
#A44 INTEGERS 24 (2024)

ENUMERATING k-NAPLES PARKING FUNCTIONS THROUGH
CATALAN OBJECTS

João Pedro Carvalho
Department of Mathematics, University of Michigan, Ann Arbor, Michigan

jpcarv@umich.edu

Pamela E. Harris
Dept. of Mathematical Sciences, University of Wisconsin, Milwaukee, Wisconsin

peharris@uwm.edu

Gordon Rojas Kirby
Department of Mathematics, San Diego State University, San Diego, California

gkirby@sdsu.edu

Nico Tripeny
Haverford College, Haverford, Pennsylvania

ntripeny@haverford.edu

Andrés R. Vindas-Meléndez
Department of Mathematics, University of California, Berkeley, California

and

Department of Mathematics, Harvey Mudd College, Claremont, California
andres.vindas@berkeley.edu; arvm@hmc.edu

Received: 9/10/21, Revised: 11/28/23, Accepted: 4/23/24, Published: 5/20/24

Abstract

This paper studies a generalization of parking functions named k-Naples parking
functions, where backward movement is allowed. One consequence of backward
movement is that the number of ascending k-Naples is not the same as the number of
descending k-Naples. This paper focuses on generalizing the bijections of ascending
parking functions with combinatorial objects enumerated by the Catalan numbers
in the setting of both ascending and descending k-Naples parking functions. These
combinatorial objects include Dyck paths, binary trees, triangulations of polygons,
and non-crossing partitions. Using these bijections, we enumerate both ascending
and descending k-Naples parking functions.

1. Introduction

Parking functions are special types of integer sequences that were proposed inde-

pendently by Ronald Pyke [7] as well as by Alan Konheim and Benjamin Weiss

DOI: 10.5281/zenodo.11221617

INTEGERS: 24 (2024) 2

[6] in order to study hashing problems in computer science. If we have a sequence

of n integers all belonging to [n] ∶= {1, 2, . . . , n}, we call it a parking preference

of length n. A parking function of length n is a special type of parking pref-

erence (a1, a2, . . . , an), that allows n cars c1, c2, . . . , cn with respective preferences

a1, a2, . . . , an to park in a one-way street with n consecutively ordered parking spots

according to the following rules:

1. c1 parks in its preferred spot;

2. every new car parks in its preferred spot if it is not occupied, otherwise it

parks in the next available spot.

For example, the parking preference (2, 2, 1, 4) is a parking function of length 4,

where c1 parks in the second spot, c2 in the third, c3 in the first, and c4 in the

fourth.

Special subsets of parking functions are the monotonic ones, that correspond

to ascending (weakly increasing) or descending (weakly decreasing) parking prefer-

ences. The set of ascending parking functions of length n, as well as the set of de-

scending parking functions of length n, are counted by the Catalan numbers. There

are many well-known bijections between either of these subsets of parking functions

and a variety of Catalan objects, including Dyck paths, binary trees, triangulations

of n-gons, and noncrossing partitions [8]. We remark that the equinumerosity of

ascending and descending parking functions follows from the fact that if a given

parking preference is a parking preference, then so are all of its rearrangements.

Many generalizations to parking functions were proposed throughout the years,

including allowing cars with different lengths and starting with some spots already

filled, and a reader interested in exploring different directions may find [2] a useful

resource. In this paper, we focus our attention on the generalization known as

Naples parking functions. First proposed in [1], Naples parking functions differ

from standard parking functions by the rules in which the cars park. In the Naples

parking scheme, cars c1, c2, . . . , cn park one at a time by first checking their preferred

spot. If the preferred spot was already occupied, then cars check one spot before,

parking there if available, otherwise cars move forward to the next available spot

if that space is occupied. A parking preference is a Naples parking function if all

cars park successfully according to this Naples parking scheme. Similarly, the k-

Naples parking scheme allows cars to first check their preferred spot, then check up

to k spots preceding their parking preference, in decreasing order, before moving

forward to the next available space. A parking preference is a k-Naples parking

function if all cars park successfully according to this k-Naples parking scheme. For

example, the parking preference (6, 6, 6, 5, 5, 2, 1) is a 2-Naples parking function as

the cars c1, . . . , c7 park in positions 6, 5, 4, 3, 7, 2, 1, respectively, with the second car

moving back once and the third and fourth cars moving back twice since both their

INTEGERS: 24 (2024) 3

preferred spot and the one directly behind it are taken. Moreover, (6, 6, 6, 5, 5, 2, 1)
is a k-Naples parking function for k ≥ 3, where cars c1, . . . , c7 park in positions

6, 5, 4, 3, 2, 1, 7. We see that this is not a 1-Naples parking function as car c5 cannot

park in that setting.

In fact, we have the following proposition, proved in Section 2.

Proposition 1. If α is a k-Naples parking function of length n, then it is also a

(k + 1)-Naples parking function of length n.

Remark 1. As a consequence of Proposition 1, the notion of k-Naples for 0 ≤ k ≤

n − 1 offers an interpolation between ordinary parking functions when k = 0 and

all n-tuples of integers belonging to [n] when k ≥ n − 1. We remark that we refer

to 1-Naples parking functions simply as Naples parking functions. However, unless

otherwise specified, we adopt the convention that k ≥ 1 for all k-Naples functions

considered in this paper.

