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Abstract

We prove that congruences modulo p between polynomials in Zp[X] are equivalent to
deeper p-power congruences between power-sum functions of their roots. This result
generalizes to torsion-free Z(p)-algebras modulo divided-power ideals. Our approach
is combinatorial: we introduce a p-equivalence relation on partitions, and use it to
prove that certain linear combinations of power-sum functions are p-integral. We
also include a second proof, short and algebraic, suggested by an anonymous referee.
As a corollary we refine the Brauer-Nesbitt theorem for a single linear operator,
motivated by the study of Hecke modules of modular forms modulo p.

1. Introduction

1.1. The Basic Module-Theoretic Question

Let p be a prime. For a finite free Zp-moduleM with an action of a linear operator T ,

how much information does one need to know about the traces of Zp[T ] acting on M

to know the structure of the semisimplification of M ⊗ Fp as an Fp[T ]-module?

Certainly knowing tr(Tn|M) as an element of Zp for enough n is plenty, for

the following reason. The Brauer-Nesbitt theorem – or in this one-parameter case,

simply linear independence of characters (see Appendix) – tell us that these traces
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determine (M ⊗Qp)ss. Therefore they determine the multiset of eigenvalues of T

on M in characteristic zero, and hence in characteristic p. But this very precise

characteristic-zero information is more than we need: we merely want to understand

M modulo p.

On the other hand, knowing all the tr(Tn|M) modulo p is not enough to deter-

mine M ⊗ Fp. Indeed, if M has rank p and T acts on M as multiplication by a

scalar α in Zp, then for every n > 0 we have tr(Tn|M) = pαn ≡ 0 mod p, and we

cannot recover α modulo p from these trace data.

Thus knowing tr(Tn|M) in Zp is more than we need and knowing tr(Tn|M)

modulo p is less than we need. We can ask for some kind of in-between criterion

depending on tr(Tn|M) modulo powers of p. This is the purpose of the present text:

we precisely describe the exact depth of the p-adic congruence that the tr(Tn|M)

must satisfy in order to pin down M ⊗ Fp up to semisimplification, and nothing

more. In particular, we prove the following theorem.

Theorem A. Let M and N be two finite free Zp-modules of the same rank d, each

with an action of an operator T . Then M ss ' N ss as modules over Fp[T ] if and

only if for every n with 1 6 n 6 d we have

tr(Tn|M) ≡ tr(Tn|N) mod pn.

Here M and N are the Fp[T ]-modules M ⊗Fp and N ⊗Fp, respectively, and M ss

and N ss refer to their semisimplifications. We highlight a few observations.

• Since every prime except p is a Zp-unit, congruence modulo pn is the same

as congruence modulo p1+vp(n), where vp : Qp → Z is the p-adic valuation,

normalized so that vp(p) = 1.

• Theorem A completely resolves our example with T = α acting on M = Z⊕pp :

knowing the image of tr(T p|M) = pαp in Z/p2Z is tantamount to knowing

the image of αp in Z/pZ, which in turn determines the image of α in Z/pZ
uniquely. Yet this information is not enough to pin down α in Zp.

• The “only if” direction of Theorem A is trivial when all the eigenvalues of M

and N are in Zp. Indeed, M ss ' N ss implies that eigenvalues of M and N pair

by congruence modulo p. But given two elements of Zp that are congruent

modulo p, their (pk)th powers are congruent modulo pk+1 (see Lemma 25);

the deeper congruence claim follows. Thus the heart of Theorem A is the “if”

direction.

• Theorem A generalizes to valuation rings of p-adic fields that are not too

ramified (see Theorem 37).

The proof of Theorem A, combinatorial in nature, follows from the slightly more

general Theorem B, described in the next subsection.
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Remark 1. An anonymous referee of this document suggested a much simpler

proof of Theorem A than the one we present (see Section 3.4). We still believe

that our notion of p-equivalence for partitions – and in particular Proposition C

(the proof of which given here is due to Ira Gessel) – used in the proof of Theo-

rem B, as well as the observation in Proposition 3 (which we have not seen in the

literature), have something to offer, so we present them here. It is also possible to

prove Theorem A purely algebraically, drawing inspiration from the proof of the

characteristic-p refinement of the trace version of Brauer-Nesbitt theorem (see The-

orem 40(c)) plus some algebra. The dedicated reader may find this third proof in

our first Arxiv draft.

1.2. The Combinatorial Perspective

Viewing Theorem A as a combinatorial statement about deep congruences between

power-sum symmetric functions implying simple congruences between correspond-

ing elementary symmetric functions permits more generality. Let A be a torsion-free

commutative Z(p)-algebra. For the purposes of this introduction only, we also as-

sume that A is a domain. Let a ⊂ A be a divided-power ideal – see Section 2.2 for

details and discussion, but in short, we must have ap ∈ pa for any a ∈ a. For a monic

polynomial P ∈ A[X], write P for the image of P in (A/a)[X] and pn(P ) for the

nth power-sum symmetric function of the roots of P – see Notation in Section 3.2

for more and for the non-domain case. The following combinatorial theorem is a

generalization of Theorem A.

Theorem B. Let P,Q be monic polynomials in A[X]. Then P = Q in (A/a)[X]

if and only if pn(P ) ≡ pn(Q) mod na for 1 6 n 6 max{degP,degQ}.

In particular, here we do not require P and Q to be of the same degree; nor do we

require a to be prime (nor indeed A to be a domain).

The proof of Theorem B uses combinatorial theory of symmetric functions, specif-

ically, formulas that express elementary symmetric functions in terms of power-sum

functions and vice versa. Both directions of these formulas are sums indexed by

partitions. For the “if” direction, we break up the sum using a new equivalence

relation called p-equivalence on the space of partitions. The exact definition can

be found in Section 5.1 – but, for example, partitions (6, 2), (3, 3, 2), (6, 1, 1), and

(3, 3, 1, 1) are all 2-equivalent. The raison d’être of p-equivalence is the following

proposition.

Proposition C. Fix a partition λ of an integer n. Write Cλ for the set of partitions

of n that are p-equivalent to λ. Then the symmetric function

gλ :=
∑
µ∈Cλ

(−1)µ

zµ
pµ has coefficients in Z(p).

https://arxiv.org/abs/2207.07108v1
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Here (−1)µ is the sign in Sn of any permutation σ with cycle structure µ, and

n!/zµ is the size of the Sn-conjugacy class of such a σ (see Section 3.1). The

symmetric function pµ is the product of power-sum functions associated to the

parts of µ (see Section 3.2). For context, the elementary symmetric function en is

the sum of the gλ as λ runs through a set of representatives of the p-equivalence

classes (see Section 5.2 for details).

The elegant proof of Proposition C that we present in Section 5.3, which relies

on the p-integrality of the Artin-Hasse series, is due to Ira Gessel. We hope that

the p-equivalence relation may be of independent interest in the study of partitions.

1.3. A Generalization to Virtual Modules

The final result that we highlight in this introduction is a corollary of Theorem A.

Corollary 2. Let M1,M2, N1, N2 be free Zp-modules of finite rank, each with

an action of an operator T . Suppose we have fixed T -equivariant embeddings

ι1 : N1 ↪→M1 and ι2 : N2 ↪→M2 and consider the quotients

W1 := M1/ι1(N1), W2 := M2/ι2(N2).

