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Abstract

This paper aims to introduce novel series representations for the Riemann Zeta
function, along with its associated functions like the Dirichlet eta (alternating zeta)
function and the Dirichlet lambda function. These series representations involve an
independent parameter and are derived through generalized series incorporating psi
functions. Furthermore, we present even more generalized series representations,
encompassing the aforementioned ones as specific instances.

1. Introduction and Preliminaries

The well-known Riemann Zeta function is defined by (see, for example, [31, p. 164,

Equation (1)])

ζ(t) =


∑
n>1

1
nt = λ(t)

1−2−t (<(t) > 1)

η(t)
1−21−t (<(t) > 0; t 6= 1).

Here η (t) is the Dirichlet eta (or alternating) function given by

η (t) :=
∑
n>1

(−1)
n+1

nt
=
(
1− 21−t

)
ζ (t) = Φ (−1, t, 1) , (1)
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where Φ (·, ·, ·) represents the Hurwitz–Lerch Zeta function. λ(t) denotes the Dirich-

let lambda function defined by

λ (t) :=
∑
n>1

1

(2n− 1)
t =

(
1− 2−t

)
ζ (t) =

ζ (t) + η (t)

2
, (2)

whose rightmost expression signifies termwise arithmetic mean. Among a variety of

identities about these three functions, we recall their integral representations (see,

for example, [31, Section 2.3]):

ζ (t) =
1

Γ (t)

∞∫
0

zt−1

ez − 1
dz (< (t) > 1),

Γ (t) being the Gamma function,

η (t) =
1

Γ (t)

∞∫
0

zt−1

ez + 1
dz (< (t) > 1),

and

λ (t) =
1

Γ (t)

∞∫
0

ez zt−1

e2z − 1
dz (< (t) > 1).

For more integral representations for the Riemann zeta function, one can consult [2],

[5], [8], [9], [10, p.32-p.34], [12], [13], [14], [16], [17], [19], [23], [31, Section 2.3], [32],

and [37].

Since Euler solved the Basel Problem

ζ(2) =
∑
n>1

1

n2
=
π2

6

in 1768 (see [17]), a number of intriguing and ingenious proofs for the Basel Problem

have been published (see, for example, [2], [9], [12], [15], [20], [21], [22], [23], [24],

[25], [26], [28], [33], [34], [35], [36], and [37]). In 1978, Apéry [6] accomplished

a significant breakthrough by proving the irrationality of ζ(3). From that point

forward, the constant ζ(3) has been referred to as the Apery constant. His proof

relied on an expediently converging series for ζ(3):

ζ (3) =
5

2

∑
n>1

(−1)
n+1

n3
(
2n
n

) .
Subsequently, a multitude of series representations for ζ(n) (n ∈ Z>2) have been

introduced in the literature (see, for example, [3], [5], [7], [9], [11], [12], [14], [19],

and [27]). Here and elsewhere, let Z be the set of integers, and Z>` (or, Z6`) denote
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the set of all integers that are greater than or equal to (or, less than or equal to)

some integer `. Also let N := Z>1. In this paper, we aim to provide new series

representations for the Riemann zeta, Dirichlet eta and Dirichlet lambda functions.

To do this, the subsequent definitions and notations are recalled. The generalized

harmonic numbers H
(t)
n (b) of order t are defined by

H(t)
n (b) :=

n∑
j=1

1

(j + b)t
(t ∈ C, b ∈ C \ Z6−1, n ∈ N) ,

where H
(t)
n := H

(t)
n (0) are the harmonic numbers of order t. Here and in the

following, let C denote the set of complex numbers. The harmonic numbers Hn :=

H
(1)
n are given by

Hn =

n∑
j=1

1

j
= γ + ψ (n+ 1) (n ∈ N) and H0 := 0,

where γ is the Euler-Mascheroni constant (see, for example, [31, Section 1.2]) and

ψ (b) denotes the digamma (or psi) function defined by

ψ (b) :=
d

db
(log Γ (b)) =

Γ′ (b)

Γ (b)
(b ∈ C \ Z60) .

