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Abstract

The equation xm + yn = zr is considered for integer values of m, n, and r that
are greater than one; x, y, and z represent nonzero integers. Let g1 = gcd(m,n),
g2 = gcd(m, r), and g3 = gcd(n, r). If gcd(m,n, r) = 1 and at least two of the
integers g1, g2, and g3 are greater than one, we show that xm + yn = zr has
no solutions, unless (m,n, r) is of the form (3s, 6t, 2w), (6t, 3s, 2w), (2w, 3s, 6t), or
(3s, 2w, 6t) for some pairwise relatively prime, positive integers s, t, and w such that
s is odd and w is not divisible by three. This result allows us to completely answer
the question in the title of this note. We do not restrict our study to primitive
solutions.

1. Introduction

Throughout this note, we assume that the variables x, y, and z represent nonzero

integers. Thus, when we state that a given equation involving these variables has

no solutions, we are, in fact, saying that there is no solution with integer values

for x, y, and z such that xyz 6= 0. We are mainly concerned with the generalized

Fermat equation of the form

xm + yn = zr (1)

such that m, n, and r are given integers that are greater than one. As usual,

gcd(x, y, z) represents the greatest common divisor of (the values of) x, y, and z.

A solution to Equation (1) is said to be primitive if gcd(x, y, z) = 1, and is called

non-primitive otherwise. The following lemma is a summary of some results, for a

special case of Equation (1), which were previously presented by the present author.
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Lemma 1 ([4]). Consider the equation

x3s + y6t = z2w (2)

such that s, t, and w are given positive integers. If s, t, and w are pairwise relatively

prime such that s is odd and w is not divisible by three, then there are infinitely

many solutions to Equation (2). Otherwise, Equation (2) has no solutions.

For the case in which solutions to Equation (2) exist, formulas that generate all

solutions have been provided [4]. We continue to assume that s, t, and w are given

positive integers. Consider the equation

x2w + y3s = z6t. (3)

When s is odd, Equation (3) can be rewritten as (−y)3s+z6t = x2w. It follows from

Lemma 1 that Equation (3) has infinitely many solutions when s is odd, s, t, and

w are pairwise relatively prime, and w is not divisible by three, but this equation

has no solutions for other cases in which s is odd. When s is even, Equation (3)

has no solutions, due to items 1 and 2(a) in the existence criteria (below).

The following theorem is a key result. Throughout this note, we let g1 =

gcd(m,n), g2 = gcd(m, r), and g3 = gcd(n, r). Remember that m, n, and r are

assumed to be given integers that are greater than one.

Theorem 1. Suppose that gcd(m,n, r) = 1 and at least two of the integers g1, g2,

and g3 are greater than one. Then Equation (1) has no solutions, unless (m,n, r)

is of the form (3s, 6t, 2w), (6t, 3s, 2w), (2w, 3s, 6t), or (3s, 2w, 6t) for some pairwise

relatively prime, positive integers s, t, and w such that s is odd and w is not divisible

by three.

The proof of Theorem 1 will be given in the next section of this note. In light of

this theorem, we are now able to complete the following classification.

Conditions under which solutions to Equation (1) do, or do not, exist:

1. When gcd(m,n, r) > 2, due to the validation of Fermat’s last theorem by

Wiles [5], Equation (1) has no solutions.

2. When gcd(m,n, r) = 2:

(a) If m/2, n/2, and r/2 are not pairwise relatively prime, then Equation

(1) has no solutions [3].

(b) If m/2, n/2, and r/2 are pairwise relatively prime, then Equation (1)

has infinitely many solutions [3].

3. When gcd(m,n, r) = 1:
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(a) If at least two of the integers g1, g2, and g3 are equal to one, then

Equation (1) has infinitely many solutions [2], [3].

(b) As a result of Lemma 1, if (m,n, r) is of the form (3s, 6t, 2w), (6t, 3s, 2w),

(2w, 3s, 6t), or (3s, 2w, 6t) for some pairwise relatively prime, positive

integers s, t, and w such that s is odd and w is not divisible by three,

then there are infinitely many solutions to Equation (1). Otherwise,

Equation (1) has no solutions when at least two of the integers g1, g2,

and g3 are greater than one, due to Theorem 1.