Then W ss
1 'W ss

2 as Fp[T ]-modules if and only if for every n > 0 we have

vp
(

tr(Tn|M1)− tr(Tn|N1)− tr(Tn|M2) + tr(Tn|N2)
)
> 1 + vp(n).

The essential point is that we do not assume that there are embeddings Ni ↪→Mi

over Zp, but only after base change to Fp. Corollary 2 is the form of the result that

we use in [1] to study the Hecke module structure on certain quotients of spaces of

modular forms modulo p. This is the motivating application of the present work,

which we describe briefly below.

1.4. Motivating Application to Modular Forms

For N prime to p and k > 2, write Mk(Np,Zp) for the space of classical modular

forms of weight k and level Np, viewed via the q-expansion map as a finite rank free

Zp-submodule of ZpJqK. Let Mk(Np,Fp) denote the image of Mk(Np,Zp) in FpJqK.
For k > 4, multiplication by the Eisenstein series Ep−1 normalized to be in 1+pZpJqK
induces an embedding Mk−p+1(Np,Fp) ↪→Mk(Np,Fp); let

Wk(Np) := Mk(Np,Fp)/Mk−p+1(Np,Fp)

denote the quotient. In [1] we use Corollary 2 to prove that, for p > 5,

Wk(Np)ss[1] 'Wk+2(Np)ss (1)

as modules for the Hecke algebra generated by the action of Hecke operators Tm
for m prime to Np (this is the anemic or shallow Hecke algebra). The notation
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W [1] stands for the Hecke module given by the vector space W on which Tm acts

as mTm for all m prime to Np. We also refine (1) to account for the action of the

Atkin-Lehner involution at p – the main motivation for Theorem A.

1.5. Organization of this Paper

Sections 2 to 5 are devoted to the proof of Theorem B. In Section 2, we state

Theorem 9, the most general version of Theorem B, after a detailed discussion of

the divided-power property of an ideal. In Section 3 we collect and at times slightly

extend a number of well-known results about symmetric functions, p-valuations of

multinomial coefficients, and the p-integrality of the Artin-Hasse exponential series.

We include proofs, both for completeness and because we hope that the motivating

application will lure readers less familiar with combinatorics. In Sections 4 and 5

we prove the two directions of Theorem 9; in particular, Section 5 is the heart of

our main work here. In Section 6, we return to the module-theoretic Theorem A

and deduce it from Theorem 9. In the same section we also prove Corollary 2.

All rings and algebras are assumed to be commutative with unity.

2. Statement of the Main Theorem

2.1. A Bit of Symmetric Function Notation

For any ring B and monic polynomial P ∈ B[X] of degree d, let en(P ) be the

Xd−n-coefficient of P scaled by (−1)n. If B is a domain, then P determines d

roots α1, . . . , αd in some integral extension of B, and en(P ) is the nth elementary

symmetric function in the αi: namely,

en(P ) =
∑

16i1<i2<···<in6d

αi1 · · ·αin .

Write pn(P ) :=
∑d
i=1 α

n
i for the nth power-sum function of the roots of P . For a

general B, Newton’s identities [6, I.2.11′] express pn as an integer polynomial in

e1, . . . , ed, thus defining pn(P ), or see Section 3.2 below.

2.2. Divided-Power Ideals in Torsion-Free Z(p)-Algebras

Fix a torsion-free Z(p)-algebra3 A; in particular, A embeds into A[ 1p ] = A ⊗Z(p)
Q.

We say that an ideal a of A satisfies the divided-power property at some k > 1 if for

any a in a we have ak/k! in a as well. Since A is Z-torsion free and a Z(p)-algebra,

this last condition may be reformulated: indeed, we have

ak

k!
is in a if and only if ak is in k!a if and only if ak is in pvp(k!)a.

3Recall that Z(p) ⊆ Q is the subring of rationals that can be expressed as a
b

where p - b.
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An ideal a that satisfies the divided power property for all k > 1 will be called

a divided-power ideal. This concept plays a key role in the theory of crystalline

cohomology, where a satisfying the above condition exactly means that the maps

γk : a→ A given by γk(a) = ak

k! define a divided-power structure on a [2, Section 3].

In a torsion-free Z(p)-algebra, satisfying the divided-power property at p only is

equivalent to being a divided-power ideal, as the following proposition shows.

Proposition 3. For an ideal b in a ring B, the following are equivalent.

(a) For all n ∈ Z+ and all a ∈ b, we have an ∈ pvp(n!)b.

(b) For all a ∈ b we have ap ∈ pb.

Proof. That (a) implies (b) is immediate given that vp(p!) = 1. Suppose now that

(b) is satisfied. First we show that (a) is true for n = pk by induction on k. The

case k = 0 is trivial and k = 1 is exactly (b). Suppose now (a) is true for n = pk

for some k > 1. Note that

vp(p
k+1!) = pk + pk−1 + · · ·+ 1 = pvp(p

k!) + 1.

For any a ∈ b, there exists a b ∈ b so that ap
k

= pvp(p
k!)b. Therefore

ap
k+1

= (ap
k

)p =
(
pvp(p

k!)b
)p

= ppvp(p
k!)bp.

Since b ∈ b, by the (b) assumption we have bp ∈ pb. Therefore

ap
k+1

∈ ppvp(p
k!)+1b = pvp(p

k+1!)b,

as desired.

Now for general n > 1, write n in base p as n = nkp
k + · · · + n1p + n0, with ni

in {0, . . . , p− 1} for i = 0, . . . , k. Fix a ∈ b again. Since we have shown that for ev-

ery i we have ap
i ∈ pvp(pi!)b, we have anip

i ∈ pnivp(pi!)b, so that an ∈ p
∑k
i=0 nivp(p

i!)b.

The desired statement follows by observing that

k∑
i=0

nivp(p
i!) =

k∑
i=0

ni
pi − 1

p− 1
=
n−

∑k
i=0 ni

p− 1
= vp(n!),

where the last equality follows from a refinement of Legendre’s formula on valuations

of n! (for a convenient exposition of this refinement, see [7]).

Corollary 4. An ideal a of A is a divided-power ideal if and only if:

whenever a ∈ a we have ap ∈ pa.

In fact, it suffices to check the condition of Corollary 4 on generators.
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Proposition 5. Let S ⊆ A be a subset. Then the ideal a generated by S is a

divided-power ideal if and only if ap ∈ pa for every a ∈ S.

Proof. It suffices to show that for a1, a2 in S, and b1, b2 in A, if ap1 and ap2 are both

in pa, then so is (b1a1 + b2a2)p. We expand

(b1a1 + b2a2)p = bp1a
p
1 +

p−1∑
k=1

(
p

k

)
bk1a

k
1b
p−k
2 ap−k2 + bp2a

p
2.

The first and last terms are in pa by assumption, the middle terms since p |
(
p
k

)
.

Corollary 6. If a ⊂ A is a divided-power ideal, then so is ab for any ideal b ⊆ A.

Proof. For a ∈ a, b ∈ b we have (ab)p = apbp ∈ (pa)bp ⊆ p(ab). Now use

Proposition 5.