The following properties for the psi function, among numerous others, are recalled:

ψ(b+ 1) = ψ(b) +
1

b
, (3)

ψ(b)− ψ(1− b) = −π cot(πb) (b ∈ C\Z),

and

ψ
(
b+ 1

2

)
= 2ψ(2b)− ψ(b)− 2 log 2

(
b, b+ 1

2 ∈ C \ Z60

)
.

The polygamma function ψ(k)(z) is defined by

ψ(k)(z) :=
dk

dzk
{ψ(z)} = (−1)

k+1
k!

∞∑
r=0

1

(r + z)
k+1

= (−1)
k+1

k! ζ(k + 1, z), (4)

(k ∈ N; z ∈ C \ Z60) ,

where ζ(s, z) is the generalized (or Hurwitz ) zeta function defined by

ζ(s, z) =

∞∑
m=0

1

(m+ z)s
(<(s) > 1, z ∈ C \ Z60) .

The polygamma function ψ(k)(z) has the recurrence:

ψ(k)(z + 1) = ψ(k)(z) +
(−1)

k
k!

zk+1
. (5)
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The alternating, or skew, harmonic numbers A
(t)
n of order t are defined by

A(t)
n :=

n∑
j=1

(−1)j+1

jt
(t ∈ C, n ∈ N)

and An := A
(1)
n . The alternating harmonic numbers and the harmonic numbers

have the following relation:

A(t)
n = H(t)

n − 21−tH
(t)
[n/2].

The symbol [x] indicates the greatest integer less than or equal to an x ∈ R. Else-

where in this context, let R denote the set of real numbers. The generalized alter-

nating harmonic numbers A
(t)
n (b) are defined by

A(t)
n (b) :=

n∑
j=1

(−1)j+1

(j + b)t
(t ∈ C, b ∈ C \ Z6−1, n ∈ N).

The Hurwitz–Lerch Zeta function Φ(z, s, a) is defined by (see, for example, [31,

Section 2.5])

Φ(z, s, a) :=

∞∑
n=0

zn

(n+ a)s

(a ∈ C \ Z60; s ∈ C when |z| < 1; <(s) > 1 when |z| = 1) ,

(6)

which satisfies the obvious functional relation:

Φ(z, s, a) = zn Φ(z, s, n+ a) +

n−1∑
k=0

zk

(k + a)s
(n ∈ N; a ∈ C \ Z60) .

Clearly

ζ(s) = Φ(1, s, 1) and ζ(s, a) = Φ(1, s, a).

The function b(z), which incorporates the digamma function, is defined by (cf.

[10, p. 20])

b(z) :=
1

2

{
ψ

(
z + 1

2

)
− ψ

(z
2

)}
and has a number of useful properties regarding its integral representation given in

(see, for instance, [10, p. 20], [13]). Some examples are

b(z) =

∫ 1

0

tz−1

1 + t
dt (<(z) > 0),

b

(
z

p

)
= p

∫ 1

0

tz−1

1 + tp
dt (<(z) > 0, p ∈ R>0) , (7)
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∫ 1

0

tz

(1 + t)2
dt = zb(z)− 1

2
(<(z) > −1) ,

and ∫ 1

0

tz

(1 + tp)
2 dt =

z + 1− p
p2

b

(
z + 1− p

p

)
− 1

2p
(<(z) > −1, p ∈ R>0) .

Here R>0 := {x ∈ R : x > 0}.
The polylogarithm function Lit(z) of order t is defined by

Lit(z) =

∞∑
m=1

zm

mt
=

z∫
0

Lit−1(t)

t
dt (|z| 6 1; t ∈ Z>2) .

