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Abstract

We demonstrate that the multiple Hurwitz zeta function is the ordinary generating

function for the sequence of height 1 multiple zeta functions. This principle is then

used to evaluate various series involving such zeta functions and other important

sequences of number theoretic and combinatorial nature.

1. Introduction

For positive integers s2, . . . , sj , the multiple zeta function ζ(s, s2, . . . , sj) may be

considered as a single-variable function defined for <(s) > 1 by

ζ(s, s2, . . . , sj) =
∑

n1>n2>···>nj>0

1

ns1n
s2
2 · · ·n

sj
j

.

When s = s1 > 1 is an integer, the value ζ(s1, s2, . . . , sj) is known as a multiple

zeta value [21, 14] of weight s1 + · · · + sj , of depth j, and of height #{i : si > 1};
such values have been extensively studied. Following [20], we consider the function

ζ(s, {1}j−1) := ζ(s, 1, . . . , 1︸ ︷︷ ︸
j−1

) as the height 1 multiple zeta function of depth j, and

we exhibit here various series involving the functions ζ(s, {1}j) and Stirling, poly-

Bernoulli, harmonic, hyperharmonic, and Roman harmonic numbers. These series

are all derived by considering the multiple Hurwitz zeta function ζr(s) (see Section

2) as the ordinary generating function of the sequence {ζ(s, {1}j)}∞j=0 of height 1

multiple zeta functions.

Among the most important algebraic properties of multiple zeta values is the

duality relation, which in the height 1 case takes a simple symmetric form

ζ(k + 1, {1}j−1) = ζ(j + 1, {1}k−1) (1.1)
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[21, 12, 14] for positive integers j, k. Consequently the height one MZVs have a

well known symmetric generating function [12, 14]. Although here we consider the

functions ζ(s, {1}j) in a non-symmetric way by considering s as a complex variable,

symmetry remains evident in many of our results. For example, in Corollary 1 be-

low, we show that the values C
(−n)
j = B(−n)

j (1) of the poly-Bernoulli polynomials,

a sequence of positive integers with well-known symmetry and well-known combi-

natorial interpretations, serve as the coefficients of the expansion of the Riemann

zeta function ζ(s) as a series in ζ(s+ n, {1}j).
After deriving the generating function and giving some multiple zeta function

series in the next two sections, we further illustrate the method by generalizing the

classical zeta series (2.24) of Goldbach to multiple zeta functions. Then in Section 3

we express the hyperharmonic zeta function σ(r, s) in terms of multiple Hurwitz and

height 1 multiple zeta functions. As applications of the main theorem, we conclude

with some alternate expressions for series and constants related to height 1 multiple

zeta functions, which were studied recently in [6, 20, 8].

2. Multiple Zeta Functions Generate Multiple Zeta Functions

For a positive integer r, the multiple Hurwitz zeta function [15, 18] of order r,

denoted by ζr(s, a), is defined by the r-fold series

ζr(s, a) :=

∞∑
t1=0

· · ·
∞∑

tr=0

(a+ t1 + · · ·+ tr)−s (2.1)

for <(s) > r and <(a) > 0, and continued meromorphically to s ∈ C with simple

poles at s = 1, 2, ..., r. When r = 1 or a = 1 that part of the notation is often

suppressed, so that ζ1(s, 1) = ζ(s) denotes the Riemann zeta function. These

functions may equivalently be defined [18, eq. (3.3)] by the single Dirichlet series

ζr(s, a) =

∞∑
m=0

(
m+ r − 1

m

)
(m+ a)−s, (2.2)

which has the advantage of allowing the order r to be any complex number, and

defines ζr(s, a) as an analytic function of r for <(a) > 0 and <(r) < <(s), which

may be meromorphically continued to all r ∈ C [18, Section 3].

Theorem 1. If <(s) > 1 and |r − 1| < |s− 1|, then

ζr(s) =

∞∑
j=0

ζ(s, {1}j)(r − 1)j .
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Proof. The binomial coefficient in (2.2) may be expanded as(
m+ r − 1

m

)
=

1

m!

m∑
k=0

[
m+ 1

k + 1

]
(r − 1)k (2.3)

as a polynomial in r − 1, whose coefficients are the (unsigned) Stirling numbers of

the first kind, which satisfy[
m+ 1

k + 1

]
= m!