2.3. Divided-Power Ideals in p-Adic DVRs

Recall that vp : Qp → Z denotes the usual p-adic valuation, normalized so that

vp(p) = 1. Let O be the ring of integers in a finite extension of Qp, so that vp
extends uniquely to O. Then O is a torsion-free Z(p)-algebra and a complete DVR,

so we will refer to such an O as a p-adic DVR. Any results for p-adic DVRs below

also hold for localizations of rings of integers of number fields at prime ideals above p.

The latter are local torsion-free Z(p)-algebras whose completions are p-adic DVRs in

the sense above, with completion establishing a one-to-one correspondence of ideals

preserving the divided-power property.

Lemma 7. An ideal a of a p-adic DVR is a divided-power ideal if and only if

vp(a) > 1
p−1 .

Proof. Let a ∈ a be a generator, so that vp(a) = vp(a). By Proposition 5, the

ideal a is a divided-power ideal if and only if ap ∈ pa. In our p-adic DVR setting,

this happens if and only if

pvp(a) = vp(a
p) > vp(pa) = 1 + vp(a);

in other words, if and only if vp(a) > 1
p−1 .

Corollary 8. Let m be the maximal ideal of a p-adic DVR O. Let e be the ram-

ification degree of m over p. Then m is a divided-power ideal of O if and only

if e 6 p− 1. In particular, (p) is a divided-power ideal of Zp.

Proof. This follows immediately from Lemma 7 as vp(m) = 1
e in this setting.
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2.4. Statement of the Main Theorem

We are ready to state the fullest version of Theorem B.

Theorem 9. Let A be a torsion-free Z(p)-algebra and a a divided-power ideal, and

let P,Q be monic polynomials in A[X]. Then the following are equivalent:

(a) en(P ) ≡ en(Q) mod a for every n > 1;

(b) en(P ) ≡ en(Q) mod a for every n with 1 6 n 6 max{degP,degQ};
(c) pn(P ) ≡ pn(Q) mod na for every n > 1;

(d) pn(P ) ≡ pn(Q) mod na for every n with 1 6 n 6 max{degP,degQ}.

Remark 10. We do not require degP = degQ here. Note that the statement

degP = degQ is the same as the congruence pn(P ) ≡ pn(Q) mod na for n = 0.

Therefore, if we like, we may replace n > 1 with n > 0 in (c) and (d) at the price

of adding the condition degP = degQ in (a) and (b). In this case, we may add a

fifth equivalent statement to Theorem 9:

(e) P = Q in (A/a)[X].

Example 11. Let p = 2, A = Zp, and consider the polynomials P = X2 + X + 3

and Q = X4 + 3X3 + 5X2 + 2X + 6. From matching up coefficients (or from the

fact that Q = (X2 + 2X)P − (4X − 6)), it is clear that en(P ) ≡ en(Q) mod 2 for

every n > 1. See Table 1, where the last two columns illustrate Theorem 9:

v2
(
pn(Q)− pn(P )

)
> 1 + v2(n) for n > 1.

We now give a skeleton proof of Theorem 9. Technical details are postponed to

Sections 4 and 5.

Proof of Theorem 9. We clearly have (c) =⇒ (d) and (a) =⇒ (b). Moreover,

since en(P ) = 0 for n > degP we have (b) =⇒ (a) as well, so that (a) ⇐⇒ (b).

We show that (a) =⇒ (c) and (b) =⇒ (d) by proving the following in Section 4.

Proposition 12. Fix N > 1. If en(P ) ≡ en(Q) mod a for all 1 6 n 6 N ,

then pN (P ) ≡ pN (Q) mod Na.

We then show (c) =⇒ (a) and (d) =⇒ (b) by proving the following in Section 5.

Proposition 13. Fix N > 1. If pn(P ) ≡ pn(Q) mod na for all 1 6 n 6 N ,

then en(P ) ≡ en(Q) mod a for all 1 6 n 6 N .

Since we have shown that (a) ⇐⇒ (c) =⇒ (d) ⇐⇒ (b) ⇐⇒ (a), we have a

cycle and in particular deduce the equivalence of (c) and (d).
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n en(P ) en(Q) pn(P ) pn(Q) v2
(
pn(Q)− pn(P )

)
1 + v2(n)

0 1 1 2 4 2 ∞
1 −1 −3 −1 −3 1 1
2 3 5 −5 −1 2 2
3 0 −2 8 12 2 1
4 0 6 7 −49 3 3
5 0 0 -31 107 1 1
6 0 0 10 −94 3 2
7 0 0 83 −227 1 1
8 0 0 −113 1231 6 4
9 0 0 −136 −3012 2 1

10 0 0 475 3899 5 2
11 0 0 −67 2263 1 1
12 0 0 −1358 −27646 4 3
13 0 0 1559 81897 1 1
14 0 0 2515 −135381 3 2
15 0 0 −7192 38372 2 1
16 0 0 −353 563871 10 5

Table 1: Congruences between en, deep congruences between pn in Example 11.

The divided-power property of the ideal a is crucial to both directions of Theo-

rem 9. We illustrate this point by giving two counterexamples in the absence of this

property. In both Example 14 and Example 15 below, let O be the valuation ring

of the field Qp(α) where α = p
1
p . Then the maximal ideal m of O is not a divided-

power ideal (Corollary 8), having ramification degree p. In both cases, P and Q

have the same degree p, so statements (a) and (b) of Theorem 9 are equivalent to

the equality P = Q in Fp[X].

Example 14. Consider P = Xp−αXp−1 and Q = Xp. Then P and Q, and hence

their roots and their elementary symmetric functions are congruent modulo m. But

pp(P ) = αp = p has p-valuation 1, and is not congruent to pp(Q) = 0 modulo pm,

which has valuation 1 + 1
p . Thus statements (a) and (b) of Theorem 9 hold but (c)

and (d) do not.

Example 15. Consider P =
(
X − (α + p− 1)

)(
X + 1

)p−1
and Q = Xp. Then P

and Q are not congruent modulo m: indeed, the roots of P are units in O whereas

Q has only zero as a root with multiplicity. But we show that

pn(P ) ≡ pn(Q) ≡ 0 mod nm for 1 6 n 6 p.
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Indeed, for any n > 1,

pn(P ) =
(
α+ (p− 1)

)n
+ (p− 1)(−1)n

= αn +

n−1∑
i=1

(
n

i

)
αi(p− 1)n−i + (p− 1)n + (p− 1)(−1)n

= (terms divisible by α) + (p− 1)n + (p− 1)(−1)n.

(2)

Since

(p− 1)n + (p− 1)(−1)n ≡ (−1)n − (−1)n ≡ 0 mod p = αp,

and p = αp, we have pn(P ) ≡ 0 mod m.

If further n = p, then the summation term in (2) is divisible by pα = αp+1, and

the rest of the terms are αp + (p− 1)p + (p− 1)(−1)p. If p is odd, then

αp+ (p−1)p+ (p−1)(−1)p = p+ (p−1)p− (p−1) = (p−1)p− (−1) ≡ 0 mod p2.

Here the last congruence holds because p−1 ≡ −1 mod p, so that their pth powers

are congruent modulo p2 (see also Lemma 25 below). And if p = 2 then

p+ (p− 1)p + (p− 1)(−1)p = 2 + (−1)2 + (1)(−1)2 = 4.