In particular, the dilogarithm function Li2(z) is given by

Li2(z) =

∞∑
m=1

zm

m2
= −

z∫
0

log(1− t)
t

dt (|z| 6 1) .

2. Main Results

In pursuit of deriving a family of new series representations for the Riemann Zeta

function ζ(t), the Dirichlet eta (alternating) function η (t), and the Dirichlet lambda

function λ (t), which serves as the primary focus of this article, we initiate our

investigation with the following theorem.

Theorem 1. Let q, t ∈ N and −1 6 a < 1. Then the following identity holds:

1

2q

∑
n>1

1

nt

{
ψ
(
n+a+1+q

2q

)
− ψ

(
n+a+1

2q

)}
+

1

2q

∑
n>1

1

nt

{
ψ
(
n−a−1+2q

2q

)
− ψ

(
n−a−1+q

2q

)} (8)

=
(−1)

t

qt

∑
n>1

2n+ q

(n+ a+ 1) (n− a− 1 + q)
A

(t)

[n+q−1
q ]

(
−n+ q

q

)
.

In particular, for a = −1, we have a new representation of the Riemann zeta func-

tion: for q ∈ N,

ζ (t+ 1) =
∑
n>1

2n+ q

n (n+ q)

[n+q−1
q ]∑
j=1

(−1)
j+1

(n+ q − qj)t

=
(−1)

t

qt

∑
n>1

2n+ q

n (n+ q)
A

(t)

[n+q−1
q ]

(
−n+ q

q

)
.

(9)
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Proof. Let q, t ∈ N and −1 6 a < 1 and let

Λ (a, q, t) :=

1∫
0

xa Lit (x)

1 + xq
dx+

1∫
0

xq−a−2 Lit (x)

1 + xq
dx. (10)

Utilizing the definition of the polylogarithm function, upon interchanging the order

of summation and integral, which is verifiable under the constraints, we express

Λ (a, q, t) as

Λ (a, q, t) =

1∫
0

xa

1 + xq

∑
n>1

xn

nt
dx+

1∫
0

xq−a−2

1 + xq

∑
n>1

xn

nt
dx

=
∑
n>1

1

nt

1∫
0

xn+a

1 + xq
dx+

∑
n>1

1

nt

1∫
0

xn+q−a−2

1 + xq
dx.

(11)

The integrals in the right-most side of Equation (11) are associated with Equation

(7) to give

Λ (a, q, t) =
1

2q

∑
n>1

1

nt


ψ
(
n+a+1+q

2q

)
− ψ

(
n+a+1

2q

)
+ ψ

(
n−a−1+2q

2q

)
− ψ

(
n−a−1+q

2q

)
 . (12)

By using a series manipulation of double series, we find that, for 0 < x < 1,

xa Lit (x)

1 + xq
= xa

∑
n>1

xn

nt

∑
r>0

(−1)
r
xqr

=
∑
n>1

xn+a
[n+q−1

q ]∑
j=1

(−1)
j+1

(n+ q − qj)t

=
(−1)

t

qt

∑
n>1

xn+a A
(t)

[n+q−1
q ]

(
−n+ q

q

)
.

(13)

Integrating both sides of Equation (13) over x ∈ (0, 1) and interchanging the order

of integral and summation, which is guaranteed under the restrictions, we get

1∫
0

xa Lit (x)

1 + xq
dx =

∑
n>1

1

n+ a+ 1

[n+q−1
q ]∑
j=1

(−1)
j+1

(n+ q − qj)t
. (14)

Similarly

1∫
0

xq−a−2 Lit (x)

1 + xq
dx =

∑
n>1

1

n+ q − a− 1

[n+q−1
q ]∑
j=1

(−1)
j+1

(n+ q − qj)t
. (15)
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Putting Equation (14) and Equation (15) in Equation (10) gives

Λ (a, q, t) =
∑
n>1

2n+ q

(n+ a+ 1) (n− a− 1 + q)

[n+q−1
q ]∑
j=1

(−1)
j+1

(n+ q − qj)t

=
(−1)

t

qt

∑
n>1

2n+ q

(n+ a+ 1) (n− a− 1 + q)
A

(t)

[n+q−1
q ]

(
−n+ q

q

)
.