For case 2(b), formulas that generate infinitely many solutions to Equation (1) for

each triple of allowable values (m,n, r) do exist [3]. However, we cannot presently

prove that these formulas yield all solutions to this equation in case 2(b). For case

3(a), procedures that generate all solutions to Equation (1) have been found [2].

In case 3(b), it obviously follows that Equation (1) has no solutions when g1, g2,

and g3 are greater than one. For the instances of case 3(b) in which solutions exist,

the formulas that were alluded to in the paragraph immediately after Lemma 1 can

easily be applied, or adapted, to yield all solutions to Equation (1).

2. Proof of Theorem 1

Before we give the proof of Theorem 1, we remind the reader of results that we

make use of in this proof. Bartolomé and Mihăilescu [1] established a theorem for

the strong Fermat-Catalan equation, and proved a corollary for the equation

xp + yp = zq. (4)

We need the following portion of that corollary.

Corollary 1 ([1]). Equation (4) has no solutions in mutually coprime integers

(x, y, z) if the prime exponents p and q satisfy 5 ≤ p ≤ q.

The following lemma lists several results from a previous article.

Lemma 2 ([4]). Consider the equation

xu + yuv = zv (5)

such that u and v are integers greater than one.

(A) For given values of u and v, Equation (5) has solutions if and only if it has

at least one primitive solution.

(B) If u or v is even and (u, v) /∈ {(2, 2), (3, 2)}, then Equation (5) has no solu-

tions.
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(C) If u or v is divisible by three and (u, v) 6= (3, 2), then Equation (5) has no

solutions.

Remember that g1 = gcd(m,n), g2 = gcd(m, r), and g3 = gcd(n, r).

Proof of Theorem 1. For instances in which (m,n, r) is of the form (3s, 6t, 2w),

(6t, 3s, 2w), (2w, 3s, 6t), or (3s, 2w, 6t) for some positive integers s, t, and w, we

know that Equation (1) has solutions when s, t, and w are pairwise relatively

prime such that s is odd and w is not divisible by three; otherwise, Equation (1)

has no solutions when (m,n, r) is in one of these four forms (due to Lemma 1

and the paragraph that immediately follows it). Throughout the remainder of this

proof, we assume that (m,n, r) is not in one of these four forms. Suppose that

gcd(m,n, r) = 1, at least two of the integers g1, g2, and g3 are greater than one,

and that Equation (1) has at least one solution. Let (x, y, z) = (a0, b0, c0) be a

solution to Equation (1). There are three cases to consider.

Case 1. For the case in which g1 and g3 are greater than one, there exist prime

numbers p1 and q1 such that p1 divides g1 and q1 divides g3. Because gcd(m,n, r) =

1, we know that p1 6= q1. In this case, there exist positive integers m1, n1, and r1
such that m = m1p1, n = n1p1q1, and r = q1r1. Substituting into Equation (1), we

see that

a0
m1p1 + b0

n1p1q1 = c0
q1r1 . (6)

Due to the assumption that (m,n, r) is not of the form (3s, 6t, 2w), we know that

(p1, q1) 6= (3, 2). Note that (x, y, z) = (a0
m1 , b0

n1 , c0
r1) is a solution to

xp1 + yp1q1 = zq1 . (7)

Because (p1, q1) /∈ {(2, 2), (3, 2)}, there are no solutions to Equation (7) when p1 = 2

or q1 = 2, due to Lemma 2(B). Likewise, there are no solutions to Equation (7)

when p1 = 3 or q1 = 3, due to Lemma 2(C). Thus, p1 ≥ 5 and q1 ≥ 5. Due to

Lemma 2(A), Equation (7) has a primitive solution. Let (x, y, z) = (a, b, c) be a

primitive solution to Equation (7). Then (a, bq1 , c) is a primitive solution to

xp1 + yp1 = zq1 .

As a result of Corollary 1, q1 < p1. Because (a, b, c) is a primitive solution to

Equation (7), it follows that (x, y, z) = (a,−bp1 , c) is primitive solution to

zq1 + yq1 = xp1

with 5 ≤ q1 < p1, which contradicts Corollary 1. Therefore, there are no solutions

to Equation (1) in this case.