We now summarize our main results in this paper. As we commented previously,

all rearrangements of a parking function are parking functions. In Section 2 we

answer the analogous question for k-Naples parking functions, by establishing that

given a parking preference, all of its rearrangements are k-Naples parking functions

if and only if its ascending rearrangement is a k-Naples parking function. This

is the statement of Theorem 1. We then restrict our study to ascending and de-

scending k-Naples parking functions, and in Section 3 we present bijections between

ascending and descending k-Naples parking functions and families of Dyck paths.

In Section 4 we use the bijections found in the previous sections to give formulas

to enumerate ascending and descending k-Naples parking functions. These results

give connections to Fine numbers (OIES sequence A000957) and convolution of the

Catalan numbers with the Fine numbers (OIES sequence A000958). We also state

other bijections between ascending and descending k-Naples parking functions and

other Catalan objects. This is the content of Section 5. Following these results, we

conclude the article in Section 6 by detailing some future directions of research on

these topics.

2. k-Naples Parking Functions and Their Rearrangements

Before proving Proposition 1 we note that by adapting the technique from the

recursive formula for k-Naples parking functions from [3] we can inductively show

that a k-Naples parking function of length n is also a (k+1)-Naples parking function

of the same length.

First, we prove the following lemma. It states that if a k-Naples parking function

of length n has the last car cn park in space m+ 1, then the cars that parked after

https://oeis.org/A000957
https://oeis.org/A000958

INTEGERS: 24 (2024) 4

spot m + 1 will all park somewhere in spots m + 1, . . . , n according to the (k + 1)-
Naples parking scheme. In order to prove this lemma, consider the following setup.

Let the parking lot be represented by a number line of integers so that cars can

reverse past spot 1 or continue forward past spot n. In this way, we say that a car

parks on Z. For example, for parking preference α = (4, 2, 2, 2), parking according

to the 2-Naples parking scheme, the cars park on Z as illustrated in Figure 1.

−3−2−1 0 1 2 3 4 5 6 7

c4 c3 c2 c1

Figure 1: Parking position of cars with parking preference α = (4, 2, 2, 2).

Lemma 1. Suppose that α ∈ [n]n is a parking preference for which, according

to the k-Naples parking scheme, the n cars c1, . . . , cn park on Z in spots 1, . . . , n.

Then each ci parks on Z according to the (k + 1)-Naples parking scheme in a spot

0 ≤ s ≤ n.

Proof. We proceed by induction on n. If n = 1, then α = (1). For any k ≥ 0,

according to the k-Naples parking scheme, car c1 parks on Z in spot 1. Under the

(k + 1)-Naples parking scheme, car c1 parks on Z in spot s = 1, which satisfies

0 ≤ s ≤ 1. Suppose the result holds true for all parking preferences of length

less than n. Let α = (a1, . . . , an) ∈ [n]n be a parking preference for which n

cars c1, . . . , cn park, respectively, on Z according to the k-Naples parking scheme

and occupy spots s1, . . . , sn ∈ [n], with sn = m + 1 and 0 ≤ m ≤ n − 1. Then

an ≤ m + k + 1. Define S to be the set of cars parking before spot m + 1 and T to

be the set of cars parking after spot m + 1. Then min(k + 1,m + 1) ≤ an, ai ≤ m

for all i such that ci ∈ S, and aj ≥ m + 2 for all j such that cj ∈ T .

Observe that cars ci ∈ S never check a spot after m, and cars cj ∈ T never check

a spot before m+2 so that we may consider decomposing α into two disjoint ordered

lists of preferences that do not interact and satisfy our induction hypothesis. That

is, if we allow cars c1, . . . cn with parking preference α to park on Z according to

the (k + 1)-Naples parking scheme in spots s
′
i, respectively. Then {s′i ∣ ci ∈ S} ⊂

{0, . . . ,m} and {s′j ∣ cj ∈ T} ⊂ {m + 1, . . . , n}. Hence, there is some parking spot

between 0 and n that is unoccupied on the lot when cn goes to park according to

the (k + 1)-Naples parking scheme.

If an < k+1, then an ≥ m+1 and either there is a spot in [m] available in which

cn parks or cn parks in spot 0 according to the (k + 1)-Naples parking scheme. If

an ≥ k + 1 then there is some spot m + 1, . . . , n available for cn to park in. Hence,

cn parks in some spot between 0 and n according to the (k + 1)-Naples parking

scheme.

Remark 2. Note that in the last sentence of the above proof, when an ≥ k+1 there

INTEGERS: 24 (2024) 5

may additionally be a spot m− k− 1, . . . ,m open that cn parks in according to the

(k+1)-Naples parking scheme before proceeding to the available spot between space

m+1 and space n. For example, consider the parking preference (1, 2, 2, 5, 7, 7, 7, 3)
of length 8 parking according to the 2-Naples parking scheme on Z. The cars park in

spots 1, 2, . . . 8, and the last car parks in spot 4. However, in the 3-Naples scheme

on Z, cars c1, . . . , c8 park in spots 1,2,0,5,7,6,4, and 3, respectively. Specifically,

when c8 goes to park it has spot 8 and spot 3 available. It checks spot 3 first so it

parks there.

Proof of Proposition 1. We proceed by induction on n. If n = 1, then α = (1),
which is a k-Naples parking function for all k ≥ 0, in which car c1 parks on Z in

spot 1. Under the (k + 1)-Naples parking scheme car c1 parks on Z in spot s = 1.