In either case, pp(P ) is a sum of a term in mp+1 and a term in m2p, so pp(P ) ∈ pm,

as required. Thus statement (d) of Theorem 9 holds but (a) and (b) do not. One

can show analogously that (c) also does not hold, as vp
(
p2p(P )

)
= 1.

The relationships between the statements in Theorem 9 are not yet entirely clear.

Here are some questions that arise naturally, but that we do not address further

here as they are orthogonal to the main purpose of this paper:

• Is there a direct proof that (d) implies (c)? The divided-power property must

play a role, as Example 15 above satisfies (d) but not (c).

• Although (d) does not imply (a) or (b) without the divided-power assumption

(again, see Example 15 above), is it possible that (c) does?

The next three sections are devoted to the proof of Theorem 9.

3. Combinatorial Preliminaries

3.1. Partitions

A partition λ of an integer n > 0, denoted λ ` n, is a (finite or infinite) ordered tuple

(λ1, λ2, . . .) with λ1 > λ2 > · · · > 0 and
∑
i>1 λi = n. If the partition is infinite,
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only finitely many of the parts λi are nonzero. The number of nonzero parts of λ

is exactly the cardinality of {i > 1 : λi > 0}. There is a unique partition of 0,

namely ∅ ` 0, the empty partition. The weight |λ| of a partition λ = (λ1, λ2, . . .) is

the number being partitioned: |λ| :=
∑
i>1 λi. Write ra(λ) for the number of times

that a appears as a part in λ.

For λ ` n, let (−1)λ be the sign of a permutation in Sn with cycle structure λ.

In other words, if λ = (λ1, . . . , λk), then (−1)λ = (−1)
∑
i(λi−1). Additionally, set

zλ :=
∏
a>1

ara(λ)ra(λ)!,

the order of the centralizer in Sn of any permutation of cycle structure λ. Then n!/zλ
is the number of permutations of n with cycle structure λ. Accordingly, z∅ = 1.

For n > 0, let Pn be the set of partitions of n, and let P :=
⋃
n>0 Pn be the

set of all partitions, graded by weight. We can multiply two partitions as follows:

for λ ` n and µ ` m, let λµ be the partition of m+ n whose parts are the union of

the parts of λ and µ. This operation gives P the structure of a free abelian monoid

on the set {(n) : n ∈ N} of partitions consisting of a single part. In particular, for

any partition λ ` n and any k > 0, we may consider the partition λk ` kn.

Definition 16. Let p be a prime and λ := (λ1, λ2, . . .) a partition of n > 0. Define

the p-valuation of λ by vp(λ) := mini{vp(λi)}. Note that vp(λ) is the greatest

integer v with the property that we can express λ as a (pv)th power: λ = µp
v

,

where µ = (λ1/p
v, λ2/p

v, . . .). Of course vp(∅) =∞.

3.2. Ring of Symmetric Functions

Let Λd be the ring of symmetric polynomials in d variables x1, x2, . . . , xd with in-

teger coefficients: that is, Λd consists of the Sd-invariants of Z[x1, . . . , xd], where

the symmetric group Sd acts by permuting the variables. Then Λd is a ring graded

by degree: Λd =
⊕

n>0 Λnd , where Λnd ⊆ Λd are the homogeneous symmetric poly-

nomials in x1, . . . , xd of degree n. For any d > d′ we have a graded map Λd � Λd′

mapping xi to xi for i 6 d′ and sending xi with i > d′ to zero. This forms a

compatible system of graded rings, and we take the so-called graded inverse limit

to form the ring of symmetric functions: that is, Λn := lim←−d Λnd and Λ :=
⊕

n>0 Λn.

This somewhat fussy construction guarantees that every symmetric function in Λ

has finite degree. For any ring A, let ΛA := Λ⊗Z A.

We now recall the definitions of some special symmetric functions and some

general constructions.

Definition 17 (Elementary symmetric functions). For n > 0, let en,d ∈ Λnd be the

nth elementary symmetric polynomial :

en,d :=
∑

16i1<i2<···in6d

xi1 · · ·xin .
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Let en := lim←−d en,d ∈ Λn be the nth elementary symmetric function. In particular

e0 = e0,d = 1. One can check – for example, see [6, I.2.4] – that

Λ = Z[e1, e2, . . .]. (3)

Definition 18 (Power-sum symmetric functions). Similarly, for n > 0, let pn,d ∈ Λnd
be the nth power-sum polynomial :

pn,d :=

d∑
i=1

xni ∈ Λnd .

For n > 1 we also let pn := lim←−d pn,d ∈ Λn be the nth power-sum function. Note

that p0,d = d, so that these do not interpolate and p0 is not defined. One can check

that ΛQ = Q[p1, p2, . . .]; see, for example, [6, I.2.12].

We use the following standard notation. Given a family of symmetric functions

{fn}n>1 (for example, elementary or power-sum symmetric functions) and a parti-

tion λ = (λ1, λ2, . . . , λk), let fλ := fλ1
fλ2
· · · fλk . In other words, we view f as a

map (n) 7→ fn and extend it to a map of multiplicative monoids P → Λ. Note that

f∅ = 1. In particular, although p0 is undefined, we do have p∅ = e∅ = e0 = 1. We

can also use the notation fλ for any tuple λ, not necessarily a partition. One can

check that {eλ}λ`n is a Z-basis for Λn and {pλ}λ`n is a Q-basis for ΛnQ.

Building on the above, we introduce notation for a symmetric function evaluated

at a monic polynomial Q = Xd + a1X
d−1 + · · ·+ ad ∈ A[X]. For n > 0, denote by

en(Q) :=


1 if n = 0

(−1)nan if 1 6 n 6 d

0 if n > d.

More generally, for any symmetric function f , let f(Q) ∈ A be defined as follows:

first use (3) to write f as a polynomial in the en and let f(Q) be the result of

plugging en(Q) for en into that polynomial. If A is a domain, this is equivalent to

plugging in to f the roots of Q with multiplicity for the first degQ-many x’s, and

zeros for the rest. We extend this definition to p0, which is not a priori a symmetric

function, by letting p0(Q) := degQ. With this definition, the sequence {pn(Q)}n>0

satisfies an A-linear recurrence of order degQ, closely related to Newton’s identities

(see, for example, [6, I.2.11′]).

3.3. Combinatorial Lemmas

Here we collect standard facts relating generating functions of various symmetric

functions: see, for example, [6, I.2]. For a set of positive integers S ⊆ N, let

PS(t) :=
∑
s∈S

(−1)s−1
ps
s
ts
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be the weighted and signed power-sum generating function. Also set P(t) := PN(t).

On one hand, we can interpret the exponential of PS(t) as a weighted sum of power-

sum functions for partitions with parts restricted to S. The following proposition

is standard for S = N; this formulation we learned from Gessel.

Proposition 19. Let S ⊆ N be a set of positive integers. Then

expPS(t) =

∞∑
n=0

∑
λ`n

parts inS

(−1)λ
pλ
zλ
tn.

Proof. We have

expPS(t) = exp

(∑
s∈S

(−1)s−1
ps
s
ts

)
=
∏
s∈S

exp
(

(−1)s−1
ps
s
ts
)

=
∏
s∈S

∞∑
rs=0

1

rs!
(−1)rs(s−1)

prss
srs

tsrs

=
∑

(rs)∈NS
(−1)

∑
s rs(s−1)

∏
s p

rs
s∏

s rs!s
rs
t
∑
s srs

=
∑

λ has parts in S

(−1)λ
pλ
zλ
t|λ|.

