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Abstract

In this study, we investigate a model of generalized ([k]; p; s)-Padovan–Perrin se-
quences and deal with a special case, namely, the k-Padovan–Perrin sequence. To
reach our goal, we consider some properties of the Fibonacci fundamental system,
related to the elements of this model. Several results of this model are established.
More specifically, we give some identities, as well as combinatorial and analytical
representations, related to the sequences of this model.

1. Introduction

Over the past decades, there have been several research papers on notable families

of number sequences defined by linear recursive relations, as well as their generaliza-

tions. In particular, the numbers of Fibonacci, Pell, Jacobsthal, Padovan, Perrin,

and Van der Laan are studied in the literature. These sequences of numbers have

been widely applied in various areas of mathematics and applied science, such as

physics and engineering, and also in architecture, nature, and art (see for example

[1, 11, 15] and references therein). The three classical families of integers of numbers

of Padovan, Perrin, and Van der Laan are defined by the following classical linear
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recursive relation of order 3 :

vn = vn−2 + vn−3, for every n ≥ 3,

where the data of the initial conditions v0, v1, and v2, contributes to characterizing

the type of each sequence of these numbers. That is,

• for v0 = v1 = v2 = 1, we get the Padovan numbers vn = P
(1)
n ;

• for v0 = 3, v1 = 0 and v2 = 2, we find the Perrin numbers vn = P
(2)
n ;

• for v0 = 1, v1 = 0 and v2 = 1, we obtain the Van der Laan numbers vn = Vn.

Recently, abundant literature has been provided on generalizations of these three

types of sequences (see, for instance, [12, 13] and references therein). In addition,

several papers have established matrix representations of these sequences of num-

bers. In particular, the matrix representations of the sequences of Padovan and

Perrin numbers have been considered in many research papers (see, for instance,

[12]).

In the present study, we discuss the properties of a generalized model of Padovan

and Perrin numbers, defined by a general linear recursive relation. More precisely,

let k1, k2, p ≥ 2, and s be positive integers, and set [k] = (k1, k2). Consider the

sequence {vn([k]; p; s)}n≥0 defined by the following linear recursive relation of order

s+ p :

vn([k]; p; s) = k1vn−s([k]; p; s) + k2vn−s−p([k]; p; s), for n ≥ s+ p, (1)

with initial conditions vj([k]; p; s) = αj ∈ N, for 0 ≤ j ≤ s + p − 1. As we will

see, Equation (1) represents the general model of the Padovan–Perrin recursive

relation called the ([k]; p; s)-Padovan–Perrin model. Our main tools are based on

the Fibonacci fundamental system related to the elements of the model defined by

Equation (1) and the matrix formulation of this linear recursive relation of order

s + p. Therefore, several new properties and identities of this general model are

established, and many results from the literature are recovered. More precisely, we

obtain the combinatorial expressions and the analytic formulas of sequences defined

by (1). Finally, several special cases of the literature and applications are discussed.

The outline of this paper is as follows. Section 2 concerns the generalized

([k]; p; s)-Padovan–Perrin model and its relation with the Fibonacci fundamental

system. Sections 3 and 4 are devoted to the matrix formulation and combinato-

rial study of sequences defined by (1). In Section 5, we establish the analytical

formulation for the generalized ([k]; p; s)-Padovan–Perrin model in terms of the pa-

rameters ([k]; p; s). In Section 6, we apply our results to the special case of the

k-Padovan–Perrin sequence.
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2. The Generalized ([k]; p; s)-Padovan–Perrin Model and Its Relation
with the Fibonacci Fundamental System

The general fundamental Fibonacci system related to sequences defined by a linear

recursive relation of the Fibonacci type represents a powerful tool for studying

these types of sequences. It has been considered in its general form for generalized

Fibonacci sequences by Rachidi et al. in [2, 8]. Subsequently, it was used in [16]

to study generalized Fibonacci numbers, in [17] to provide results on the gene-

ralized Pell numbers, and in [5] to establish the properties of a generalized Pell

model. Moreover, in [6] the generalized Cassini identities were provided using,

as an approach, properties of the Fibonacci fundamental system. This section

is devoted to the general fundamental Fibonacci system related to the ([k]; p; s)-

Padovan–Perrin model defined in (1).

2.1. Preliminary Considerations on the ([k]; p; s)-Padovan–Perrin Model

As mentioned above, Equation (1) represents a general Padovan–Perrin model. In-

deed, we have the following special cases.

• For s = 1, Equation (1) is reduced to a recursive relation of order p, defining

a weighted p-generalized Fibonacci sequence.