(16)

Finally, matching Equation (12) and Equation (16) provides the desired identity

Equation (8).

In particular, setting a = −1 in (8) offers

1

2q

∑
n≥1

1

nt

{
ψ

(
n+ q

2q

)
− ψ

(
n

2q

)}

+
1

2q

∑
n≥1

1

nt

{
ψ

(
n

2q
+ 1

)
− ψ

(
n+ q

2q

)}

=
(−1)

t

qt

∑
n≥1

2n+ q

n (n+ q)
A

(t)

[n+q−1
q ]

(
−n+ q

q

)
,

which, upon using Equation (3), leads to an alternative desired identity (9).

We see that Equation (9) provides a family of series representations for ζ (t+ 1)

which are distinct for each q ∈ N. There are many representations of the Riemann

zeta function; see, for example, [7], [8], and [11]. The representation (9) bears

resemblance to the Hasse series [14]:

ζ (t) =
1

t− 1

∑
n>0

∑
j>0

(−1)
j

(n+ 1) (j + 1)
t−1

(
n

j

)
(17)

as well as a prior finding by Ser [7]:

ζ (t) =
1

t− 1

∑
n>0

1

n+ 2

n∑
j=0

(−1)
j (n

j

)
(j + 1)

t . (18)

Indeed, Blagouchine [7] demonstrates the equivalence between Equation (17) and

Equation (18). The series in Equation (17) converges at a slower rate compared to

the series (9). Notably, within the representation (9), we encounter two intriguing

instances: the renowned Basel problem for ζ(2) when t = 1 and Apery’s constant

ζ(3) when t = 2. The Riemann zeta function ζ(2) has many different series repre-

sentations such as

ζ (2) = 3
∑
n>1

1

n2
(
2n
n

) , ζ (2) =
5

3

∑
n>1

(−1)
n (2n

n

)
24n (2n+ 1)

2 ,



INTEGERS: 24 (2024) 8

and the notable BBP type formula:

ζ (2) =
3

16

∑
n>0

1

22n

(
16

(6n+ 1)
2 −

24

(6n+ 2)
2

− 8

(6n+ 3)
2 −

6

(6n+ 4)
2 +

6

(6n+ 5)
2

)
.

In terms of a double series, Cloitre [36] gives

ζ (2) =
∑
n>1

∑
j>1

1

jn
(
n+j
j

) .
Afanasyev and Solovyeva [1] also obtain some interesting series related to the ζ(2)

function.

From Equation (9) with t = 1, q = 2 we have

ζ (2) =
4

3
+

3

8
− 16

45
− 5

48
+

52

175
+

35

288
− 1216

6615
− 21

30
+

1052

6237
· · · .

Apery’s constant ζ(3), when the value of t in Equation (9) is 2, provides a series

representation for each q ∈ N. For further series representations for ζ(3), one

can consult [8], [11], [18], and [19]. Recently, Amderberhan, Moll, and Straub [5]

discovered the pleasing identity:

ζ (3) =
24

5

∞∫
1

1∫
0

1∫
0

dz dy dx

x (x+ y) (x+ y + z)

and the equivalent double sum:

ζ (3) =
24

13

∑
n>1

∑
j>n

(−1)
n+1

n2j2j
.