∑
m>n1>···>nk>0

1

n1 · · ·nk
. (2.4)

Thus for <(s) > 1 and any nonnegative integer j we evaluate

Dj
rζr(s)

∣∣∣
r=1

= Dj
r

∞∑
m=0

(
m+ r − 1

m

)
(m+ 1)−s

∣∣∣∣∣
r=1

= Dj
r

∞∑
m=0

1

m!

m∑
k=0

[
m+ 1

k + 1

]
(r − 1)k(m+ 1)−s

∣∣∣∣∣
r=1

=

∞∑
m=0

j!

m!

[
m+ 1

j + 1

]
(m+ 1)−s

= j!
∑

m+1>n1>···>nj>0

1

(m+ 1)s
1

n1 · · ·nj
= j!ζ(s, {1}j), (2.5)

where Dr = d/dr is the derivative operator. For fixed s with <(s) > 1, the function

ζr(s) is a meromorphic function of r [18, eq.(3.4)] with simple poles at r = s, s+1, . . .,

so in particular it is analytic on the disk |r − 1| < |s − 1|. The convergence of the

series, and therefore the theorem, then follows from Taylor’s theorem applied to the

analytic function ζr(s) at r = 1.

2.1. Integer Orders r

When the order r is taken to be a positive integer, the multiple zeta function

ζr(s) reduces to a finite linear combination of Riemann zeta functions; this gives

an expression of the Riemann zeta function as a series involving poly-Bernoulli

numbers. The poly-Bernoulli polynomials B(k)
n (x) are defined [5] by the generating

function
Lik(1− e−t)

1− e−t
e−xt =

∞∑
n=0

B(k)
n (x)

tn

n!
(2.6)

(where Lik(z) =
∑∞

m=1
zm

mk is the polylogarithm function), and the values C
(k)
n =

B(k)
n (1) give the values C

(k)
n = (−1)nξk(−n) at negative integers of the Arakawa-
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Kaneko zeta function ξk(s) [1, Theorem 6]. These values have the explicit formula

C(k)
n = (−1)n

n∑
i=0

(−1)ii!
{

n+1
i+1

}
(i+ 1)k

(2.7)

in terms of the Stirling numbers of the second kind
{

n
k

}
. For negative integer orders,

the values C
(−k)
n are positive integers which have many combinatorial interpreta-

tions, including enumeration of certain subsets of 01 matrices [2, Theorems 2,4,7],

of certain permutations [2, Theorems 10,12,16], of certain permutation tableaux

[2, Theorem 6], and of acyclic graph orientations [2, Theorems 19,20]. Here they

appear as the expansion coefficients which arise when ζ(s) is expressed as a series

in ζ(s+ n, {1}j).

Corollary 1. If n is a nonnegative integer and <(s) > n+ 1, we have

∞∑
j=0

ζ(s, {1}j)nj =
1

n!

n∑
m=0

[ n
m

]
ζ(s−m).

Consequently, for <(s) > 1 and any nonnegative integer n,

ζ(s) =

∞∑
j=0

C
(−n)
j ζ(s+ n, {1}j),

where C
(k)
n = B(k)

n (1) are the values of poly-Bernoulli polynomials at x = 1.

Proof. For the first statement, expand the binomial coefficient in (2.2) as a polyno-

mial in m+ 1 to obtain

ζr(s) =
1

(r − 1)!

r−1∑
m=0

[
r − 1

m

]
ζ(s−m) (2.8)

for positive integer orders r; then take r = n + 1 in Theorem 1. For the second

statement, we invert (2.8) according to the duality of Stirling numbers

fn =

n∑
m=0

[ n
m

]
(−1)mgm ⇐⇒ gn =

n∑
m=0

{ n
m

}
(−1)mfm (2.9)

with fm = m!ζm+1(s) and gm = (−1)mζ(s−m), yielding

(−1)nζ(s− n) =

n∑
m=0

{ n
m

}
(−1)mm!ζm+1(s)

=

∞∑
j=0

ζ(s, {1}j)
n∑

m=0

(−1)mm!
{ n
m

}
mj , (2.10)
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for <(s) > n+ 1, via Theorem 1. Comparison with (2.7) shows that this inner sum

over m in (2.10) is precisely (−1)nC
(−j−1)
n−1 . The symmetry C

(−k−1)
n = C

(−n−1)
k [11,

p. 76], and substituting s→ s+ n, then finishes the proof.

