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Abstract

Let (Sn) be the Sylvester sequence. Using Lebesgue-Nagell type equations of the

form x2 +C = 4yn, we show that no Sylvester number can be a perfect power and

no Sylvester number (except 3 and 7) can be expressed as am ± 1, where a and m

are integers greater than or equal to 2. Other information about this sequence is

provided.

1. Introduction

The Sylvester sequence (Sn)n∈N, introduced by J. J. Sylvester [5] in 1880, is the

integer sequence defined by

S0 = 2

and the recursive relationship

Sn = 1 +

n−1∏
k=0

Sk. (1)

The first few terms of (Sn) are

2, 3, 7, 43, 1807, 3263443, 10650056950807 . . . .

This sequence is strictly increasing and also satisfies the recurrence relation

Sn = S2
n−1 − Sn−1 + 1. (2)

Then
1

Sn
=

1

Sn − 1
− 1

Sn+1 − 1
,
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which shows that
+∞∑
n=0

1

Sn
= 1.

The Sylvester sequence is a well known sequence in number theory (Sequence

A000058 in the OEIS), its reciprocals are used to develop, in an optimal way, fi-

nite Egyptian fraction representations of 1, and some of its properties are used in

differential geometry and computer science.

It follows clearly from the definition that all terms (except S0 and S1) are of the

form 6k + 1 and every two terms are coprime. Concerning the factorization of the

terms in the Sylvester sequence, one can easily prove, through quadratic residues,

that no prime of the form 6k − 1 divides a term of the sequence. Indeed, observe

that Equation (2) can be rewritten as

4Sn = (2Sn−1 − 1)2 + 3, (3)

so if a prime p divides a term Sn, then −3 is a quadratic residue modulo p and

therefore p is necessarily of the form 6k + 1, according to the law of quadratic

reciprocity.

Calculations [7] show that all known terms of this sequence are square-free, but

the question of whether all terms are square-free is still unsolved.

In this note we show, by using a result established by F. Luca, SZ. Tengely and

A. Togbé [2], on equations of Lebesgue-Nagell type x2 + C = 4yn, that no term of

(Sn) is a perfect power and no term (except S1 and S2) can be expressed as am±1,

with a ≥ 2 and m ≥ 2. In addition, we determine the terms of (Sn) which are

perfect numbers, triangular numbers or Mersenne numbers, and we make a remark

on the digits of Sn.

2. Congruence Properties of Sylvester’s Sequence

It follows from the definition that Sn ≡ 1 (mod 42), for all n ≥ 3; Sn ≡ 1

(mod 1806), for all n ≥ 4; and more generally, for any given positive integer k,

Sn ≡ 1 (mod S1S2...Sk), for all n ≥ k + 1. Furthermore, we have the following

congruence properties.

Proposition 1. Let k be a positive integer. For all m,n ≥ k we have

(Sk − 1)2 divides Sn − Sm. (4)

In particular for all n ≥ 1

Sn ≡ 3 (mod 4), (5)

for all n ≥ 2

Sn ≡ 7 (mod 36), (6)
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for all n ≥ 3

Sn ≡ 43 (mod 1764). (7)

Proof. We first show, by induction on the variable n, that (Sk−1)2 divides Sn−Sk,

for all n ≥ k. The base case clearly holds, so assume that (Sk − 1)2 divides Sn−Sk.

According to (2), we have

Sn+1 − Sk = S2
n − Sn + 1− Sk

≡ S2
k − Sk + 1− Sk (mod (Sk − 1)2)

≡ (Sk − 1)2 (mod (Sk − 1)2)

≡ 0 (mod (Sk − 1)2),

and hence the induction is complete. Now Sn − Sk and Sm − Sk are both divisible

by (Sk − 1)2, so Sn − Sm = Sn − Sk − (Sm − Sk) is divisible by (Sk − 1)2.

Proposition 2. Let k be a positive integer. For all n ≥ k we have

(S2
k + 1) divides Sn − (−1)n−kSk. (8)

In particular for all i ≥ 1

S2i ≡ 7 (mod 10), S2i+1 ≡ 3 (mod 10). (9)

Proof. We proceed by induction on the variable n to show that Sn ≡ (−1)n−kSk

(mod (S2
k + 1)), for all n ≥ k. The base case clearly holds, so assume that S2

k + 1

divides Sn − (−1)n−kSk. According to (2), we have

Sn+1 = S2
n − Sn + 1

≡ S2
k − (−1)n−kSk + 1 (mod (S2

k + 1))

≡ (−1)n+1−kSk (mod (S2
k + 1)),

and hence the induction is complete.