Srivastava et al. [32] evaluated the integral:

π/w∫
0

xp−1 cotx dx (p, w ∈ Z>2)

in two different ways, one involving the generalized Clausen function, to obtain

ζ (3) =
4 ζ (2)

3

log 2 + 2
∑
n>0

ζ (2n)

(2n+ 3) 4n

 .
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Setting t + 1 = 2p (p ∈ N) in Equation (9) when q = 1 and employing Euler’s

evaluation:

ζ (2t) =
(−1)

1+t
22t−1π2tB2t

(2t)!
(t ∈ N),

Bt being the Bernoulli numbers (see, for instance, [31, Section 1.7]), gives

∑
n>1

(−1)
n+1

(2n+ 1)

n (n+ 1)
A(2p−1)
n =

(−1)
p

22p−1 π2pB2p

(2p)!
(p ∈ N).

Setting q = 1 in Equation (9) provides another interesting result:

ζ (t+ 1) =
∑
n>1

(−1)
n+1

(2n+ 1)

n (n+ 1)

n∑
j=1

(−1)
j+1

jt

= η (t)
∑
n>1

(−1)
n+1

(2n+ 1)

n (n+ 1)
+

1

2t

∑
n>1

2n+ 1

n (n+ 1)

{
ζ

(
t,
n+ 1

2

)
− ζ

(
t,
n+ 2

2

)}
,

which, upon using the identity

∑
n>1

(−1)
n+1

(2n+ 1)

n (n+ 1)
= 1,

yields

ζ (t+ 1)− η (t) =
1

2t

∑
n>1

2n+ 1

n (n+ 1)

{
ζ

(
t,
n+ 1

2

)
− ζ

(
t,
n+ 2

2

)}
. (19)

Specific values of the parameter a in Equation (8) will produce a wide variety of

sums of psi function identities. The next corollary highlights the case of a = −1/2.

Corollary 1. Let q, t ∈ N. Then

1

2q

∑
n>1

1

nt

{
ψ

(
n+ 1/2 + q

2q

)
− ψ

(
n+ 1/2

2q

)}

+
1

2q

∑
n>1

1

nt

{
ψ

(
n− 1/2 + 2q

2q

)
− ψ

(
n− 1/2 + q

2q

)}

=
∑
n>1

2n+ q

(n+ 1/2) (n− 1/2 + q)

[n+q−1
q ]∑
j=1

(−1)
j+1

(n+ q − qj)t
.

(20)
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The case q = 1 of Equation (20) gives∑
n>1

1

nt

{
ψ

(
n

2
− 1

4

)
− ψ

(
n

2
+

1

4

)}

= 4
∑
n>1

(−1)
n+1

A
(t)
n

2n+ 1
− 4

∑
n>1

1

nt (2n− 1)
.

(21)

Here, ∑
n>1

1

nt (2n− 1)
= 2t log 2−

t−1∑
j=1

2t−1−j ζ(j + 1) (t ∈ N), (22)

and ∑
n>1

(−1)
n+1

A
(t)
n

2n+ 1
= −π

2
η (t)− π2t−2β (t) i

− 2t−1

t!

t∑
j=0

j!

(
t

j

)
πt−j Bt−j β (j + 1) it+j ,

(23)

where t is an odd positive integer, i =
√
−1, and β (t) is the Dirichlet beta function

defined by

β (t) :=
∑
n>1

(−1)n+1

(2n− 1)
t .

The case t = 5 of Equation (21), with the aid of Equation (22) and Equation (23),

provides ∑
n>1

1

n5

{
ψ

(
n

2
− 1

4

)
− ψ

(
n

2
+

1

4

)}
= 16β (6)− 2Gζ (4)− 8 ζ (2)β (4)− 15

64
πζ (5) ,

where G is the Catalan constant defined by

G :=
∑
k>1

(−1)k+1

(2k − 1)2
= β (2) ≈ 0.915 965 594 · · · .

Proof. For Equation (21), we used Equation (3). Identity (22) can be given as a

particular case of the general identity in Equation (3.3) in [4] with the help of special

values of the psi function and Equation (4). For Equation (23), see [29].

The next theorem deals with series representation of the Dirichlet eta function.