• For s = 2, p = k1 = k2 = 1, Equation (1) represents the usual recursive

relation defining the Padovan–Perrin numbers (for more details, see [9, 19,

15]).

• For s = 2, p = k1 = 1 and k = k2 ≥ 2, Equation (1) represents the recursive

relation defining the k-Padovan–Perrin numbers.

• For s = 2, p ≥ 2 and k2 = k1 = 1, the recursive relation given by Equation

(1) defines the p-generalized Padovan–Perrin numbers.

• For s ≥ 2, p ≥ 2 and k1 = k2 = 1, the recursive relation given by Equation

(1) is nothing else but the (s, p)-generalized Padovan–Perrin numbers.

• For s ≥ 2, p ≥ 2, and k1 ≥ 2 or k2 ≥ 2, the recursive relation given by

Equation (1) defines the ([k]; s; p)-generalized Padovan–Perrin numbers, or

just, ([k]; s; p)-Padovan–Perrin numbers.

The previous special cases show that Equation (1) defines a generalized Padovan–

Perrin model.
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2.2. The Fibonacci Fundamental System Related to (1)

For every j such that 1 ≤ j ≤ p + s, we consider the sequence of the ([k]; s; p)-

Padovan–Perrin numbers {v(j)n ([k]; p; s)}n≥0 defined by{
v
(j)
n ([k]; p; s) = k1v

(j)
n−s([k]; p; s) + k2v

(j)
n−s−p([k]; p; s), for n ≥ s+ p

v
(j)
n ([k]; p; s) = δ

(j)
n+1; for n = 0, 1, . . . , s+ p− 1,

(2)

where δ
(j)
i = 1 if i = j,and δ

(j)
i = 0 otherwise.

Example 1. For s = 2, p = k1 = k2 = 1, Equation (2) is given by{
v
(j)
n ([k]; 1; 2) = v

(j)
n−2([k]; 1; 2) + v

(j)
n−3([k]; 1; 2), for n ≥ s+ p

v
(j)
n ([k]; 1; 2) = δ

(j)
n+1; for n = 0, 1, 2.

Table 1 describes the values of these sequences for 0 ≤ n ≤ 11.

n 0 1 2 3 4 5 6 7 8 9 10 11

v
(1)
n ([k]; 1; 2) 1 0 0 1 0 1 1 1 2 2 3 4

v
(2)
n ([k]; 1; 2) 0 1 0 1 1 1 2 2 3 4 5 7

v
(3)
n ([k]; 1; 2) 0 0 1 0 1 1 1 2 2 3 4 5

Table 1: Sequences {v(j)n ([k]; 1; 2)}n≥0 with parameter [k] = (1, 1) and 1 ≤ j ≤ 3.

Consider the set S([k];p;s) =
{
{v(j)n ([k]; p; s)}n≥0; 1 ≤ j ≤ p+ s

}
. Let us consider

the sequence {vn([k]; p; s)}n≥0 defined by (1) with initial conditions α0, . . . , αp+s−1.

Let {wn([k]; p; s)}n≥0 be the sequence of general terms

wn([k]; p; s) =

p+s−1∑
j=0

αjv
(j+1)
n ([k]; p; s).

Then, using (2), we can derive that wj([k]; p; s) = vj([k]; p; s) = αj , for j =

0, 1, · · · , p+ s−1. We can show that the set S([k];p;s) generates the sequences of the

Padovan–Perrin model defined in (1), namely, wn([k]; p; s) = vn([k]; p; s), for every

n ≥ 0. More precisely, we have the following result.

Proposition 1. Let {vn([k]; p; s)}n≥0 be the sequence defined by the recursive rela-

tion (1) and with initial conditions α0, α1, . . . , αp+s−1. Then, for every n ≥ 0, we

have

vn([k]; p; s) =

p+s−1∑
j=0

αjv
(j+1)
n ([k]; p; s).
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Proof. Let {wn([k]; p; s)}n≥0 be the sequence defined by

wn([k]; p; s) =

p+s−1∑
j=0

αjv
(j+1)
n ([k]; p; s), for every n ≥ 0,

with initial conditions (α0, α1, . . . , αp+s−1). For every n ≥ p+ s, we have

wn([k]; p; s) =

p+s−1∑
j=0

αjv
(j+1)
n ([k]; p; s)

=

p+s−1∑
j=0

αj [k1v
(j)
n−s([k]; p; s) + k2v

(j)
n−s−p([k]; p; s)]

= k1wn−s([k]; p; s) + k2wn−p−s([k]; p; s).