Corollary 1. The following statements hold.

(a) The numbers 3 and 7 are the only Mersenne Sylvester numbers.

(b) The number 3 is the only triangular Sylvester number.

(c) No Sylvester number can be a perfect number.

(d) Every Sylvester number, except 2, has a prime divisor of the form 4k + 3.

Proof. (a) Mersenne numbers are numbers of the form 2n − 1, for some positive

integer n. Clearly, S1 and S2 are Mersenne numbers but S0 is not. Assume that

there exists an integer m ≥ 3 such that Sm = 2n − 1 for some positive integer n.
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Clearly, we can write n = 3k + r, with r ∈ {0, 1, 2}, so by (6) we have 8k · 2r = 8

(mod 36). One can easily prove, by induction, that for all i ≥ 1,

8i ≡ (−1)i+18 (mod 36),

and thus (−1)k+18 · 2r ≡ 8 (mod 36). This is only possible if k is odd and r = 0, so

n = 6l + 3, for some non-negative integer l. On the other hand, according to (7),

we have

2n ≡ 44 (mod 1764),

and hence (2l)6 · 8 ≡ 44 (mod 1764). But the prime number 7 is a divisor of 1764,

so it follows from Fermat’s little theorem that 1 ≡ 2 (mod 7), which is absurd.

(b) Triangular numbers are numbers of the form
m(m+ 1)

2
, for some positive integer

m. It is clear that S1 is a triangular number but S0 and S2 are not triangular

numbers. Now assume that there exists n ≥ 3 such that Sn is a triangular number.

So, there exists a positive integer m such that Sn = m(m+1)
2 . Relation (3) yields

(2m+ 1)2 − 2(2Sn−1 − 1)2 = 7,

thus, according to (6), we have (2m + 1)2 ≡ 21 (mod 36). But calculation shows

that 21 is not a square modulo 36, and hence we have a contradiction.

(c) Clearly S0 and S1 are not perfect numbers. For n ≥ 2, the term Sn is odd and,

according to (6), it is equal to 7 (mod 36), while an odd perfect number must be

equal to 1 (mod 12) or 9 (mod 36), according to [6].

(d) Let n ≥ 1. If all the prime divisors of Sn are of the form 4k+ 1, then Sn would

be of the form 4k + 1, which would contradict Relation (5).

Remark 1 (On the Digits of the Sylvester Sequence). With the exception of S0,

the last digit of the Sylvester numbers is 3 or 7, according to (9). More precisely,

it is 3 for odd indices and 7 for even indices. In other words, starting from the

index 1, the Sylvester sequence is periodic modulo 10 and its period is equal to 2.

More generally, for any integer b > 1, the Sylvester sequence is ultimately periodic

modulo b. Indeed, according to the pigeonhole principle, there exist two positive

integers N and T such that SN = SN+T modulo b. So using Relation (2) we obtain

Sn = Sn+T modulo b, for all n ≥ N. On the other hand, let us also note that

the digital root of the Sylvester numbers (except S0 and S1) equals 7. Recall that

the digital root d of a non-negative number N is one of the digits 0, 1, 2, ..., 9. To

calculate d, let N1 be the sum of the digits of N . Then let N2 be the sum of the

digits of N1, and we repeat this process until we get one-digit result. It is easy to

see that if 9 is not a divisor of N, then d ≡ N (mod 9). Here, according to (6), for

all n ≥ 2 we have

Sn ≡ 7 (mod 9),

so the digital root of Sn is 7.
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Remark 2. Proposition 1 also makes it possible to show that the Sylvester version

(see [1] and [3] for other versions) of the Brocard-Ramanujan Diophantine equation

n! + 1 = S2
m

has no solution (n,m) in positive integers. Indeed, a quick computation shows that

there is no solution for n < 6. If we assume that n!+1 = S2
m, for some non-negative

integers n,m, with n ≥ 6, then, according to (6), we have S2
m ≡ 13 (mod 36),

and hence S2
m ≡ 4 (mod 9). On the other hand, since n ≥ 6, we have n! + 1 ≡ 1

(mod 9), and hence 1 ≡ 4 (mod 9), which is absurd.