Hence α is a (k+ 1)-Naples parking function. Suppose that every k-Naples parking

function of length 1 ≤ l < n is a (k + 1)-Naples parking function of length l. Let

α = (a1, . . . , an) be a k-Naples parking function of length n with cars c1, . . . , cn
parking in spots s1, s2, . . . , sn, respectively, with sn = m + 1 and 0 ≤ m ≤ n − 1.

Then an ≤ m+ k + 1. Define S to be the set of cars parking before spot m+ 1 and

T to be the set of cars parking after spot m + 1. Then ai ≤ m for all i such that

ci ∈ S, and aj ≥ m + 2 for all j such that cj ∈ T .

Observe that cars ci ∈ S never check a spot after m, and cars cj ∈ T never

check a spot before m + 2, so that we may consider decomposing α into disjoint

ordered lists of preferences. The preferences of cars that parked after spot m + 1

according to the k-Naples parking scheme satisfy Lemma 1, so that they only check

and park in spots m + 1 or after according to the (k + 1)-Naples parking scheme.

Hence, we may consider the preferences of cars in S, those that parked before

spot m + 1 according to the k-Naples scheme, to be a k-Naples parking function

of length m < n, satisfying our induction hypothesis so that they park in spots

1, . . . ,m according to the (k + 1)-Naples parking scheme.

Hence, there is an unoccupied spot between m + 1 and n when cn goes to park.

Since an ≤ m + k, it is able to successfully park in the unoccupied space according

to the (k + 1)-Naples parking scheme. Therefore, α is a (k + 1)-Naples parking

function.

Another interesting question regarding k-Naples parking functions is if all the

rearrangements of k-Naples parking functions remain k-Naples parking functions,

since this is true for traditional parking functions. However, this is not the case, as

we illustrate in Example 1. The bijective correspondence between ascending and

descending parking functions does not hold in the k-Naples case for k > 0. This

motivates us to study both ascending and descending k-Naples parking functions

separately to understand their similarities and differences in the hopes of achieving

a better understanding of general k-Naples parking functions.

INTEGERS: 24 (2024) 6

Example 1. We have (6, 6, 6, 5, 5, 2, 1) as a descending parking preference of length

7 and (1, 2, 5, 5, 6, 6, 6) as its corresponding ascending parking preference. From

above, we see that (6, 6, 6, 5, 5, 2, 1) is a descending 2-Naples parking function. We

also can see that (1, 2, 5, 5, 6, 6, 6) is an ascending 3-Naples parking function but not

an ascending 2-Naples parking function.

As a starting point to begin exploring exactly when rearrangements of a k-Naples

parking function are still k-Naples, we define a slightly modified way of writing

parking preferences that can capture the position of cars step by step as they park.

Then, we prove a lemma that expose small modifications in the parking preference

that conserve its status as a parking function.

Definition 1. An i-filled parking preference of length n is an ordered pair of

sequences in [n], of the form ((d1, . . . , di), (ai+1, . . . , an)), such that each dj for

1 ≤ j ≤ i represents the spot in which car cj has already parked, and each aj for

i < j ≤ n represents the preference of car cj that has yet to park. If all cars can

park using the k-Naples rules we call this an i-filled k-Naples parking function.

Lemma 2. If P1 = (a1, a2, . . . , an) is a k-Naples parking function with cars parking

in spots (d1, . . . , dn) and we consider the i-filled parking preference

P2 = ((p1, . . . , pi), (ai+1, . . . , an))

with pj = dj for all but exactly one l ≤ i where pl < dl, then P2 is an i-filled k-Naples

parking function.

Proof. We prove this by induction on n− i. Let n− i = 1 or i = n−1. Suppose that

P2 is an (n−1)-filled parking preference ((p1, . . . , pn−1), (an)) so that, according to

this preference, cars c1, . . . , cn−1 park in spots p1, . . . pn−1. By assumption, pj = dj
for all j ≤ i except for one 1 ≤ l ≤ n − 1 where pl < dl. Since all cars must park

in distinct spots we must have dn = pl < dl so that spot dl is unoccupied when cn
goes to park and cn is able to park in spot dl. Thus, P2 is an (n− 1)-filled parking

preference.

Now, suppose the same is true for every i such that k < i < n and suppose that

P2 is a k-filled parking preference ((p1, . . . , pk), (ak+1, . . . an)) so that, according to

this preference, cars c1, . . . , ck park in spots p1, . . . pk. By assumption, pj = dj for

all but exactly one l ≤ i, where pl < dl. Thus, pl = dj for some j > k. Now consider

where car ck+1 parks according to P2.

If pl = dk+1, then dl is unoccupied when ck+1 tries to park. By assumption,

dk+1 < dl, which forces ck+1 to park at spot dl or earlier. If ck+1 parks in spot dl,

then when cars ck+2, . . . , cn go to park according to P2 they find spots d1, . . . , dk+1
occupied and park in spots dk+2, . . . dn respectively. Thus, we may assume that

ck+1 parks between spots dk+1 and dl. Hence, the collection of spots X occupied

by cars c1, ..., ck+1 differs as a set from X
′
= {d1, . . . , dk+1} by one element. Say

INTEGERS: 24 (2024) 7

X \X ′
= d

′
and note X

′ \X = dl so that d
′
< dl. Then we can arrange these spots

into a (k+1)-filled parking preference satisfying our inductive hypothesis so that it

is a (k + 1)-filled k-Naples parking function. But that means that cars ck+2, . . . cn
are able to park based on how cars c1, ..., ck+1 have filled the lot according to P2 so

that P2 is a k-filled Naples parking function.