Example 1. Taking n = 0 yields the tautology ζ(s) = ζ(s), while taking n = 1

yields the simple series

ζ(s) =

∞∑
j=0

ζ(s+ 1, {1}j) (<(s) > 1). (2.11)

Taking n = 3 yields, for <(s) > 4,

∞∑
j=0

3jζ(s, {1}j) =
ζ(s− 1)

3
+
ζ(s− 2)

2
+
ζ(s− 3)

6
, (2.12)

with inverted series

ζ(s− 3) = ζ(s) + 7ζ(s, 1) + 31ζ(s, 1, 1) + 115ζ(s, 1, 1, 1) + · · · , (2.13)

with coefficients C
(−3)
j = {1, 7, 31, 115, 391, 1267, 3991, 12355, 37831, . . .}.

Remark 1. The series of this corollary may be manipulated in countless ways. For

example, since they are uniformly convergent series of analytic functions, one may

apply operators such as d/ds to conclude

∞∑
j=0

ζ ′(s, {1}j) = ζ ′(s− 1) (<(s) > 2). (2.14)

Or, observing that lim
s→∞

ζr(s) = 1, one may easily obtain the double series

∞∑
k=0

∞∑
j=1

ζ(s+ k, {1}j)rj =
1

r!

r∑
m=1

r∑
n=m

[ r
n

]
ζ(s−m)−Hr, (2.15)

where Hr = 1 + · · · + 1/r is the r-th harmonic number, by subtracting the j = 0

term from both sides of Corollary 1, summing over k > 0, and using the identities

r∑
m=0

[ r
m

]
= r! and

r∑
m=0

m
[ r
m

]
= r!Hr (2.16)

to telescope the series.

The companion to Corollary 1 for negative integer orders r, which we include for

sake of completeness, is considerably simpler. In this case the evaluation involves

the Roman harmonic numbers Hn,k, which are defined [7, 8] by

Hn,k =
∑

n>n1>n2>···>nk>1

1

n1n2 · · ·nk
, (2.17)
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and may also be given by the single sum

Hn,k =

n∑
j=1

(−1)j−1
(
n

j

)
j−k. (2.18)

Observe that Hn,1 = Hn is the usual harmonic number.

Corollary 2. If r is a positive integer and <(s) > r + 1, then

∞∑
j=0

ζ(s, {1}j)(−r)j =

r−1∑
m=0

(−1)m
(
r − 1

m

)
(m+ 1)−s.

In particular, for integers k, n with k > n+ 1, we have the rational sum

∞∑
j=0

ζ(k, {1}j)(−n)j =
Hn,k−1

n
.

Proof. For negative integer orders, the series (2.2) defining the multiple Hurwitz

zeta function reduces to the finite sum

ζ−r(s) =

r∑
j=0

(−1)j
(
r

j

)
(j + 1)−s, (2.19)

so the first statement then follows from Theorem 1. For an integer value s = k, the

second statement then follows by comparison with (2.18).

Example 2. Taking r = 0, 1 in this corollary produces

∞∑
j=0

(−1)jζ(s, {1}j) = 1 (<(s) > 2), (2.20)

∞∑
j=0

(−2)jζ(s, {1}j) = 1− 2−s (<(s) > 3). (2.21)

As with Corollary 1, we may apply the operator d/ds (for example) to deduce

various identities such as

∞∑
j=0

(−1)jζ ′(s, {1}j) = 0 (<(s) > 2), (2.22)

∞∑
j=0

(−2)jζ ′(s, {1}j) = 2−s log 2 (<(s) > 3). (2.23)

These are just a few of the many results so obtainable.



INTEGERS: 24 (2024) 7

2.2. Generalization of Goldbach’s Series

In a 1729 letter to Daniel Bernoulli, Christian Goldbach gave the series

∞∑
n=2

(ζ(n)− 1) = 1 (2.24)

[16], which has the alternating counterpart

∞∑
n=2

(−1)n(ζ(n)− 1) =
1

2
. (2.25)

Generally, given a convergent sequence {an} of real numbers with limit L, one may

consider the series
∑

n |an−L| and
∑

n(−1)n|an−L|; here we give such evaluations

where the aj involve height 1 multiple zeta values, generalizing Goldbach’s classical

series.