Evidently, a ready-made representation of η (t+ 1) can be derived from Equations
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(1) and (9):

η (t+ 1) =
(
1− 2−t

)∑
n>1

2n+ q

n (n+ q)

[n+q−1
q ]∑
j=1

(−1)
j+1

(n+ q − qj)t
.

Theorem 2. Let q, t ∈ N and −1 6 a < 1. Then the following identity holds:

1

2q

∑
n>1

(−1)
n+1

nt

{
ψ

(
n+ a+ 1 + q

2q

)
− ψ

(
n+ a+ 1

2q

)}

+
1

2q

∑
n>1

(−1)
n+1

nt

{
ψ

(
n− a− 1 + 2q

2q

)
− ψ

(
n− a− 1 + q

2q

)}

=
∑
n>1

(−1)
n+1

(2n+ q)

(n+ a+ 1) (n− a− 1 + q)

[n+q−1
q ]∑
j=1

(−1)
(q+1)(j+1)

(n+ q − qj)t
.

(24)

In particular, setting a = −1 in Equation (24) offers a new series representation of

the Dirichlet eta function: for q ∈ N,

η (t+ 1) =
∑
n>1

(−1)
n+1

(2n+ q)

n (n+ q)

[n+q−1
q ]∑
j=1

(−1)
(q+1)(j+1)

(n+ q − qj)t
. (25)

Proof. The proof begins with the integrals:

Ω (a, q, t) :=

1∫
0

xa Lit (−x)

1 + xq
dx+

1∫
0

xq−a−2 Lit (−x)

1 + xq
dx. (26)

Then, a similar process of the proof of Theorem 1 verifies Equation (24). Setting a =

−1 in Equation (24), with the aid of Equation (3), establishes Equation (25).

The upcoming theorem addresses a new series representation of the Dirichlet

lambda function, and it is evident that a readily available representation of λ (t+ 1)

can be obtained from Equations (2) and (9):

λ (t+ 1) =
(
1− 2−1−t

)∑
n>1

2n+ q

n (n+ q)

[n+q−1
q ]∑
j=1

(−1)
j+1

(n+ q − qj)t
.
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Theorem 3. Let q, t ∈ N and −1 6 a < 1. Then the following identity holds:

1

2q

∑
n>1

1

(2n− 1)
t

{
ψ

(
2n+ a+ q

2q

)
− ψ

(
2n+ a

2q

)}

+
1

2q

∑
n>1

1

(2n− 1)
t

{
ψ

(
2n− a− 2 + 2q

2q

)
− ψ

(
2n− a− 2 + q

2q

)}

=
∑
n>1

2 (2n+ q)

(n+ a+ 1) (n− a− 1 + q)

[n+q−1
q ]∑
j=1

(−1)
j+1

(n+ q − qj)t

+
∑
n>1

2 (−1)
n+1

(2n+ q)

(n+ a+ 1) (n− a− 1 + q)

[n+q−1
q ]∑
j=1

(−1)
(q+1)(j+1)

(n+ q − qj)t
.

(27)

Specifically, setting a = −1 gives a new series representation of the Dirichlet lambda

function: for q ∈ N,

λ (t+ 1) =
∑
n>1

2 (2n+ q)

n (n+ q)

[n+q−1
q ]∑
j=1

(−1)
j+1

(n+ q − qj)t

+
∑
n>1

(−1)
n+1

2 (2n+ q)

n (n+ q)

[n+q−1
q ]∑
j=1

(−1)
(q+1)(j+1)

(n+ q − qj)t
.

(28)

Proof. The proof begins with the integrals:

Ψ (a, q, t) :=

1∫
0

xa {Lit (x)− Lit (−x)}
1 + xq

dx+

1∫
0

xq−a−2 {Lit (x)− Lit (−x)}
1 + xq

dx.