Therefore, the sequence {wn([k]; p; s)}n≥0 satisfies the recursive relation (1). In

addition, for every d such that 0 ≤ d ≤ p+ s− 1, we get

wd([k]; p; s) =

p+s−1∑
j=0

αjv
(j+1)
d ([k]; p; s) = αd,

because v
(j+1)
d ([k]; p; s) = 1 if j = d, and v

(j+1)
d ([k]; p; s) = 0 if j 6= d. Thus, the two

sequences {vn([k]; p; s)}n≥0 and {wn([k]; p; s)}n≥0 satisfy the recursive relation (1)

and own the same initial conditions α0, α1, . . . , αp+s−1. Therefore, for every n ≥ 0,

we have vn([k]; p; s) = wn([k]; p; s) =
∑p+s−1

j=0 αjv
(j+1)
n ([k]; p; s).

The proof of Proposition 1 is based on the following lemma.

Lemma 1. Consider two sequences {vn}n≥0 and {wn}n≥0 of the real vector space

E([k]; p; s) of sequences satisfying the recursive relation (1), whose initial conditions

are α0, α1, ..., αr−1, and β0, β1, ..., βr−1, respectively. Suppose that there exist n0,

m0, N in N such that vj+n0
= wj+m0

, for N ≤ j ≤ N + r − 1. Then, we have

vn+n0
= wn+m0

, for every n ≥ N .

The proof of Lemma 1 is similar to the proof of Lemma 2.6 of [17].

Let E([k]; p; s) be the set of sequences {vn([k]; p; s)}n≥0 satisfying (1). Con-

sider the sequences {vn([k]; p; s)}n≥0 and {wn([k]; p; s)}n≥0 satisfying (1), with ini-

tial conditions α0, α1, . . . , αp+s−1, and β0, β1, . . . , βp+s−1, respectively. Applying

Proposition 1, we define the addition and the multiplication by a scalar as follows:

vn([k]; p; s) + wn([k]; p; s) =

p+s−1∑
j=0

(αj + βj)v
(j+1)
n ([k]; p; s)

γ · vn([k]; p; s) =

p+s−1∑
j=0

γ · αjv
(j+1)
n ([k]; p; s),

(3)
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for every γ ∈ R. As a consequence of Proposition 1 we have the following corollary.

Corollary 1. The set E([k]; p; s) of sequences satisfying the recursive relation (1),

equipped with the addition and the multiplication by scalars (3), is a real vector

space. Moreover, the set S([k];p;s) =
{
{v(j)n ([k]; p; s)}n≥0; 1 ≤ j ≤ p+ s

}
is a gene-

rator system of E([k]; p; s).

Therefore, we have the following definition.

Definition 1. The set S([k];p;s) =
{
{v(j)n ([k]; p; s)}n≥0; 1 ≤ j ≤ p+ s

}
is called the

Fibonacci fundamental system of the generalized ([k]; p; s)-Padovan–Perrin model

defined in (1).

2.3. Fibonacci Fundamental Solution Related to Equation (1)

For the Fibonacci fundamental system (2) related to the generalized ([k]; p; s)-

Padovan–Perrin model (1), namely, S([k];p;s) =
{
{v(j)n ([k]; p; s)}n≥0; 1 ≤ j ≤ p+ s

}
,

the sequences {v(r)n ([k]; p; s)}n≥0 play a central role, in the sense that any other e-

lement of this system can be expressed in terms of this solution. More precisely, we

have the following result.

Proposition 2. Let S([k];p;s) =
{
{v(j)n ([k]; p; s)}n≥0; 1 ≤ j ≤ p+ s

}
be the Fi-

bonacci fundamental system of the generalized ([K]; p; s)-Padovan–Perrin model (1).

Then, for every j such that p+ 1 ≤ j ≤ p+ s− 1, we have

v(j)n ([k]; p; s) = k1v
(s+p)
n−j+p([k]; p; s) + k2v

(s+p)
n−j ([k]; p; s) = v

(s+p)
n+(s+p)−j([k]; p; s)

for n ≥ 0. In particular, we have v
(j)
n ([k]; p; s) = k2v

(s+p)
n+j ([k]; p; s), for every j such

that 1 ≤ j ≤ p.

The proof of Proposition 2 is based on Lemma 1. Indeed, using Lemma 1 and

induction on j, we can prove Proposition 2 in a similar way to the proof of Theorem

2.1 of [17]. In addition, following Proposition 1, every {vn([k]; p; s)}n≥0 defined by

the recursive relation (1) and with initial conditions (α0, α1, . . . , αp+s−1), can also

be expressed in terms of the solution {v(s+p)
n ([k]; p; s)}n≥0. Indeed, we have

vn([k]; p; s) =k2

p∑
j=0

αjv
(s+p)
n+j ([k]; p; s)

+

s+p−1∑
j=p+1

αjv
(s+p)
n+s+p−j([k]; p; s) + αs+p−1v

(s+p)
n ([k]; p; s).