Theorem 2. For any positive integer k, we have

∞∑
j=0

(
kjζ(k + 1, {1}j)− 1

k!k

)
=

1

k!

(
k−1∑
m=0

[
k

m

]
ζ(k + 1−m) +Hk

)
,

where Hk = 1 + · · · + 1/k is the harmonic number, with corresponding alternating

series having rational sum

∞∑
j=0

(−1)j
(
kjζ(k + 1, {1}j)− 1

k!k

)
=
Hk,k

k
− 1

2k!k
.

Proof. Fixing an integer s > 1 and considering ζr(s) as a meromorphic function of

r, we remove its leftmost pole by expanding 1/((s− 1)!(s− r)) as a geometric series

and subtracting it from both sides of Theorem 1. This produces the series

ζr(s)− 1

(s− 1)!(s− r)
=
∞∑
j=0

(
ζ(s, {1}j)− 1

(s− 1)!(s− 1)j+1

)
(r − 1)j , (2.26)

which now converges for |r − 1| < s since the leftmost pole of the left-hand side is

now at r = s + 1 [18, eq. (3.4)]. For integers s > 1, the limit as r → s of the left

side of (2.26) was evaluated in [19, Theorem 5.1] as

lim
r→s

(
ζr(s)− 1

(s− 1)!(s− r)

)
= (s− 1)!γs(1)− γ +Hs−1, (2.27)

where γ denotes Euler’s constant and γr(1) denotes the order r generalized Euler

constant defined by

γr(1) := lim
s→r

(
ζr(s)− 1

(s− 1)!(s− r)

)
, (2.28)
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with γ1(1) = γ. But evaluating ζr(s) as s→ r using (2.8) yields

γr(1) =
γ

(r − 1)!
+

r−2∑
m=0

[
r − 1

m

]
ζ(r −m), (2.29)

so the first statement follows from (2.26), (2.27), and (2.29), upon replacing k with

s− 1. The second statement is obtained by evaluating (2.26) at 1− r = s− 1 using

(2.19) and (2.18).

Example 3. By means of the duality (1.1), we have ζ(2, {1}j) = ζ(j + 2), so the

k = 1 case of this theorem reduces to the classical series (2.24) of Goldbach and its

alternating counterpart (2.25). The cases k = 2, 3, . . . generalize these as follows.

∞∑
j=0

(
2jζ(3, {1}j)− 1

4

)
=
ζ(2)

2
+

3

4
, (2.30)

∞∑
j=0

(−1)j
(

2jζ(3, {1}j)− 1

4

)
=

3

4
, (2.31)

∞∑
j=0

(
3jζ(4, {1}j)− 1

18

)
=
ζ(3)

3
+
ζ(2)

2
+

11

36
, (2.32)

∞∑
j=0

(−1)j
(

3jζ(4, {1}j)− 1

18

)
=

557

648
. (2.33)

3. Hyperharmonic Zeta Functions Generate Multiple Zeta Functions

The hyperharmonic numbers H
[r]
m of order r are defined by H

[0]
m = 1

m for m > 0,

H
[r]
0 = 0, and the recursion

H [r]
m =

m∑
i=1

H
[r−1]
i (3.1)

for positive integers r (cf. [13, 9]). Thus Hn = H
[1]
n denotes the usual harmonic

number. They are also given by the derivative

H [r]
m = Dr

(
m+ r − 1

m

)
(3.2)

[17, eq. (2.5)], which has the advantage of allowing the order r to be any complex

number. In [13, 9] it was shown that the hyperharmonic zeta function

σ(r, s) :=

∞∑
m=1

H [r]
m m−s (3.3)
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converges for <(s) > r, and for integers 0 6 r < s its values may be expressed as

rational polynomials in Riemann zeta values. Here we express the hyperharmonic

zeta functions σ(r, s) in terms of the multiple Hurwitz zeta functions and height 1

zeta functions.