(29)

A similar process in the proof of Theorem 1 offers

Ψ (a, q, t) =
1

q

∑
n>1

1

(2n− 1)
t

{
Φ

(
−1, 1,

2n+ q

q

)
+ Φ

(
−1, 1,

2n+ q − a− 2

q

)}

=
1

2q

∑
n>1

1

(2n− 1)
t


ψ

(
2n− a− 2 + 2q

2q

)
− ψ

(
2n− a− 2 + q

2q

)
+ ψ

(
2n+ a+ q

2q

)
− ψ

(
2n+ a

2q

)
 .

(30)
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From Equations (8) and (24), we derive

Ψ (a, q, t) =
∑
n>1

2 (2n+ q)

(n+ a+ 1) (n− a− 1 + q)

[n+q−1
q ]∑
j=1

(−1)
j+1

(n+ q − qj)t

+
∑
n>1

2 (−1)
n+1

(2n+ q)

(n+ a+ 1) (n− a− 1 + q)

[n+q−1
q ]∑
j=1

(−1)
(q+1)(j+1)

(n+ q − qj)t
.

(31)

Finally, identifying Equations (30) and (31) justifies the desired Identity (27).

Putting a = −1 in Equation (27) gives Equation (28).

Remark 1. Replacing q by 2q in Equation (28) gives

λ (t+ 1) =
∑
n>1

8 (2n− 1 + q)

(2n− 1) (2n− 1 + 2q)

[n+q−1
q ]∑
j=1

(−1)
j+1

(2n− 1 + 2q − 2qj)
t

=
23−t (−1)

t

qt

∑
n>1

2 (2n− 1 + q)

(2n− 1) (2n− 1 + 2q)
A

(t)

[n+q−1
q ]

(
1− 2n− 2q

2q

)
.

3. General Version

By introducing a logarithmic term into the integrands of Equations (10), (26), and

(29), it becomes possible to extend the findings presented in Theorems 1, 2, and 3.

Theorem 4. Let q, t ∈ N and p be a nonnegative even integer. Then the following

identity holds:

ζ (p+ t+ 1) =
∑
n>1

np+1 + (n+ q)
p+1

{n (n+ q)}p+1

[n+q−1
q ]∑
j=1

(−1)
j+1

(n+ q − qj)t

=
(−1)

t

qt

∑
n>1

np+1 + (n+ q)
p+1

{n (n+ q)}p+1 A
(t)

[n+q−1
q ]

(
−n+ q

q

)
.

(32)

Proof. Differentiating both sides of Equations (11) and (12) with respect to the

parameter a, p-times, we have

∂p

∂ap
Λ (a, q, t) =

∑
n>1

1

nt

 1∫
0

xn+a logp (x)

1 + xq
dx+

1∫
0

xn+q−a−2 logp (x)

1 + xq
dx

 (33)
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and

∂p

∂ap
Λ (a, q, t) =

1

(2q)
p+1

∑
n>1

1

nt


ψ(p)

(
n+a+1+q

2q

)
− ψ(p)

(
n+a+1

2q

)
+ψ(p)

(
n−a−1+2q

2q

)
− ψ(p)

(
n−a−1+q

2q

)
 . (34)

As in the proof of Theorem 1, we get

1∫
0

xa logp (x) Lit (x)

1 + xq
dx =

∑
n>1

p!

(n+ a+ 1)
p+1

[n+q−1
q ]∑
j=1

(−1)
j+1

(n+ q − qj)t
(35)

and

1∫
0

xq−a−2 logp (x) Lit (x)

1 + xq
dx =

∑
n>1

p!

(n+ q − a− 1)
p+1

[n+q−1
q ]∑
j=1

(−1)
j+1

(n+ q − qj)t
.

(36)

Putting Equations (35) and (36) in Equation (33) gives

∂p

∂ap
Λ (a, q, t) = p!