Taking into account the previous properties, we introduce the following definition.
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Definition 2. The sequence {v(r)n ([k]; p; s)}n≥0, given by Equation (2) (with j =

r), is called the the Fibonacci fundamental solution of the generalized ([K]; p; s)-

Padovan–Perrin model.

3. Matrix Formulation and Its Related Fibonacci Fundamental System

The matrix formulation related to sequences defined by a linear recursive relation of

the Fibonacci type has been considered in several papers. In addition, the relation

between matrices and the Fibonacci fundamental system provides interesting results

(see [5, 16, 17]). This section is devoted to exploring the matrix formulation of

Equation (1) and its close connection with the Fibonacci fundamental system.

3.1. Matrix Formulation of Equation (1)

The general setting of the matrix formulation of the recursive relation (1) is given

by

Vn([k]; p; s) = A(([k]; p; s))Vn−1([k]; p; s), for every n ≥ s+ p, (4)

where

A([k]; p; s) =



0 . . . 0 k1 0 . . . 0 k2
1 . . . 0 0 0 . . . 0 0
0 1 0 . . . 0 . . . 0 0
... . . .

. . . 0
...

...
...

...

0 . . . . . . 0 . . . 1 0 0
0 . . . . . . 0 . . . 0 1 0


, (5)

Vn−1([k]; p; s) =



vn−1([k]; p; s)
...

vn−s([k]; p; s)
...

vn−s−p([k]; p; s)

 .

Note that the matrix A([k]; p; s) is of order s + p, the integer k1 is located at the

s-th column, and the integer k2 is located at the (s+ p)-th column.

As an example, consider s = p = 2. Then, Equation (1) takes the form

vn([k]; 2; 2) = k1vn−2([k]; 2; 2) + k2vn−4([k]; 2; 2) for n ≥ 4, and its matrix for-

mulation is given by Vn([k]; 2; 2) = A([k]; 2; 2)Vn−1([k]; 2; 2), where

A([k]; 2; 2) =


0 k1 0 k2
1 0 0 0
0 1 0 0
0 0 1 0

 and Vn−1([k]; 2; 2) =


vn−1([k]; 2; 2)
vn−2([k]; 2; 2)
vn−3([k]; 2; 2)
vn−4([k]; 2; 2)

 .
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Note that the matrix A([k]; 2; 2) is of order p+ s = 4.

3.2. Powers of the Companion Matrix (5) by the Fibonacci Fundamental
System

A direct computation allows us to show that Equation (4) is equivalent to the

following matrix formulation:

Vn([k]; p; s) = A([k]; p; s)n−p−sVp+s−1([k]; p; s),

where Vp+s−1([k]; p; s) is as in (5), namely,

Vp+s−1([k]; p; s) =



vp+s−1([k]; p; s)
...

vp([k]; p; s)
...

v0([k]; p; s)

 .

In this subsection we will give an explicit form of the entries of the matrix powers

An([k]; p; s), in terms of the elements of the Fibonacci fundamental system (2).

This will allow us to obtain properties of the ([k]; p; s)-Padovan–Perrin sequences.

To reach our goal, we consider the well-known Casoratian matrix, related to the

Fibonacci fundamental system (2).

The Casoratian matrix Ĉ(n), associated to the family of sequences given by

{vn([k]; p; s)(1)} n∈N, . . . , {vn([k]; p; s)(s+p)}n∈N, is defined by Ĉ(n) = (V̂ (1)(n),

. . . , V̂ (s+p)(n)), where V̂ (j)(n), with 1 ≤ j ≤ s+ p, is the vector column V̂ (j)(n) =

(v
(j)
n ([k]; p; s), · · · , v(j)n+s+p−1([k]; p; s))t, namely,

Ĉ(n) =


v
(1)
n ([k]; p; s) · · · v

(j)
n ([k]; p; s) · · · v

(s+p)
n ([k]; p; s)

...
. . .

...
. . .

...

v
(1)
n+s+p−1([k]; p; s) · · · v

(j)
n+s+p−1([k]; p; s) · · · v

(s+p)
n+s+p−1([k]; p; s)


(see, for instance, [4]).

A direct verification shows that the Casoratian matrix Ĉ(n) can be written in

the form Ĉ(n) = J ×Mn([k]; p; s)× J, where Mn([k]; p; s) is in the form:
v
(s+p)
n+s+p−1([k]; p; s) · · · v

(j)
n+s+p−1([k]; p; s) · · · v

(1)
n+s+p−1([k]; p; s)

...
. . .