Theorem 3. We have

σ(r, s) = Drζr(s, a)
∣∣∣
a→0

=

∞∑
j=0

(j + 1)ζ(s+ 1, {1}j)rj ,

where the first equality gives the meromorphic continuation of σ(r, s) to the complex

plane, and the second equality is valid for <(s) > 0 and |r| < |s|.

Proof. For <(r) < <(s), the first equality follows from (2.2) and (3.2); thus σ(r, s)

extends to a meromorphic function of r with poles at r = s, s+ 1, . . .. A calculation

identical to (2.5) at (r, a) = (0, 0) rather than (1, 1) then shows that

Dj
rσ(r, s)

∣∣∣
r=0

= Dj+1
r ζr(s, a)

∣∣∣
r=0,a→0

= (j + 1)!ζ(s+ 1, {1}j), (3.4)

so the second equality expresses the Taylor series of the function σ(r, s) at r = 0,

which is analytic for |r| < |s|.

Example 4. For r = 0 the Theorem reduces to the tautology ζ(s+ 1) = ζ(s+ 1).

For r = 1 we get

σ(1, s) =

∞∑
m=1

Hmm
−s = ζ(s, 1) + ζ(s+ 1) =

∞∑
j=0

(j + 1)ζ(s+ 1, {1}j). (3.5)

A useful alternate version of Theorem 3 is given by the series

Drζr(s) =

∞∑
m=0

H [r]
m (m+ 1)−s =

∞∑
j=1

jζ(s, {1}j)(r − 1)j−1, (3.6)

obtained by differentiating the series of Theorem 1 using (3.2), valid for <(s) > 1

and |r − 1| < |s− 1|. The two versions are related by the identity

∞∑
m=0

H [r]
m (m+ 1)−s = σ(r, s)− σ(r − 1, s). (3.7)

For positive integers r < s the values σ(r, s) were evaluated recursively in [13,

Theorem 6], yielding

σ(r, s)− σ(r − 1, s) =
1

r − 1
(σ(r − 1, s− 1)− ζr(s)) (3.8)



INTEGERS: 24 (2024) 10

for s > r > 1. Taking r = 2, 3 in (3.6), and using (3.5), (3.8), we obtain

∞∑
j=1

jζ(s, {1}j) = ζ(s− 1, 1) + ζ(s)− ζ(s− 1) (s > 3), (3.9)

∞∑
j=1

j2jζ(s, {1}j) = ζ(s− 1, 1) + ζ(s− 2, 1) + ζ(s)

+
ζ(s− 1)

2
− 3ζ(s− 2)

2
(s > 4). (3.10)

For negative integer orders, we observe from (3.2) that

H [−r]
m =


(−1)m+1H

[r+1−m]
m , 0 < m 6 r + 1;

(−1)r

m

(
m− 1

r

) , m > r + 1 (3.11)

for r > 0. Taking r = 0 in (3.6) and invoking the geometric series m−1 =
∑∞

n=1(m+

1)−n as in [18, eq. (5.10)] produces

∞∑
j=1

(−1)j−1jζ(s, {1}j) =

∞∑
m=1

1

m(m+ 1)s

=

∞∑
n=1

(ζ(s+ n)− 1) (3.12)

= s−
s∑

k=2

ζ(k),

the first two expressions valid for <(s) > 2 and the last for integers s > 2. Taking

r = −1 in (3.6) and using a similar technique as in [18, eq. (5.11)] produces

∞∑
j=1

(−2)j−1jζ(s, {1}j) =
1

2s
+

∞∑
n=1

(1− 2n−1)

(
ζ(s+ n)− 1− 1

2s+n

)

= s− 1− s− 2

2s+1
−

s∑
k=2

(
1− 1

2s+1−k

)
ζ(k), (3.13)

the first expression valid for <(s) > 3 and the second for integers s > 3.
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Since Drζr(s) tends exponentially to zero as s → ∞ for any fixed r, the series

obtained from (3.6) may be summed over s to produce double series. For example,

by summing (3.9), (3.10), and (3.12) over integers s > 3 we obtain

∞∑
k=3

∞∑
j=1

jζ(k, {1}j) = 1, (3.14)

∞∑
k=4

∞∑
j=1

j2jζ(k, {1}j) =
5

2
+
ζ(2)

2
− 2ζ(3), (3.15)