Here the sum in the penultimate line is over tuples of nonnegative integers rs indexed

by elements of S only finitely many of which are nonzero, and in the last line such

a tuple is interpreted as a partition λ all of whose parts are in S, with part s

appearing rs times.

On the other hand, for S = N we can reinterpret expPS(t) as the generating

function for the elementary symmetric functions. Let

E(t) :=
∑
k>0

ekt
k =

∞∏
i=1

(1 + xit).

The remaining statements of this section are completely standard.

Proposition 20. We have E(t) = expP(t).

Proof. We show that log E(t) = P(t):

log E(t) := log

∞∏
i=1

(1 + xit) =

∞∑
i=1

log(1 + xit) =

∞∑
i=1

∞∑
n=1

(−1)n−1
(xit)

n

n

=

∞∑
n=1

(−1)n−1
tn

n

∞∑
i=1

xni =

∞∑
n=1

(−1)n−1
pn
n
tn = P(t).
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Proposition 20 allows us to express en as a Q-linear combination of the pλ for

λ ` n, and, conversely, pn as a Z-linear combination of eλ over λ ` n: see Corol-

lary 21 and Corollary 22.

Corollary 21 (Expressing en in terms of pλ). For all n > 0, we have

en =
∑
λ`n

(−1)λ
pλ
zλ
. (4)

Proof. Combining Proposition 20 with Proposition 19 for S = N yields

∑
λ

(−1)λ
pλ
zλ
t|λ| =

∞∑
n=0

ent
n.

The statement follows from considering the coefficients of tn on each side.

As examples of Corollary 21, e2 =
p21−p2

2 and e3 =
p31−3p1p2+2p3

6 .

Corollary 22 (Expressing pn in terms of eλ). For n > 1, we have

pn = (−1)n n
∑
λ`n

(−1)m

m

(
m

r1(λ), r2(λ), . . .

)
eλ, (5)

where m := r1(λ) + r2(λ) + . . . is the number of nonzero parts of the partition λ.

Proof. From Proposition 20 we have

∞∑
n=0

(−1)n−1
pn
n
tn = P(t) = log E(t) = log

(
1 +

∞∑
k=1

ekt
k

)

=

∞∑
m=1

(−1)m−1

m

( ∞∑
k=1

ekt
k

)m

=

∞∑
m=1

(−1)m−1

m

∑
16k1,...,km

ek1 · · · ekmtk1+···+km ,

where the last sum is over m-tuples (k1, . . . , km) of positive integers. We can inter-

pret such a tuple as a (badly ordered) partition λ of
∑
ki into m parts, with ra(λ)

of the kis equal to a and m =
∑
a ra(λ). Moreover, each such partition λ will arise

from exactly

(
m

r1(λ), r2(λ), . . .

)
such m-tuples. Equating coefficients of tn on each

side, we obtain, as desired,

pn = (−1)n−1 n
∑
m>1

∑
λ`n

with m parts

(−1)m−1

m

(
m

r1(λ), r2(λ), . . .

)
eλ.
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3.4. A Simple Proof of Theorem A

An anonymous referee of this paper suggested a simpler proof of Theorem A, which

builds on the above discussion of the generating functions P and E.

Alternate proof of Theorem A. Let M , N be free Zp-modules of rank d, each en-

dowed with an action of an operator T . Write pn(M) and en(M) for the nth

power-sum and elementary symmetric function of the eigenvalues of T on M , with

the corresponding generating functions

P(M, t) :=
∑
n>1

(−1)n−1
pn(M)

n
tn ∈ QpJtK and E(M, t) :=

∑
n>0

en(M)tn ∈ Zp[t].

We note that we still have P(M, t) = log E(M, t) as in Proposition 20, which enables

the following sequence of equivalent statements.

M ss ' N ss ⇐⇒ for all 1 6 n 6 d we have en(M) ≡ en(N) mod p

⇐⇒ E(M, t) ≡ E(N, t) mod pZp[t]
⇐⇒ E(M, t) = E(N, t)S(t) for some S(t) ∈ 1 + tpZpJtK
⇐⇒ log E(M, t) = logE(N, t) + logS(t)

⇐⇒ P(M, t) = P(N, t) +R(t) for some R(t) ∈ tpZpJtK
⇐⇒ for all n > 1 we have pn(M) ≡ pn(N) mod np

⇐⇒ for all n > 1 we have tr(Tn|M) ≡ tr(Tn|N) mod np.

Along the way we used the fact that log maps 1 + tpZpJtK onto tpZpJtK.

The argument generalizes to the setting of Theorem B, with Zp and p, respec-

tively, replaced by torsion-free Z(p)-algebra A and a divided-power ideal a (see

Section 2.2 for definitions), and the assumption rankM = rankN relaxed.

3.5. p-Valuation Lemmas

Here we collect a few lemmas about p-valuations. First, in light of the expression in

Corollary 22 and our end goal, we need a formula for the p-valuation of multinomial

coefficients. Let r1, . . . , rk be nonnegative integers, write m = r1 + · · · rk, and let p

be any prime. The following statement is due to Kummer for k = 2; see, for example

[7]. The generalization to any k is immediate through the formula(
m

r1, . . . , rk

)
=

(
m

r1

)(
r2 + · · ·+ rk

r2

)
· · ·
(
rk−1 + rk
rk−1

)
expressing multinomial coefficients in terms of binomial coefficients.
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Theorem 23 (Kummer). The multinomial coefficient
(

m
r1,...,rk

)
has p-valuation

equal to the sum of the carry digits when the addition r1 + · · ·+ rk is performed in

base p.

Corollary 24. For any i, we have vp(ri) > vp(m)− vp
((

m

r1, . . . rk

))
.

Proof. Any end zero of m base p not corresponding to an end zero of ri base p

contributes to a carry digit of the base-p computation r1 + · · ·+ rk = m. Therefore,

vp

((
m

r1,...rk

))
> vp(m)− vp(ri).

The second statement we need (Corollary 26 below) is a partition version of

the standard observation that the depth of the p-adic congruence of two integers

increases upon taking pth powers.

Recall that A is a torsion-free Z(p)-algebra and a ⊂ A is an ideal with a divided

power structure.

Lemma 25. Suppose x ≡ y mod a for some x, y ∈ A. Then

(a) for all m > 0 we have xp
m ≡ ypm mod pma; more generally

(b) for all n > 0 we have xn ≡ yn mod na.

Proof. Since A is a Z(p)-algebra, the ideal na is the same as the ideal pvp(n)a. Thus

it suffices to prove the first statement. For m = 1, write y = x+a with a ∈ a. Then

yp − xp = (x+ a)p − xp = ap +

p−1∑
i=1

(
p

i

)
xp−iai.

We show that each of the terms on the right-hand side is in pa. This is clear for

each term in the summation because for 0 < i < p we have both p |
(
p
i

)
and ai ∈ a.

Corollary 4 tells us that ap ∈ pa. To prove the statement for m > 1 we proceed by

induction using Corollary 6.

Corollary 26. Let P,Q ∈ A[X] be polynomials, and {fn}n>1 a family of symmetric

functions. If fn(P ) ≡ fn(Q) mod a for all n, then for every partition λ

fλ(P ) ≡ fλ(Q) (mod pvp(λ)a).