If pl ≠ dk+1 then it must be the case that pl = dj for some j > k + 1. Then when

ck+1 goes to park it can either park in dl, dk+1, or some earlier spot. If it parks in dl
we fall into the same situation as above of having a (k + 1)-filled k-Naples parking

function. Similarly, if ck+1 parks in dk+1, then we have a (k + 1)-filled k-Naples

parking function satisfying the induction hypothesis. Lastly, if it parks in some

earlier spot, this spot would have also been available to ck+1 when it tried to park

according to P1 and thus is a contradiction.

Lemma 2 plays a key role in the following results about rearrangements of k-

Naples parking functions.

Theorem 1. Given a parking preference, all of its rearrangements are k-Naples

parking functions if and only if its ascending rearrangement is a k-Naples parking

function.

Proof. Note that if all rearrangements of a parking preference are k-Naples then this

includes the fact that the ascending rearrangement is k-Naples. To prove that all

rearrangements of an ascending k-Naples parking function are k-Naples it suffices

to show that if we have a k-Naples parking function P1 = (a1, a2, . . . , an), with

ai < ai+1 for some i, then the preference P2 = (b1, b2, . . . , bn) where bj = aj for

every j ∉ {i, i + 1}, bi = ai+1, and bi+1 = ai, is also a k-Naples parking function.

Let car cj park in spot dj in accordance with parking preference P1. We see that

both parking preferences P1 and P2 result in the first i − 1 cars park identically,

then pj = dj . If ci in P2 parks in di+1, then ci in P1 must not pass by di+1 before

parking or it would park there. The two cars take up the same spaces in P2 and the

rest of the parking proceeds as in P1. So, we may assume ci in P2 does not park

in di+1. But then it must be parking in a spot not open to ci+1 in P1, namely di.

Then when ci+1 goes to park in P2, it drives past di which is now full.

If di+1 < di, we see that car ci+1 in P1 backed up all the way to di+1 and since

bi+1 < bi, ci+1 in P2 backs up to di+1 as well. Otherwise, we have di+1 > di and ci+1
in P2 clearly parks at or before di+1. So, we know that after the i + 1st car in P2

parks, all the spots the first i cars park in for P1 are full, and a car is either parked

in di+1 or in a spot that would be open in P1 that is before di+1. Since this is the

situation in the previous lemma, we see that P2 is a k-Naples parking function as

desired.

Example 2. Observe that (6, 6, 5, 5, 3, 1) is a 2-Naples parking function, but its

rearrangement (3, 5, 1, 6, 6, 5) is not. Note that in the ascending rearrangement

INTEGERS: 24 (2024) 8

(1, 3, 5, 5, 6, 6), no car can park in the second spot according to the 2-Naples parking

scheme. So it is not a 2-Naples parking function. However, we know (1, 3, 3, 5, 6, 6)
is an ascending 2-Naples parking function, and all of its rearrangements are also

2-Naples parking functions.

Remark 3. The proof of Theorem 1 defines a hierarchy that is followed when

deciding when rearrangements of a parking preference are k-Naples. If two rear-

rangements differ by just one switch, where the switched car that comes after in

the first rearrangement has a higher preference than the one coming before, then it

is intrinsically harder for the first one to be k-Naples than the second one. This is

because according to the proof, the first being k-Naples implies the second also is,

but the converse is not true.

3. Dyck Paths

One family of Catalan objects that is in bijection with descending parking functions

are Dyck paths. In [3], a generalization of this result is presented that gives a

bijection between descending k-Naples parking functions and a generalization of

Dyck paths called k-Dyck paths. In related work by Colmenarejo et al. [4], the

authors counted k-Naples parking functions through permutations, and they also

defined the k-Naples area statistic. In this section, we explore when a k-Dyck path

corresponds to an ascending k-Naples Parking function, giving a way of finding

all k-Naples parking functions with the property that each of its rearrangements

remains a k-Naples parking function. We then embed k-Dyck paths into a subset of

Dyck paths to help us find other bijections with ascending and descending k-Naples

parking functions.

Definition 2. A Dyck path of length n is a lattice path consisting of Up (1, 1) and

Down (1,−1) steps from (0, 0) to (2n, 0) that never reaches below the line y = 0. A

k-Dyck path of length n is also a lattice path consisting of Up and Down steps from

(0, 0) to (2n, 0) that never reaches below the line y = −k and ends with a Down

step. Any such path can be represented by a sequence of U ’s and D’s corresponding

to its steps.

The following result from [3] connects k-Dyck paths to descending k-Naples park-

ing functions.

Proposition 2 (Theorem 1.3, [3]). The set of descending k-Naples parking func-

tions of length n are in bijective correspondence with k-Dyck paths of length n.

Remark 4. From [3], we have the following correspondence between k-Dyck paths

and increasing parking preferences. A k-Dyck path P of length n uniquely cor-

responds to the parking preference α = (a1, . . . , an), where ai equals 1 plus the

INTEGERS: 24 (2024) 9

number of Down steps coming before the ith Up step. Note that α is an ascending

parking preference. In [3], the descending rearrangement of α was shown to be

k-Naples, and it is straightforward to reverse this process to go from decreasing

k-Naples parking functions of length n to k-Dyck paths of length n.

Next, we use this correspondence between ascending parking preferences of length

n and k-Dyck paths of length n to classify which k-Dyck paths correspond to as-

cending k-Naples parking functions.