∞∑
k=3

∞∑
j=1

(−1)j−1jζ(k, {1}j) = 2ζ(2)− 3. (3.16)

The evaluation of (3.14) applies the duality (1.1) and the identity (2.11) to the

terms ζ(s − 1, 1) in (3.9), and telescopes the sum of the other two terms, yielding

the value

∞∑
k=3

∞∑
j=1

jζ(k, {1}j) =

∞∑
j=0

ζ(3, {1}j) +

∞∑
k=3

[ζ(k)− ζ(k − 1)]

= ζ(2) + [1− ζ(2)] = 1. (3.17)

Identities (3.15), (3.16) (and many others) are similarly obtained.

4. Expressions of Multiple Zeta Constants

We conclude by considering the class of shifted alternating multiple zeta series

νk,p :=

∞∑
n=2

(−1)n

n+ k
ζ(n, {1}p)

for integers p > 0 and k > −1, which were studied in [6]. These constants are

intimately connected to the singular behavior of height 1 multiple zeta functions,

going back to Euler’s 1731 series expression ν0,0 = γ for the constant term γ in the

Laurent expansion of ζ(s) at s = 1. In [6] Coppo showed that

ν0,1 − ν−1,0 = γ1 +
γ2

2
− π2

12
(4.1)

where γ1 is the first Stieltjes constant (i.e., the linear coefficient in the Laurent

expansion of ζ(s) near s = 1). This was recently generalized [20, Corollary 5.2] to

height one zeta functions of arbitrary depth j; specifically we have

ν0,j − ν−1,j−1 = γ
[j]
1 + [sj+1](Γ(s+ 1)−1) (4.2)
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where γ
[j]
1 is the first height 1 Stieltjes constant of depth j, that is, the linear

coefficient in the Laurent expansion of ζ(s, {1}j−1) at s = 1, and [sj+1](Γ(s+ 1)−1)

denotes the coefficient of sj+1 in the Taylor series for 1/Γ(s + 1). The constants

ν0,p and ν−1,p were also interpreted in terms of the Ramanujan summations of

multiple harmonic star sums [20, Theorem 6.1]. We now observe the following

integral expression for the constants νk,p which follows from Theorem 1 and the

duality (1.1).

Theorem 4. For k > −1 and p > 0 we have

νk,p =

∫ 1

0

(1− r)k+1ζr(p+ 2) dr.

Proof. For integers k > −1 and p > 0 we use Theorem 1 to calculate∫ 1

0

(1− r)k+1ζr(p+ 2) dr =

∞∑
j=0

(−1)k+1ζ(p+ 2, {1}j)
∫ 1

0

(r − 1)j+k+1dr

=

∞∑
j=0

(−1)jζ(p+ 2, {1}j)
j + k + 2

=

∞∑
j=0

(−1)jζ(j + 2, {1}p)

j + k + 2
= νk,p. (4.3)

As a corollary, from the expression (4.2) we have the following integral represen-

tation of the first height 1 Stieltjes constants.

Corollary 3. For any positive integer j, the linear coefficient γ
[j]
1 in the Laurent

expansion of ζ(s, {1}j−1) at s = 1 has the integral expression

γ
[j]
1 =

∫ 1

0

((1− r)ζr(j + 2)− ζr(j + 1)) dr − [sj+1](Γ(s+ 1)−1).

Example 5. For height j = 1 we have the expression

γ1 =

∫ 1

0

((1− r)ζr(3)− ζr(2)) dr +
π2

12
− γ2

2
. (4.4)

for the usual first Stieltjes constant.

The constant ν−1,0 also arises in several other contexts in number theory. It

appears [10] in the asymptotic formula for the number of divisors of n!, several

series [3, 8] relate it to the Riemann zeta function and to harmonic numbers, and
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it occurs in certain Ramanujan summations [6, 7] involving harmonic numbers.

Among its many series expressions we find

ν−1,0 = −
∞∑

n=2

ζ ′(n) (4.5)

[4, p. 142], which leads to the double series expression

ν−1,0 = −
∞∑
k=3

∞∑
j=0

ζ ′(k, {1}j) (4.6)

by means of (2.14).

Acknowledgement. All numerical computation was done using the PARI-GP

calculator created by C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier.
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