Proof. Let v = vp(λ). By the definition of p-valuation of a partition (Section 3.1)

there exists a partition µ so that λ = µp
v

. Therefore

fλ(P ) = fµpv (P ) = fµ(P )p
v

≡pva fµ(Q)p
v

= fµpv (Q) = fλ(Q),

where the middle congruence modulo pva holds by Lemma 25.
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3.6. Artin-Hasse Exponential Series

We briefly recall the Artin-Hasse exponential series

F (z) = exp

 ∞∑
j=0

zp
j

pj

 = 1 + z +
z2

2!
+
z3

3!
+ · · ·+ zp−1

(p− 1)!
+

( (p−1)!+1
p

)
zp

(p− 1)!
+ · · · ,

here viewed merely as a formal power series, a priori in QJzK. In Section 5.3 we

will make use of the fact that F (z) is actually p-integral (Corollary 29); here we

briefly review this well-known result. We follow the convenient expository notes [5]

of Jacob Lurie.

Proposition 27. We have F (z) =
∏
p-d

(
1− zd

)−µ(d)d .

Here µ is the Möbius function, the multiplicative arithmetic function taking

squarefree products of primes p1 . . . pk to (−1)k and other positive integers to 0. It

satisfies the property ∑
d|n

µ(d) =

{
1 if n = 1

0 otherwise.
(6)

Before giving the proof of Proposition 27, we need a lemma:

Lemma 28. For prime p we have
∑

d|n, p-d

µ(d) =

{
1 if n is a power of p

0 otherwise.

Proof. In general, if f(n) is a multiplicative arithmetic function, then the function

φ(n) :=
∑

d|n, p-d

f(n)

is also multiplicative. Indeed, say a divisor d of n is p-deprived if p - n. Then

assuming gcd(m,n) = 1, each p-deprived divisor of mn is uniquely a product of a

p-deprived divisor of m and a p-deprived divisor of n, which are, in turn, relatively

prime to each other. The fact that f is multiplicative then allows the factoriza-

tion φ(mn) = φ(m)φ(n).

Now for the claim. Since µ is multiplicative, it suffices to check the claim for n a

power of p and n relatively prime to p. In the former case the claim is immediate;

in the latter it follows from (6).

Proof of Proposition 27. We have

log
∏
p-d

(
1− zd

)−µ(d)d =
∑
p-d

µ(d)

d
log

1

1− zd
=

∑
p-d

µ(d)

d

∑
k>1

zdk

k

=
∑
n>1

zn

n

∑
d|n, p-d

µ(d) =
∑

n=pj , j>0

zn

n
,
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where the last equality follows from Lemma 28. The claim follows.

Corollary 29. The Artin-Hasse exponential series F (z) is in Z(p)JzK.

Proof. The coefficients of (1 − zd)±1/d in the expression in Proposition 27 are al-

gebraically generated by binomial coefficients
(
1/d
k

)
, all in Z[ 1d ]. Since all the d are

prime to p, the claim follows.

4. Proof of Proposition 12: en Congruent Implies pn Deeply Congruent

Here we prove Proposition 12. The proof uses the combinatorial expression from

Corollary 22 for pn in terms of eλ.

Proof of Proposition 12. Let P,Q ∈ A[X] be monic polynomials, fix N > 1, and

suppose that en(P ) ≡ en(Q) mod a for all n with 1 6 n 6 N . We seek to show that

pN (P )− pN (Q) is in Na.

From Corollary 22 we have

pN (P )−pN (Q) = (−1)N N
∑
m>1

∑
λ`N

with m parts

(−1)m

m

(
m

r1(λ), r2(λ), . . .

)(
eλ(P )−eλ(Q)

)
.

Corollary 26 for f = e tells us that our assumptions on the en imply that the

difference eλ(P )− eλ(Q) lies in pvp(λ)a for each relevant λ. Therefore it suffices to

show that for every λ ` N with m parts,

vp(N)− vp(m) + vp

((
m

r1(λ), r2(λ), . . .

))
+ vp(λ) > vp(N).

Equivalently, canceling vp(N) and using the definition of vp(λ), we need to show

that for every i,

−vp(m) + vp

((
m

r1(λ), r2(λ), . . .

))
+ vp

(
ri(λ)

)
> 0.

But this is exactly Corollary 24.

Incidentally, it is not a priori obvious that n
m

(
m

r1,r2,...

)
is integral for any sequence

r1, r2, . . . of nonnegative integers almost all zero, with m =
∑
ri and n =

∑
iri.

But this integrality does follow from Corollary 24.

5. Proof of Proposition 13: pn Deeply Congruent Implies en Congruent

The aim of this section is to give a combinatorial proof of the “if” direction of

Theorem 9: we show that if the power sums of roots satisfy deep congruences, then

elementary symmetric functions of the roots are (simply) congruent.
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5.1. p-Equivalent Partitions

The following definitions introduce an equivalence relation on the set Pn of parti-

tions of an integer n > 0.

Definition 30. If λ and µ are in Pn, we say that µ is a p-splitting of λ if λ contains

an instance of the part pu for some u > 1, and µ is obtained from λ by replacing pu

with p copies of part u. In other words, for every u ∈ N, the partition (u)p is a

p-splitting of (pu), and if µ is a p-splitting of λ, then µν is a p-splitting of λν.

Definition 31. Let p-equivalence, written ∼p, be the equivalence relation generated

by the p-splitting relation. For λ ` n let Cλ := {µ ` n : µ ∼p λ} denote the p-

equivalence class of λ.

Definition 32. A partition λ is p-deprived if none of its parts are divisible by p.

The empty partition ∅ is a p-deprived partition of 0 for every p. Write λ `(p) n for

a p-deprived partition λ of n.

Example 33. Let u > 1 be prime to p and let r > 0. Then the partition (u)r is

p-deprived and

C(u)r =
{
λ ` ur : λ has parts in {upj : j > 0}

}
.

Every p-equivalence class has a unique p-deprived partition representative. We

therefore have, for every n > 0, the following disjoint union:

Pn = {λ ` n} =
⊔

λ`(p)n

Cλ. (7)

5.2. The Contribution to en from a Single p-Equivalence Class

Fix n > 0 and λ ` n. Let

gλ :=
∑
µ∼pλ

(−1)µ
pµ
zµ
, (8)

so that in particular g∅ = 1. In other words, gλ is the piece of the expression for en
from (4) that comes from all the partitions that are p-equivalent to λ. Because

of (7), for any n > 0,

en =
∑
λ`(p)n

gλ. (9)

To show that en(P ) ≡ en(Q) mod a in Proposition 13, it will therefore suffice to

establish that gλ(P ) ≡ gλ(Q) mod a for every λ `(p) n. But in fact we can break

these up further:

Lemma 34. Suppose λ `(p) n, µ `(p) m are partitions of n,m > 0 with no common

parts. Then gλµ = gλgµ. Thus for λ `(p) n,

gλ =
∏

u>1, p-u

g(u)ru(λ) .
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Proof. Any two partitions λ and µ, whether disjoint or not, satisfy pλµ = pλpµ and

(−1)λµ = (−1)λ(−1)µ. If λ and µ have no parts in common, then zλµ = zλzµ. And

finally if both λ and µ additionally have only prime-to-p parts, then every ν ∼p λµ
factors uniquely as ν = νλνµ with νλ ∼p λ and νµ ∼p µ. The claim follows by the

distributive property.