Figure 2: The k-Dyck path corresponding to (1, 3, 3, 5, 6, 6).

Example 3. To go from the 2-Dyck path in Figure 2 to an ascending parking

preference, we see that the first Up step has no previous Down steps making the

first preference 1. The second and third Up steps then correspond to a preference

of 3. Continuing in this manner yields the parking preference (1, 3, 3, 5, 6, 6).

Theorem 2. A k-Dyck path corresponds to an ascending k-Naples parking function

if and only if every Down step that puts the path below the line y = 0 crosses back

above y = 0 within 2k steps.

Proof. First, we show that if a k-Dyck path always crosses back above the line

y = 0 within 2k steps of it crossing below y = 0, then it corresponds to an ascending

parking function. We justify this by induction on k. We know this is true for

ordinary parking functions, i.e., 0-Naples parking functions, and we assume it is

true for all values up to k − 1. Suppose we have a k-Naples parking function

corresponding to a k-Dyck path that goes below the line y = 0 on step 2i + 1. We

may assume that the k-Naples parking function leads to the first i spots being filled

by the first i cars.

By hypothesis, the path must go above the horizontal at or before step 2(i+k)+1.

If the k-Dyck path always goes above y = 0 before step 2(i+k)+1 after going below

y = 0 on step 2i + 1, then it corresponds to an ascending (k − 1)-Naples parking

function. So, we assume the path goes back above the horizontal for the first time

on step 2(i + k) + 1.

Now, we look at the cars cj and their preferred parking parking spots aj for

i + 1 ≤ j ≤ i + k + 1. These preferences aj correspond to Up steps below the

horizontal except for ai+k+1, which corresponds to the last Up step to back above

the horizontal y = 0. For i + 1 ≤ j ≤ i + k + 1, parking preferences aj satisfy

i+1 ≤ aj ≤ i+k+1. Since each car cj is able to move back k spots and j ≤ i+k+1,

INTEGERS: 24 (2024) 10

we see that these cars fill spots at or before spot i+k+1. But that implies the k+1

cars fill up the k + 1 spots immediately after what was already filled. So, the first

i+ k+ 1 cars fill the first i+ k+ 1 spots. If the path later goes below the horizontal

at step 2i
′ + 1, then in the k-Naples parking function we can see the first i

′
spots

are filled. We are now in a similar situation as before, so if the path goes above

the horizontal at step 2(i′ + k) + 1 or before, all the earlier positions will be filled.

Continuing in this manner, we see that all positions are filled, so this does indeed

correspond to a k-Naples parking function.

Assume for the sake of contradiction that P is a k-Dyck path corresponding to

an ascending k-Naples parking function, where P crosses below the line y = 0 and

does not cross back above this line within 2k steps. Let step 2i + 1 be the first

step where the path goes below y = 0 but does not cross back above y = 0 within

2k steps. Now, let us look at car ci+j with 1 ≤ j ≤ k + 1. We see that ci+j must

have preference larger than i + j since the path is below the horizontal and there

are more Down than Up steps during this section. For the car to move back to spot

i + 1, all spots between i + 1 and the parking preference, including the preference,

must be filled. We see that these are spots i + 2, i + 3, . . . , i + j + 1, of which there

are j. However, they could only be filled by cars ci+1, c1+2, . . . ci+j−1, of which there

are j − 1. Hence, one of these spots is open, and ci+j cannot fill spot i + 1. We

see that cars ci+k+2 and later must have parking preference larger than or equal to

i + k + 2. This follows from the fact that the path does not go below the diagonal

until at least step 2(i + k) + 2 by assumption. So no car fills spot i + 1, showing

that the path does not correspond to a k-Naples parking function.

Corollary 1. Every rearrangement of a parking preference is a k-Naples parking

function if and only if whenever its corresponding k-Dyck path has a Down step

which crosses the line y = 0, the following 2k steps have a point where there have

been in total two more Up steps than Down steps so far into the path.

Proof. This follows directly from Theorems 2 and 1.

Example 4. From Figure 2, we see that (1, 3, 3, 5, 6, 6) is not a 1-Naples parking

function even though the lattice path is a 1-Dyck path. In fact, we can see that at

step 7 it crosses below y = 0, and then it takes four steps for the lattice path to

cross back above y = 0. Thus, it is a 2-Naples parking function.

Remark 5. In particular, for the 1-Naples case the path cannot be below the

y = 0 line for more than three steps at a time. This means that we cannot have

two consecutive valleys under the y = 0 line. This special case is equivalent to

Conjecture 5 in [3].

Next, we use Proposition 2 to view descending k-Naples parking functions of

length n as k-Dyck paths of the same length, and then embed these into usual Dyck

INTEGERS: 24 (2024) 11

Figure 3: The k-Dyck path to Dyck path transformation.

paths of length n + k. This allows us to obtain many similar bijections for both

ascending and descending k-Naples parking functions to other subsets of Catalan

objects.

Proposition 3. Descending k-Naples parking functions are in bijective correspon-

dence with Dyck paths of length n+k whose first k steps are Up and last k+1 steps

are Down.

Proof. This result follows from using the bijection between descending k-Naples

functions and k-Dyck paths and then embedding these k-Dyck paths into the usual

Dyck paths. Specifically, given a descending k-Naples parking function find the

corresponding k-Dyck path. Then, shift this path k units right and k units up so

that it starts at (k, k) and concatenate this with the lattice path of all Up steps from

(0, 0) to (k, k) and the lattice path of all Down steps from (2n+k, k) to (2n+2k, 0).
In terms of Up steps and Down steps, this corresponds to appending k Up steps to

the start of the k-Dyck path and k Down steps to the end of the k-Dyck path.