∑
n>1

(n+ a+ 1)
p+1

+ (n+ q − a− 1)
p+1

((n+ a+ 1) (n− a− 1 + q))
p+1

[n+q−1
q ]∑
j=1

(−1)
j+1

(n+ q − qj)t

=
(−1)

t
p!

qt

∑
n>1

(n+ a+ 1)
p+1

+ (n+ q − a− 1)
p+1

((n+ a+ 1) (n− a− 1 + q))
p+1 A

(t)

[n+q−1
q ]

(
−n+ q

q

)
.

(37)

Then matching Equation (37) and Equation (34) provides

1

(2q)
p+1

∑
n>1

1

nt


ψ(p)

(
n+a+1+q

2q

)
− ψ(p)ψ

(
n+a+1

2q

)
+ψ(p)

(
n−a−1+2q

2q

)
− ψ(p)

(
n−a−1+q

2q

)
 (38)

=
(−1)

t
p!

qt

∑
n>1

(n+ a+ 1)
p+1

+ (n+ q − a− 1)
p+1

{(n+ a+ 1) (n− a− 1 + q)}p+1 A
(t)

[n+q−1
q ]

(
−n+ q

q

)
.

Setting a = −1 in Equation (38) offers

1

(2q)
p+1

∑
n>1

1

nt

{
ψ(p)

(
n+ 2q

2q

)
− ψ(p)

(
n

2q

)}

+
1

(2q)
p+1

∑
n>1

1

nt

{
ψ(p)

(
n

2q
+ 1

)
− ψ(p)

(
n+ q

2q

)}

=
(−1)

t
p!

qt

∑
n>1

(n+ a+ 1)
p+1

+ (n+ q − a− 1)
p+1

((n+ a+ 1) (n− a− 1 + q))
p+1 A

(t)

[n+q−1
q ]

(
−n+ q

q

)
,

which, upon using Recurrence (5), yields the desired Identity (32).
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Remark 2. The case p = 0 in Equation (32) leads to the result in Theorem 1.

Setting q = 1 in Equation (32) gives

ζ (p+ t+ 1)− η (t)

=
1

2t

∑
n>1

(
1

np+1
+

1

(n+ 1)
p+1

) {
ζ

(
t,
n+ 1

2

)
− ζ

(
t,
n+ 2

2

)}
.

(39)

The case p = 0 of Equation (39) gives Equation (19).

Furthermore, the theorem presented below encapsulates the generalized series

representations of those stated in Theorems 2 and 3.

Theorem 5. Let q, t ∈ N and p be a nonnegative even integer. Then the following

identities hold:

η (p+ t+ 1) =
∑
n>1

(−1)
n+1

(
np+1 + (n+ q)

p+1
)

{n (n+ q)}p+1

[n+q−1
q ]∑
j=1

(−1)
(q+1)(j+1)

(n+ q − qj)t
, (40)

and

λ (p+ t+ 1) =
∑
n>1

2
(
np+1 + (n+ q)

p+1
)

{n(n+ q)}p+1

[n+q−1
q ]∑
j=1

(−1)
j+1

(n+ q − qj)t

+
∑
n>1

2 (−1)
n+1

(
np+1 + (n+ q)

p+1
)

{n(n+ q)}p+1

[n+q−1
q ]∑
j=1

(−1)
(q+1)(j+1)

(n+ q − qj)t
.

(41)

Setting p = 0 in Equation (40) and Equation (41) leads to the identities in Theorems

2 and 3, respectively.

Proof. The proof is left as an exercise for the interested reader.

4. Concluding Remarks

We have introduced novel families of series representations for the Riemann zeta

function ζ (t) in Equation (9), along with its related functions: the Dirichlet eta (or

alternating zeta) function η (t) in Equation (25), and the Dirichlet lambda function

λ (t) in Equation (28). These series representations incorporate an independent pa-

rameter and have been derived from more generalized series involving psi functions.

Furthermore, we have presented expanded and more inclusive series representations

(32), (40), and (41) compared to the previously mentioned Equations (9), (25), and

(28).
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