining values of α and β, one can draw the conclusion using Facts

12.

Theorem 20. Let n and p be integers such that n ≤ p. Let A = (A, t̄) be a finite

sequence of integers, where

A = {a0, a1, . . . , an−1, an, an+1, . . . , an+p}

with

a0 < a1 < · · · < an−1 < 0 = an < an+1 < · · · < an+p

and

t̄ = (t0, t1, . . . , tn−1, tn, tn+1, . . . , tn+p).

Let h = t0 + · · · + tn+p. Let α and β be integers such that 1 ≤ α ≤ h − 2,

0 ≤ β ≤ h− 2, and α+β ≤ h. Let r̄ = (t0, . . . , tn−1, h−α−β+ tn, tn+1, . . . , tn+p).

Then the following conclusions hold.

(a) Suppose that k = 3 and α+ β = h. In this case, if t1 = 1, then

|Σβ
α(A )| = L(r̄, h− β).

If t1 ≥ 2, then |Σβ
α(A )| = L(r̄, h − β) if and only if A = (A, t̄), where

A = a2 ∗ [−1, 1] and t̄ = (t0, t1, t2).

(b) Suppose that k = 3 and α+ β ≤ h− 1. In this case, |Σβ
α(A )| = L(r̄, h− β) if

and only if A = (A, t̄), where A = a2 ∗ [−1, 1] and t̄ = (t0, t1, t2).
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(c) Suppose that k = 4 and α+ β = h. In this case, if t1 = t2 = 1, then

|Σβ
α(A )| = L(r̄, h− β)

if and only if A = (A, t̄), where A = {a2 − a3, 0, a2, a3} with 0 < a2 < a3 and

t̄ = (t0, 1, 1, t3). If either t1 ≥ 2 or t2 ≥ 2, then |Σβ
α(A )| = L(r̄, h− β) if and

only if A = (A, t̄), where A = a2 ∗ [−1, 2].

(d) Suppose that k = 4 and α+ β ≤ h− 1. In this case, |Σβ
α(A )| = L(r̄, h− β) if

and only if A = (A, t̄), where A = a2 ∗ [−1, 2] and t̄ = (t0, t1, t2, t3).

(e) In all other cases, |Σβ
α(A )| = L(r̄, h − β) if and only if A = (A, t̄), where

A = an+1 ∗ [−n, p].

Proof. It follows from Lemma 5 and Lemma 3 that

Σβ
α(A ) = h(r̄)A.

Let k = |A| = p+ n+ 1. First assume that k = 3. Then clearly, p = n = 1. Hence

A = {a0, a1, a2} with a0 < 0 = a1 < a2 and

r̄ = (r0, r1, r2) = (t0, h− α+ β + t1, t2).

If t1 = 1 and α+ β = h, then it follows from Theorem 4 that

|(h− β)(r̄)A| = |Σβ
α(A )| = L(r̄, h− β).

If t1 ≥ 2 and α+ β = h, then it follows from Theorem 4 that

|(h− β)(r̄)A| = |Σβ
α(A )| = L(r̄, h− β)

if and only if A is an arithmetic progression. Hence a1−a0 = a2−a1, which implies

that a0 = −a2, and so A = {−a2, 0, a2} = a2 ∗ [−1, 1]. This proves part (a). If

t1 = 1 and α+ β ≤ h− 1, then it follows from Theorem 4 that

|(h− β)(r̄)A| = |Σβ
α(A )| = L(r̄, h− β)

if and only if A is an arithmetic progression. Hence a1−a0 = a2−a1, which implies

that a0 = −a2, and so A = {−a2, 0, a2} = a2 ∗ [−1, 1]. This proves part (b).

Now assume that k = 4. Then clearly we have n = 1 and p = 2. Hence

A = {a0, a1, a2, a3} with a0 < 0 = a1 < a2 < a3 and

r̄ = (r0, r1, r2, r3) = (t0, h− α+ t1, t2, t3).

If t1 = t2 = 1 and α+ β = h, then it follows from Theorem 5 that

|(h− β)(r̄)A| = |Σβ
α(A )| = L(r̄, h− β)
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if and only if a1 − a0 = a3 − a2, which implies that A = {a2 − a3, 0, a2, a3} with

0 < a2 < a3. If α+β = h and either t1 ≥ 2 or t2 ≥ 2, then it follows from Theorem

5 that

|(h− β)(r̄)A| = |Σβ
α(A )| = L(r̄, h− β)

if and only if A is an arithmetic progression. Hence

a1 − a0 = a2 − a1 = a3 − a2,

which implies that a0 = −a2 and a3 = 2a2, and so A = {−a2, 0, a2, 2a2} = a2 ∗
[−1, 2]. This proves part (c). If α+β ≤ h−1, then since r1 = h−α+t1 ≥ 1+t1 ≥ 2,

it follows from Theorem 5 that

|(h− β)(r̄)A| = |Σβ
α(A )| = L(r̄, h− β)

if and only if A is an arithmetic progression. Hence

a1 − a0 = a2 − a1 = a3 − a2,

which implies that a0 = −a2 and a3 = 2a2. Therefore,

A = {−a2, 0, a2, 2a2} = a2 ∗ [−1, 2].