Moreover, reversing the process results in a k-Naples parking function.

Remark 6. Figure 3 gives an example of this transformation for our running ex-

ample (6, 6, 6, 5, 5, 2, 1). Notice that for a k-Dyck path, the corresponding Dyck

path represents a descending parking function of length n + k that ends in at least

k cars with preference 1. This leads to the following result.

Corollary 2. Descending k-Naples parking functions of length n are in bijective

correspondence with descending parking functions of length n+ k which end with at

least k cars with preference 1.

INTEGERS: 24 (2024) 12

Similar to the transformation in Proposition 3, we see that Dyck paths of length

n + k that do not return to the line y = 0 until the last step are in bijection with

Dyck paths of length n + k − 1 by removing the Up step and last Down step. This

motivates the next result.

Definition 3. A parking preference is strictly k-Naples if it is k-Naples but not

(k − 1)-Naples.

Proposition 4. The descending k-Naples parking functions that are not descending

(k − 1)-Naples parking functions are in bijective correspondence with Dyck paths of

length n + k whose first k steps are Up and last k + 1 steps are Down and which

return to the line y = 0 sometime before the last step.

Proof. Using the same translation between a k-Dyck path and a Dyck path as

before, observe that Dyck paths that do not return to the horizontal before the

last step correspond to k-Dyck paths that reach at most the line y = −k′ for some

0 < k
′
< k and thus correspond to k

′
-Dyck paths. This shows our desired result.

Finally, we may also use this embedding of k-Dyck paths into Dyck paths to see

which Dyck paths are in correspondence with ascending k-Naples parking functions.

The following corollary follows directly from Theorem 2.

Corollary 3. Ascending k-Naples parking functions are in bijective correspondence

with Dyck paths with length n + k whose first k steps are Up, last k + 1 steps are

Down, and before the last k+1 steps, whenever a Down step puts the path below the

line y = k, the following 2k steps have a point with two more Up than Down steps.

4. Enumeration of Monotonic k-Naples Parking Functions

In the previous section we found bijections between either of the two types of mono-

tonic k-Naples parking functions–descending or ascending–and subsets of Dyck

paths. We now use the bijection between k-Naples parking functions and Dyck

paths to give a recursive formula for the number of ascending k-Naples parking

functions and also give results about the generating functions for the sequences

corresponding to these objects. We end the section with closed formulas for their

descending counterparts.

For the rest of this section, we fix the following notation.

• Let In,k denote the number of ascending k-Naples parking functions of length

n and define Ik(x) to be the ordinary generating function of In,k.

• Let Un,k denote the number of ascending k-Naples parking functions of length

n which start with 1 and define Uk(x) to be the ordinary generating function

of In,k.

INTEGERS: 24 (2024) 13

• Let Ck denote the kth Catalan number and define C(x) to be the ordinary

generating function of Ck.

• Let Fn+1 denote the (n + 1)th Fine number (OIES sequence A000957) and

define F (x) to be the ordinary generating function of Fn+1.

Theorem 3. For n − 1 ≥ k ≥ 1 and n ≥ 0, we have

In,k = In,k−1 + Ck

n−k

∑
i=0

(Ii,k−1)(Un−k−i,k) and (1)

Un,kx = Un,k−1 + Ck

n−k

∑
i=0

(Ui,k−1)(Un−k−i,k). (2)

Remark 7. Note that In,0 = Cn and U0,k = 0, otherwise Un,0 = Cn. Further

observe that the k-Naples parking functions which start with 1 correspond to k-Dyck

paths that start with an Up step. In Theorem 3, if n ≤ k, then both summations

are empty making them 0. This corresponds to there being no new k-Naples for a

fixed length n if k is large enough.

Figure 4: Breakdown for the recurrence for ascending k-Naples parking functions.

Proof. For In,k, we need to find the new ascending k-Naples parking functions

which are not represented in In,k−1 and add the two together. Recall that In,0 = Cn

when n > 0, giving the base for our recurrence. From Theorem 2, we know that an

ascending k-Naples parking function of length n that is not a (k−1)-Naples parking

functions must have a corresponding Dyck path that is below the horizontal for

exactly 2k steps. Let there be 2i steps before the point it goes below the horizontal

for 2k steps. We see that i of these are Up steps since the last step must be to

the horizontal. Also, notice that the last step is a Down step as otherwise the path

would be below the horizontal for at least 2k + 2 steps. So, the number of ways

to get to this point is the number of (k − 1)-Naples parking functions of length i,

recalling that the last step of the k-Dyck paths corresponding to ascending Naples

parking functions must be Down. So, we see that there are Ii,k−1 such paths. This

argument corresponds to the first section in Figure 4.

https://oeis.org/A000957

INTEGERS: 24 (2024) 14

Now, once the path has gone below the horizontal, it must stay there for 2k steps.

At this point, it must return to the horizontal. Flipping this across the horizontal

gives regular Dyck paths of length k, leading to Ck possibilities. This argument

corresponds to the second section in Figure 4.

Now, the path is at the horizontal after 2(i+ k) steps. It must then go up so as

to not stay below the horizontal for too long. But we see that the final section of

length n − i − k starting with an Up step has Un−i−k,k options, which can be seen

in the third section of Figure 4.