Therefore rather than showing that gλ(P ) ≡a gλ(Q) for every λ `(p) n, it suffices

to show that

g(u)r (P ) ≡a g(u)r (Q) (10)

for every ur 6 n where r > 0 and u > 1 is prime to p. We prove this in Section 5.4

after establishing a p-integrality result for the symmetric function gλ.

5.3. p-Integrality of gλ

First note that the signs (−1)µ in the definition of gλ are the same for every µ ∼p λ
for odd p.

Lemma 35. If p is odd, then gλ = (−1)λ
∑
µ∼pλ

pµ
zµ

.

Proof. If p is odd, then for any u > 1 and j > 0, the parity of (upj) is the same as

the parity of (u) to the pj power:

(−1)(up
j) = (−1)up

j−1 = (−1)u−1 = (−1)p
j(u−1) = (−1)(u)

pj

.

Then extend multiplicatively.

From the definition in (8) it is clear that gλ is in ΛQ. However, one can show

that gλ is p-integral as a symmetric function.

Proposition 36. For any partition λ ` n > 0, we have gλ in ΛZ(p)
.

The following elegant argument is due to Gessel.

Proof. Since every equivalence class Cλ has a unique representative with prime-to-p

parts, it suffices to consider gλ for λ `(p) n. By Lemma 34, it suffices to show that

for any u prime to p and any r > 0, we have g(u)r ∈ ΛZ(p)
. Equivalently, it suffices

to show that for any u prime to p, the generating function

Gu(t) :=

∞∑
r=0

g(u)r t
ur (11)

for the sequence {g(u)r}r>0 is in ΛZ(p)
JtK. Recall that

F (z) = exp

 ∞∑
j=0

zp
j

pj

 ∈ Z(p)JzK
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is the Artin-Hasse exponential series (Corollary 29).

For p odd, let εu = (−1)u−1 be the sign of (upj) for j > 0 (Lemma 35). Then

Gu(t) = exp

 ∞∑
j=0

εupupj

upj
tup

j

 = exp

εu
u

∞∑
j=0

tup
j (xup

j

1 + xup
j

2 + · · · )
pj


= F (xu1 t

u)εu/uF (xu2 t
u)εu/u · · · ,

(12)

where the first equality is Proposition 19 for the set S = {upj : j > 0} (see

Example 33). Since F (xui t
u) has coefficients in Z(p) and constant coefficient 1,

and since binomial coefficients
(
εu/u
m

)
are in Z[ 1u ] ⊂ Z(p), each F (xui t

u)εu/u is in

Z(p)Jxi, tK, so that Gu(t) is in Z(p)Jt, x1, x2, . . .K. We already know it to be in ΛQJtK,
so we conclude that Gu(t) ∈ ΛZ(p)

JtK, as desired.

It remains to consider p = 2. In this case, the sign of (upj) is −1 unless j = 0,

in which case it is 1 as u is odd. Therefore, for p = 2,

Gu(t) = exp

2tupu
u
−
∞∑
j=0

tup
j

upj
pupj


=

( ∞∑
k=0

2k

ukk!
pku t

uk

)
F (xu1 t

u)−1/uF (xu2 t
u)−1/u · · · . (13)

To conclude that Gu(t) ∈ ΛZ(p)
JtK for p = 2, we note that

v2(k!) =

⌊
k

2

⌋
+

⌊
k

22

⌋
+ · · · <

∞∑
i=1

k

2i
= k = v2(2k),

so that the first factor in (13) is in ΛZ(p)
JtK, the rest being as in (12).

5.4. Proof of Proposition 13

Finally, we prove that deep congruences between power sum functions imply congru-

ences between elementary symmetric functions, by building upon the p-integrality

result of Section 5.3.

Proof of Proposition 13. Recall that we assume that pn(P )− pn(Q) ∈ na for all n

with 1 6 n 6 N ; we aim to show that en(P )− en(Q) ∈ a for n in the same range.

We use the results of Section 5.2 to make some reductions: by (9), it suffices to

show that

gλ(P )− gλ(Q) ∈ a for λ `(p) n if 1 6 n 6 N.

By (10) it suffices to prove that g(u)r (P ) − g(u)r (Q) ∈ a for all u prime to p and

all r with ur 6 N . As in (11), write

Gu(P )(t) :=

∞∑
r=0

g(u)r (P ) tur (14)
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and the same for Q. By Proposition 36 we know that Gu(P )(t) and Gu(Q)(t) are

in AJtK. To prove the current proposition it suffices to show that

Gu(P )(t)−Gu(Q)(t) ∈ aJtK + (tN+1)

under the assumption that pupj (P ) − pupj (Q) = pjaj for some aj ∈ a for every j

with upj 6 N . Let J be the maximum such j. We work modulo tN+1. Assume

again for now that p is odd, and again set εu = (−1)u−1. Then as in (12) we have

Gu(P )(t)−Gu(Q)(t) = exp
( ∞∑
j=0

εu
pupj (P )

upj
tup

j
)
−Gu(Q)(t)

≡ exp
( J∑
j=0

εu
pupj (Q) + pjaj

upj
tup

j
)
−Gu(Q)(t) mod tN+1.

Since the exponential of a sum is the product of corresponding exponentials, we

may rewrite the latter (the congruences being modulo tN+1):

Gu(P )(t)−Gu(Q)(t) ≡ exp
( J∑
j=0

εu
pupj (Q)

upj
tup

j
)

exp
( J∑
j=0

εuajt
upj

u

)
−Gu(Q)(t)

≡ exp
( ∞∑
j=0

εu
pupj (Q)

upj
tup

j
)

exp
( J∑
j=0

εuajt
upj

u

)
−Gu(Q)(t)

= Gu(Q)(t)

(
exp

( J∑
j=0

εuajt
upj

u

)
− 1

)

= Gu(Q)(t)

( J∏
j=0

exp
(εuaj

u
tup

j
)
− 1

)

= Gu(Q)(t)

( J∏
j=0

(
1 +

∞∑
k=1

εkua
k
j t
kupj

ukk!

)
− 1

)
. (15)

By assumption, a is a divided-power ideal (see Section 2.2), so that akj /k! ∈ a for

every k > 1. Moreover, u−k ∈ Z(p) since u is prime to p. Therefore, for each j, the

expression

∞∑
k=1

εkua
k
j t
kupj

ukk!
is in aJtK; and hence the same is true for all of

J∏
j=0

(
1 +

∞∑
k=1

εkua
k
j t
kupj

ukk!

)
− 1.

Finally, since Gu(Q)(t) in AJtK (Proposition 36), we know that the last expression

of (15), and thus Gu(P )(t)−Gu(Q)(t), is in aJtK modulo tN+1, as required.
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For p = 2, use (13) in place of (12), so that the analogue of (15) is

Gu(P )(t)−Gu(Q)(t) ≡ Gu(Q)(t)

(
exp

(2tua0
u

)
exp

( J∑
j=0

−ajtup
j

u

)
− 1

)
,

again modulo tN+1. But the additional term exp
(
2tua0
u

)
is in 1 + aJtK for the same

reason as exp
(∑J

j=0
−ajtup

j

u

)
.