Case 2. When g1 and g2 are greater than one, there exist prime numbers p2 and q2
such that p2 divides g1, q2 divides g2, and p2 6= q2. Thus, there are positive integers
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m2, n2, and r2 such that m = m2p2q2, n = n2p2, and r = q2r2. Substituting into

Equation (1) and interchanging the first two terms, we see that

b0
n2p2 + a0

m2p2q2 = c0
q2r2 ,

which has the same form as Equation (6). Proceeding in the same fashion as we

did in case 1, we determine that there are no solutions to Equation (1) in Case 2.

Case 3. When g2 and g3 are greater than one, there exist prime numbers p3 and

q3 such that p3 divides g2, q3 divides g3, and p3 6= q3. In this case, there exist

positive integers m3, n3, and r3 such that m = m3p3, n = n3q3, and r = p3q3r3.

Substituting into Equation (1), we see that

a0
m3p3 + b0

n3q3 = c0
p3q3r3 .

Because (m,n, r) is neither of the form (2w, 3s, 6t) nor (3s, 2w, 6t), we know that

(p3, q3) /∈ {(2, 2), (2, 3), (3, 2)}. Note that (x, y, z) = (a0
m3 , b0

n3 , c0
r3) is a solution

to

xp3 + yq3 = zp3q3 . (8)

If p3 = 2, then q3 is odd and Equation (8) can be rewritten as

(−y)
q3 + z2q3 = x2.

It follows from Lemma 2(B) that there are no solutions to Equation (8) when p3 = 2.

Similarly, there are no solutions to Equation (8) when q3 = 2. Thus, p3 and q3 are

odd, and Equation (8) can expressed as

(−x)
p3 + zp3q3 = yq3 . (9)

Note that Equation (9) has the same form as Equation (7). Utilizing similar steps

to those we used in case 1, starting with the second sentence after Equation (7), it

is easy to show that there are no solutions to Equation (1) in this case.

Therefore, Equation (1) has no solutions under the conditions stated in this theo-

rem, unless (m,n, r) can be written in the form (3s, 6t, 2w), (6t, 3s, 2w), (2w, 3s, 6t),

or (3s, 2w, 6t) for some pairwise relatively prime, positive integers s, t, and w such

that s is odd and w is not divisible by three.

3. Additional Comments

One of the fundamental questions in mathematics is, “Under what conditions do

solutions exist?” When the present author began the journey that resulted in an

answer to this question for Equation (1), he was surprised to learn that the quest

for primitive solutions took precedence over the basic existence question for this
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equation. At this point, we briefly discuss the places where primitive solutions

are located in the “Conditions under which solutions to Equation (1) do, or do

not, exist” from the first section of this note. It was shown, in a previous article

[4], that the only primitive solutions to Equation (2) are (x, y, z) = (2,±1,±3).

These solutions occur when (s, t, w) = (1, k, 1) for each positive integer k. Due to

this result and Theorem 1, it follows that the only primitive solutions to Equa-

tion (1) in case 3(b) are (m,n, r, x, y, z) = (3, 6k, 2, 2,±1,±3), (6k, 3, 2,±1, 2,±3),

(2, 3, 6k,±3,−2,±1), or (3, 2, 6k,−2,±3,±1), with k being any positive integer.

Otherwise, when a primitive solution exists, it can only occur in case 2(b) or 3(a).

Like many number theorists, the author is fascinated by the search for primitive

solutions to Equation (1). However, the importance of resolving the fundamental

existence question for this equation should not be overlooked.
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[1] B. Bartolomé and P. Mihăilescu, Semilocal approximation for the Fermat-Catalan and further
popular Diophantine norm equations, preprint, arXiv: 2108.08572.

[2] R. Ryan, A generalized Fermat equation with an emphasis on non-primitive solutions, Int.
Math. Forum 12 (2017), 835-840.

[3] R. Ryan, Solutions to a generalized Fermat equation that has even exponents, Int. Math.
Forum 14 (2019), 237-246.

[4] R. Ryan, Special forms of the generalized Fermat equation, Int. Math. Forum 17 (2022),
201-213.

[5] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995),
443-551.