Summing over all i gives Equation (1) and Equation (2) is proved similarly.

Given the recursive formulas in Theorem 3, we note a connection between the 1-

Naples paths that start with an Up step and the Fine Numbers, an integer sequence

closely related to the Catalan Numbers. Many interpretations of the Fine Number

sequence can be found in [5]. We then proceed to present more general recursive

formulas for the associated ordinary generating functions of In,k and Un,k.

Theorem 4. For n ≥ 0, we have Un,1 = Fn+1, where Fn+1 denotes the (n + 1)th

Fine Number (OIES sequence A000957).

Proof. It suffices to prove that U1(x) = F (x)−1
x

(excluding F1 and reindexing). We

know that Un,0 = Cn for all n > 0, and U0,0 = 0 = C0 − 1; so we have U0(x) =
C(x) − 1. Now, for any given n > 0 (and k = 1), from (2) we have

x
n
Un,1 = x

n
Un,0 + x

n−1

∑
i=0

x
i
Ui,0x

n−i−1
Un−i−1,1.

Adding these equations for all n > 0 we get

∞

∑
i=1

x
n
Un,1 =

∞

∑
i=1

x
n
Un,0 + x

∞

∑
i=1

x
n−1

n−1

∑
i=0

Ui,0Un−i−1,1.

Noticing that ∑n−1
i=0 x

i
Ui,0x

n−i−1
Un−i−1,1 is the (n− 1)th term in the convolution of

Un,0 and Un,1, that is, the coefficient of x
n−1

in U1(x)U0(x), we obtain that U1(x) =
C(x)−1

1+x−xC(x) . But we know that F (x) = 1
1−x2C2(x) , and that xC

2(x) − C(x) + 1 = 0,

so

U1(x) =
C(x) − 1

1 + x − xC(x) =
F (x)
x −

1
x =

F (x) − 1
x .

Theorem 5. For n ≥ 0, In,1 = CFn, where CF is the convolution of the Catalan

numbers with the Fine numbers (OIES sequence A000958).

Proof. Let I1(x) be the ordinary generating function for In,1 and I0(x) be the one

for In,0. Since I0,1 = I0,0 and I0(x) = C(x) we get, by a very similar argument as

Theorem 4,

I1(x) = I0(x) + xI0(x)U1(x) = C(x) + xC(x)F (x) − 1
x = C(x)F (x).

https://oeis.org/A000957
https://oeis.org/A000958

INTEGERS: 24 (2024) 15

Theorem 6. Let Uk(x) represent the ordinary generating function for Uk,1, and

define Uk−1(x), Ik(x), and Ik−1(x) similarly. Then

Ik(x) = Ik−1(x) + Ckx
k
Ik−1(x)Uk(x) and (3)

Uk(x) = Uk−1(x) + Ckx
k
Uk−1(x)Uk(x). (4)

Proof. The idea of the proof is identical to Theorem 5, except for a given k we

are only able to use recurrence relations for n ≥ k, otherwise the convolution sum

becomes meaningless. This means that we are never adding the coefficients rep-

resenting degrees smaller than k for both Ik(x) and Ik−1(x) in Equation (3) and

conversely for U in Equation (4). But this is not an issue, since for n < k any

ascending parking preference is (k − 1)-Naples (and thus also k-Naples). so the

coefficients are the same and adding them on both sides of the equation do not

change the result, so we can use the exact same reasoning as for Theorem 4.

For k ≥ 2, the generating functions become increasingly cumbersome to work

with towards finding a closed formula. Using our bijection between k-Naples park-

ing functions and Dyck paths, we can obtain a closed formula for the number of

descending k-Naples parking functions and descending strictly k-Naples parking

functions.

Theorem 7. The total number of descending k-Naples parking functions of length

n is

(2n − 1
n) − (2n − 1

n + k + 1)

and the number of descending strictly k-Naples parking functions of length n is

k + 1
n (2n

n + k + 1).

Proof. We first seek to compute the number of descending k-Naples parking func-

tions of length n. Using the bijective correspondence of Proposition 2, these corre-

spond to the lattice paths from (0, 0) to (2n, 0) with last step Down that never go

below the line y = −k. We can first compute the number of lattice paths from (0, 0)
to (2n − 1, 1) that never go below the line y = −k. Using a reflection with respect

to the line y = −k − 1, we obtain that the number of lattice paths from (0, 0) to

(2n − 1, 1) minus the number of lattice paths from (0, 0) to (2n − 1,−2k − 3) is

exactly the desired result.

To obtain the number of descending strictly k-Naples parking functions we sub-

tract the the total number of (k − 1)-Naples parking functions, which is

((2n − 1
n) − (2n − 1

n + k + 1)) − ((2n − 1
n) − (2n − 1

n + k)) .

Simplifying this expression yields our desired result.

INTEGERS: 24 (2024) 16

5. Other Bijections

In the previous sections, we found a bijection between ascending and descending

k-Naples parking functions of length n and subsets of Dyck paths of length n + k.

Considering there are well-known bijections between Dyck paths, full binary trees,

triangulations of an (n + 2)-gon, and non-crossing partitions of [n] (see [8], for

example), we describe which subsets of these objects are in bijection with descend-

ing strictly k-Naples parking functions. Since these correspondences follow directly

from the bijections between descending parking functions and the various Cata-

lan objects, we omit these proofs and provide an illustration in Figure 5 for the

descending strictly 2-Naples parking function (6, 6, 6, 5, 5, 2, 1).