Therefore Proposition 13 is proved for all primes p.

6. Representation-Theory Corollaries

Suppose now that A, in addition to being a torsion-free Z(p)-algebra, is a domain and

the divided-power ideal a is maximal. Then we can interpret a monic polynomial

in A[T ] as the characteristic polynomial for the action of a linear operator T on

a free A-module and the nth power sum of its roots as the trace of Tn on that

module. Theorem 9 then becomes a statement about congruences between traces

of Tn implying isomorphisms between semisimplified (A/a)[T ]-modules.

We focus on the case where A = O is a p-adic DVR and a = m is its maximal ideal

to state the following representation-theoretic version of Theorem 9; Theorem A is

a special case.

Theorem 37. Let O be a p-adic DVR with maximal ideal m of ramification de-

gree e 6 p− 1 and residue field F. If M and N are O[T ]-modules, finite and free of

the same rank d as O-modules, then (M ⊗ F)ss ' (N ⊗ F)ss as F[T ]-modules if and

only if for all n with 1 6 n 6 d we have

tr(Tn|M) ≡ tr(Tn|N) (mod nm). (16)

Proof. Let P (respectively, Q) in O[T ] be the characteristic polynomial of the action

of T on M (respectively, on N). Let α1, . . . , αd (respectively, β1, . . . , βd) be the roots

of P (respectively, Q) in some p-adic DVR O′ extending O. With this notation,

as detailed in Remark 10, Theorem 9 under the assumption degP = degQ tells us

that P = Q in F[X] if and only if pn(P ) ≡ pn(Q) mod nm for all 1 6 n 6 d. The

latter condition is equivalent to (16), since tr(Tn|M) = αn1 + · · ·+αnd = pn(P ), and

similarly tr(Tn|N) = pn(Q). The former condition P = Q is equivalent to P and Q

having the same multiset of roots with multiplicity in some extension of F. But the

roots of P (respectively, Q) are the reductions α1, . . . , αd (respectively, β1, . . . , βd)

modulo the maximal ideal m′ of O′ of α1, . . . , αd (respectively, β1, . . . , βd). In other

words, (16) is equivalent to the statement that, up to reordering, we have equalities

α1 = β1, α2 = β2, . . . , αd = βd. (17)
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But the αi (respectively, βj) are the eigenvalues of T acting on M ⊗ F (respec-

tively N ⊗ F), so that the matching in (17) is exactly equivalent to the up-to-

semisimplification isomorphism (M ⊗ F)ss ≡ (N ⊗ F)ss.

We finally return to the modular form motivation described in the introduction

and prove Corollary 2. Recall that for a Zp-module M we write M for M ⊗ Fp.

Corollary 38 (Restatement of Corollary 2). Let M1,M2, N1, N2 be free Zp-modules

of finite rank, each with an action of an operator T . Suppose we have fixed T -

equivariant embeddings ι1 : N1 ↪→M1 and ι2 : N2 ↪→M2 and consider the quotients

W1 := M1/ι1(N1), W2 := M2/ι2(N2).

Then W ss
1 'W ss

2 as Fp[T ]-modules if and only if for every n > 0 we have

vp
(

tr(Tn|M1)− tr(Tn|N1)− tr(Tn|M2) + tr(Tn|N2)
)
> 1 + vp(n). (18)

Proof. Using Theorem 37, the condition in (18) is equivalent to the Fp[T ]-module

isomorphism (
M1 ⊕N2

)ss ' (M2 ⊕N1

)ss
. (19)

Taking a quotient on the left-hand side by ι1(N1)ss⊕N2
ss and on the right-hand side

by ι2(N2)ss ⊕N1
ss shows that (19) is equivalent to the isomorphism W ss

1 'W ss
2 .

Remark 39. The congruence for 0 6 n 6 rankM1 + rankN2 suffices in (18). We

further note that Corollary 38 also holds with Zp,Fp, 1 + vp(n) replaced by O, F,
1
e+vp(n), respectively, whereO is a p-adic DVR with residue field F and ramification

degree e 6 p− 1 over Zp.
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Appendix. Brauer-Nesbitt and Linear Independence of Characters

We briefly review the Brauer-Nesbitt theorem and connections to linear indepen-

dence of characters in the setting of this paper.

Theorem 40 (Brauer-Nesbitt [3, 30.16] or [8, Theorem 2.4.6 ff.] for convenient

presentation). Let k be a field; R a k-algebra; V a semisimple R-module, finite

dimensional as a k-vector space. Then the following statements hold.

(a) (Characteristic polynomial version). The characteristic polynomial map

r 7→ CharPoly(r|V ) ∈ k[X]

for every r in R (equivalently, in a k-basis of R) determines V uniquely.

(b) (Trace version). If char k = 0 or char k > dimk V then the trace map r 7→ tr(r|V )

for every r in R (equivalently, in a k-basis of R) determines V uniquely.

(c) (Trace version complement). If char k = p then the trace map r 7→ tr(r|V )

for every r in R (equivalently, in a k-basis of R) determines the multiplicity

modulo p of every irreducible component of V .

Since elementary symmetric functions determine the power-sum symmetric func-

tions over Z, the characteristic polynomial version of Brauer-Nesbitt always implies

the trace version. Conversely, if char k = 0 or char k > dimk V , then (dimk V )!

is invertible in k, so that the power-sum functions determine the relevant elemen-

tary symmetric functions over k (Corollary 21), and hence the trace version of

Brauer-Nesbitt is equivalent to the characteristic-polynomial version. In the crit-

ical positive characteristic case char k < dimk V , the trace version both assumes

and concludes less than the characteristic polynomial version; neither implies the

https://www.math.ias.edu/~lurie/205notes/Lecture7-Exponential.pdf
https://perso.univ-rennes1.fr/matthieu.romagny/notes/p_adic_formulas.pdf
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other. But if R = k[T ], then R is abelian, so that every irreducible R-module is

one-dimensional over k. In this case, both the trace version and its complement

follow from the well-known statement about linear independence of characters.

Theorem 41 (Linear independence of characters (Artin). See, for example, [4, The-

orem VI.4.1]). Let B be a monoid and χ1, . . . , χd : B → k multiplicative characters

from B to a field k. Then χ1, . . . , χr are k-linearly independent.

Proposition 42. Theorem 41 implies parts (b) and (c) of Theorem 40 for R = k[T ].

Proof. Given two finite-dimensional k-vector spaces V,W each with the action of

a single operator T , let α1, . . . , αd be the list of distinct eigenvalues appearing

in either T |V or T |W and set B := Z+ and χi(n) := αni . The statement that

tr(Tn|V ) = tr(Tn|W ) is equivalent to

d∑
i=1

fi(V )χi(n) =

d∑
i=1

fi(W )χi(n),

where fi(V ) is the multiplicity of αi as an eigenvalue of the action of T on V , and

the same for W . Linear independence of characters, then, tells us that for all i we

have fi(V ) = fi(W ) in k. This simultaneously recovers for R = k[T ] both the trace

version of Brauer-Nesbitt and its complement.

The converse – that the trace version of Brauer-Nesbitt together with its com-

plement implies linear independence of characters – is also true over a prime field

(k = Q or k = Fp for some prime p).
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