3. The Main Result

Now by using Proposition 1 and a theorem on the equations of Lebesgue-Nagell

type

x2 + C = 4yn, (n, x, y) ∈ N3, C ∈ Z, (10)

we prove the following result.

Proposition 3. The following statements hold.

(a) No Sylvester number can be a perfect power.

(b) No Sylvester number (except S1 and S2) can be expressed as am ± 1, where a

and m are integers greater than or equal to 2.

Before giving the proof, let us recall our main tool concerning Equation (10).

Theorem 1 ([2], Theorem 1.1). The only integer solutions (n, x, y) of the Diophan-

tine equation

x2 + 3 = 4yn, x, y ≥ 1, gcd(x, y) = 1, n ≥ 3,

are the triples

(n, 1, 1), for all n ≥ 3 and (3, 37, 7).

The only integer solutions (n, x, y) of the Diophantine equation

x2 + 7 = 4yn, x, y ≥ 1, gcd(x, y) = 1, n ≥ 3,

are the triples

(3, 5, 2), (5, 11, 2), and (13, 181, 2).

Proof of Proposition 3. (a) Clearly, the terms S0, S1, and S2 are not perfect powers.

Assume, on the contrary, that

Sm = yn, (11)
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for some m ≥ 3, y > 1 and n ≥ 2.

Case 1: n = 2. According to (6) we have

y2 ≡ 7 (mod 36),

but 7 is not a square modulo 36, so we have a contradiction.

Case 2: n ≥ 3. Relations (3) and (11) yield

(2Sm−1 − 1)2 + 3 = 4yn, (12)

so the triple (n, 2Sm−1 − 1, y) is a solution of Equation (10), with C = 3. To use

Theorem 1, we first need to check that 2Sm−1 − 1 and y are coprime. Indeed,

Relation (6) implies that Sn−1 ≡ 1 (mod 3), so 2Sm−1 − 1 ≡ 1 (mod 3), and hence

the number 3 does not divide 2Sm−1−1. Therefore gcd(2Sm−1−1, y) = 1, according

to (12). Now, according to Theorem 1, we have

2Sm−1 − 1 = 1 or 2Sm−1 − 1 = 37,

so Sm−1 = 1 or Sm−1 = 19. But 1 and 19 are not terms of the Sylvester sequence,

hence we have a contradiction.

(b) Assume that Sm = an ± 1, for some integers n,m, a, with m ≥ 3, a ≥ 2, and

n ≥ 2. The case where Sm = an + 1 is easily dismissed. In fact, if Sm = an + 1,

then, by Equation (1), we have S0S1...Sm−1 = an. But every two terms of the

Sylvester sequence are relatively prime, so n cannot be greater than 1, hence we

have a contradiction.

Now assume that Sm = an − 1. By (3) we have

(2Sm−1 − 1)2 + 7 = 4an, (13)

so the triple (n, 2Sm−1 − 1, a) is a solution of Equation (10), with C = 7.

Case 1: n = 2. According to (6), we have Sm−1 ≡ 7 (mod 36), thus

(2Sm−1 − 1)2 + 7 ≡ −4 (mod 36),

which implies, according to (13), that the equation −4 = 4y2 has a solution modulo

36, but a simple calculation shows the opposite.

Case 2: n ≥ 3. In this case we shall use Theorem 1, so let us check that 2Sm−1−1

and a are coprime. Relation (7) leads to 2Sm−1 − 1 ≡ 85 (mod 1764), but 7

divides 1764, so 2Sm−1−1 ≡ 1 (mod 7), which clearly shows that 7 does not divide

2Sm−1 − 1 and therefore gcd(2Sm−1 − 1, a) = 1 according to (13). Now, according

to Theorem 1, we have

2Sm−1 − 1 = 5, or 2Sm−1 − 1 = 11, or 2Sm−1 − 1 = 181,
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and hence Sm−1 = 3, or Sm−1 = 6, or Sm−1 = 91. But 6 and 91 are not terms of

the Sylvester sequence, and Sm−1 cannot be equal to 3 because m is assumed to be

greater than 2, so we have a contradiction. □
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