1

2

34

5

6

7

8 9

10

Figure 5: The Catalan objects corresponding to the descending strictly 2-Naples
parking function (6, 6, 6, 5, 5, 2, 1).

Proposition 5. Descending strictly k-Naples parking functions are in bijection with

binary trees that have n+k nodes and satisfy the properties that the root has at least

k − 1 left children in a row, has a right child, and this right child has at least k left

children in a row.

Definition 4. An r-in-s dissection is a dissection of an s-gon into an r-gon and

(s − r) triangles.

Definition 5. An r-rooted non-crossing set partition is a non-crossing set partition

where one of the parts, the root, has size r.

Proposition 6. Descending strictly k-Naples parking functions of length n are

in bijection with (2k + 2)-in-(n + k + 1) dissections, up to rotation, but with a

distinguished edge on the (2k + 2)-gon.

Proposition 7. Descending strictly k-Naples parking functions of length n are in

bijection with (2k + 2)-rooted non-crossing partitions of [n + k + 1], where 1 is in

the root.

INTEGERS: 24 (2024) 17

6. Future Work

As mentioned previously, all rearrangements of parking functions are still parking

functions. Using this fact, it is possible to find simple labeling rules on Dyck paths

and trees that correspond to every parking function [9]. One area of future research

is to explore a way of describing which rearrangements of descending k-Naples

parking functions are still k-Naples parking functions based on a labeling of the

objects with which they are in bijection.

4

1

6

10

9

7

8

2

3

5

Figure 6: Labeling binary trees for k = 1.

When k = 1, we noticed some patterns when labeling trees that correspond to a

1-Naples parking function as illustrated in Figure 6. Note that in these labelings,

the root is unlabeled as it does not correspond to a car, and a node must have a lower

labeling than its right child. It can be observed that if a direct right descendent of

the root does not have a left child, then it must have a higher labeling than its right

child. Lastly, we consider the final direct right descendent in the section without

a left child. It must have a higher label than its right child, so we consider the

right child that is connected to the original node, depicted in Figure 6 by a dotted

line. If the grandchild has a smaller label than the original, there is no problem

with the rearrangement. Otherwise, the process must begin again. This is a rather

convoluted process, and neither of the rules follow in a satisfying way once k > 1.

A similar direction is to find what labeling conventions correspond to ascending

k-Naples parking functions using our other bijections. We have seen the result

for both Dyck paths and binary trees, but we have not studied the condition on

dissections or rooted non-crossing partitions. Perhaps one of these settings could

better help us understand rearrangements.

Lastly, there are many objects counted by the Catalan numbers and their convo-

lutions that we have not discussed here. Finding and understanding more bijections

could help us better understand the structure of k-Naples parking functions, and

some objects may be better suited for describing rearrangements. One could also

look for bijections for ascending strictly k-Naples parking functions, ascending or

descending parking preferences that are not k-Naples parking functions, or descend-

INTEGERS: 24 (2024) 18

ing k-Naples parking functions whose ascending rearrangements are not k-Naples

parking functions.

Acknowledgements. Part of this research was performed with support from the

Institute for Pure and Applied Mathematics (IPAM), which is supported by the

National Science Foundation (Grant No. DMS-1440415). Pamela E. Harris was

supported through a Karen EDGE Fellowship. Andrés R. Vindas-Meléndez was par-

tially supported by the National Science Foundation under Awards DGE-1247392,

KY-WV LSAMP Bridge to Doctorate HRD-2004710, and DMS-2102921.

References

[1] A. Baumgardner,The Naples Parking Function, Honors Contract-Graph Theory, Florida Gulf
Coast University, 2019.

[2] J. Carlson, A. Christensen, P. E. Harris, Z. Jones, and A. Ramos Rodriguez, Parking functions:
choose your own adventure, College Math. J. 52 (4) (2021), 254-264.

[3] A. Christensen, P. E. Harris, Z. Jones, M. Loving, A. Ramos Rodŕıguez, J. Rennie, and
G. Rojas Kirby, A generalization of parking functions allowing backward movement, Electron.
J. Combin. 27 (1) (2020), P1.33.

[4] L. Colmenarejo, P. E. Harris, Z. Jones, C. Keller, A. Ramos Rodŕıguez, E. Sukarto, and
A. R. Vindas-Meléndez, Counting k-Naples parking functions through permutations and the
k-Naples area statistic, Enumer. Comb. Appl. 1 (2) (2021), #S2R11.

[5] E. Deutsch and L. Shapiro, A survey of the Fine numbers Selected papers in honor of Helge
Tverberg, Discrete Math. 241 (1-3) (2001), 241-265.

[6] A. G. Konheim and B. Weiss, An Occupancy Discipline and Applications, SIAM J. Appl.
Math. 14 (6) (1966), 1266-1274.

[7] R. Pyke, The supremum and infimum of the Poisson process, J Ann. Math. Statist. 30 (2)
(1959), 568-576.

[8] R. P. Stanley, Catalan numbers, Cambridge University Press, New York, 2015.

[9] C. H. Yan, Parking functions, in Handbook of enumerative combinatorics, CRC Press, Boca
Raton, FL, 2015.

	Introduction
	k-Naples Parking Functions and Their Rearrangements
	Dyck Paths
	Enumeration of Monotonic k-Naples Parking Functions
	Other Bijections
	Future Work