This proves part (d).

If k ≥ 5, then, it follows from Theorem 3 that

|(h− β)(r̄)A| = |Σβ
α(A )| = L(r̄, h− β)

if and only if A is an arithmetic progression. Hence

a1 − a0 = a2 − a1 = · · · = an−1 − an−2 = an − an−1

= an+1 − an = an+2 − an+1 = · · · = an+p − an+p−1,

which implies that

an−j = −jan+1 for j = 1, . . . , n

and

an+j = jan+1 for j = 2, . . . , p.

Hence A = an+1 ∗ [−n, p]. This proves part (e). This completes the proof.

Remark 10. Let n and p be integers such that n ≤ p. Let A = (A, t̄) be a finite

sequence of integers, where

A = {a0, a1, . . . , an−1, an, an+1, . . . , an+p}

with

a0 < a1 < · · · < an−1 < 0 = an < an+1 < · · · < an+p
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and

t̄ = (t0, t1, . . . , tn−1, tn, tn+1, . . . , tn+p).

Let h = t0 + · · ·+ tn+p. Let α and β be nonnegative integers, and let

r̄ = (t0, . . . , tn−1, h− α− β + tn, tn+1, . . . , tn+p).

(i) If α = h− 1 and β = 0, then |Σβ
α(A )| = k. It is easy to verify that

L(r̄, h− β) = k.

Thus |Σβ
α(A )| achieves the lower bound L(r̄, h− β) in this case.

(ii) If α = h− 1 and β = 1, then |Σβ
α(A )| = k. It is easy to verify that

L(r̄, h− β) = k.

Thus |Σβ
α(A )| achieves the lower bound L(r̄, h− β) in this case also.

(iii) If α = h and β = 0, then |Σβ
α(A )| = 1. It is easy to verify that

L(r̄, h− β) = 1.

Thus |Σβ
α(A )| achieves the lower bound L(r̄, h− β) in this case also.

(iv) For the remaining values of α and β, one can draw the conclusion using Facts

12.

Remark 11. In Theorem 15, Theorem 16, Theorem 19 and Theorem 20, we have

assumed that n ≤ p. If n > p, then we can replace the sequence A by −A and

apply the corresponding theorems to establish the inverse theorems in this case.

Here the sequence −A is obtained by replacing each term x of A by −x.
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[14] P. Erdős and H. Heilbronn, On the addition of residue classes mod p, Acta Arith. 9 (1964),
149–159.

[15] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo.
Math. 24 (2006), 337–369.

[16] B. Girard and W. Schmid, Direct zero-sum problems for certain groups of rank three, J.
Number Theory 197 (2019), 297–316.

[17] X. W. Jiang and Y.-L. Li, On the cardinality of subsequence sums, Int. J. Number Theory
14 (2018), 661–668.

[18] R. K. Mistri and R. K. Pandey, A generalization of sumsets of set of integers, J. Number
Theory 143 (2014), 334–356.

[19] R. K. Mistri, R. K. Pandey, and O. Prakash, Subsequence sums: Direct and inverse problems,
J. Number Theory 148 (2015), 235–256.

[20] R. K. Mistri, R. K. Pandey, and O. Prakash, Subset and subsequence sums in integers, J.
Comb. Number Theory 8 (3) (2016), 207–223.

[21] R. K. Mistri, R. K. Pandey, and O. Prakash, A generalization of sumset and its applications,
Proc. Indian Acad. Sci. Math. Sci. 128 (5) (2018), Paper No. 55, 8 pp.

[22] F. Monopoli, A generalization of sumsets modulo a prime, J. Number Theory 157 (2015),
271–279.

[23] M. B. Nathanson, Inverse theorems for subset sums, Trans. Amer. Math. Soc. 347 (1995),
1409–1418.

[24] M. B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets,
Springer, 1996.



INTEGERS: 24 (2024) 35

[25] O. Ordaz, A. Philipp, I. Santos, and W. Schmid, On the Olson and the strong Davenport
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