...
. . .

...

v
(s+p)
n ([k]; p; s) · · · v

(j)
n ([k]; p; s) · · · v

(1)
n ([k]; p; s)

 , (6)

where J = (bi, j)1≤i, j≤p+s is the anti-diagonal unit matrix, whose entries are given

by bi, j = 1 for i+ j = p+ s+ 1 and bi, j = 0 otherwise.
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Consider the sequence {vn([k]; p; s)}n≥0 given in Equation (1) and the vector

column Yn = (vn+p+s−1([k]; p; s), . . . , vn([k]; p; s))t. The sequences defined by (1)

take the equivalent matrix form:

Yn+1 = A([k]; p; s)Yn, n ≥ s+ p− 1, (7)

where A([k]; p; s) is the companion matrix (5). That is, Equation (7) can be written

in the form:

Yn+s+p−1 = An([k]; p; s)Ys+p−1, n ≥ s+ p− 1,

where Ys+p−1 is the vector column Ys+p−1 = (vp+s−1([k]; p; s), . . . , v0([k]; p; s))t.

By considering the generalized fundamental system, a direct computation shows

that the vector Yn+s+p−1 can be written in the matrix form:

Yn+s+p−1 = Mn([k]; p; s)Ys+p−1, (8)

where the entries m
(n)
ij of the matrix Mn([k]; p; s) = An([k]; p; s) are stated, in

terms of the elements of the generalized Fibonacci fundamental system, in the form

m
(n)
ij = v

(s+p−j+1)
n+s+p−i ([k]; p; s) (for more details, see [2, 8]). Equations (7) and (8)

permit us to establish the following result.

Theorem 1. Let S([k];p;s) =
{
{v(j)n ([k]; p; s)}n≥0; 1 ≤ j ≤ p+ s

}
be the Fibonacci

fundamental system of the generalized ([k]; p; s)-Padovan–Perrin model defined in

(1). Then, for every n ≥ 0, the entries of the powers An([k]; p; s) = (a
(n)
ij )1≤i,j≤p+s

are given in the form:

a
(n)
ij = v

(s+p−j+1)
n+s+p−i ([k]; p; s). (9)

In other terms, we have An([k]; p; s) = Mn([k]; p; s).

It is worth noting that Equation (9) has been established by induction (see [2, 8],

and references therein). Since the Casoratian matrix of the Fibonacci fundamental

system of the generalized ([k]; p; s)-Padovan–Perrin model defined in (1), namely,

S([k];p;s) =
{
{v(j)n ([k]; p; s)}n≥0; 1 ≤ j ≤ p+ s

}
, is defined by Ĉ(n) and Expression

(6), the result of Theorem 1 allows us to connect the Casoratian matrix Ĉ(n) of the

Fibonacci fundamental system (1) with the powers An([k]; p; s) of the matrix (5).

3.3. Some Identities of the Generalized ([k]; p; s)-Padovan–Perrin Model

In this subsection, we will emphasize some identities of the generalized ([k]; p; s)-

Padovan–Perrin model. For this purpose we will start by talking about the entries

of the companion matrix, then we will generalize the results. As a consequence of

the previous propositions, we can exhibit some identities satisfied by the elements

of the generalized Fibonacci fundamental system.
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Equation (6) allows us to write Ĉ(n + m) = JAn+m([k]; p; s)J = JAn([k]; p; s)

Am([k]; p; s)J . Since J is an anti-diagonal matrix, then it follows that J · J =

diag(1, . . . , 1). Hence, we get Ĉ(n + m) = (JAn([k]; p; s)J) · (JAm([k]; p; s)J) =

Ĉ(n) · Ĉ(m). Then, for every positive integer n and m, we can verify the Casoratian

matrix property, Ĉ(n+m) = Ĉ(n) · Ĉ(m). In general, given that Am+n([k]; p; s) =

Am([k]; p; s) · An([k]; p; s) = An([k]; p; s) · Am([k]; p; s) = (a
(m+n)
ij )1≤i,j≤s+p, it fol-

lows

a
(m+n)
ij =

s+p∑
k=1

a
(m)
ik a

(n)
kj =

s+p∑
k=1

a
(n)
ik a

(m)
kj .

By Equation (9), the identity a
(n)
ij = v

(s+p−j+1)
n+s+p−i ([k]; p; s) is verified, which implies

that a
(n)
ik = v

(s+p−k+1)
n+s+p−i ([k]; p; s) and a

(n)
kj = v

(s+p−j+1)
n+s+p−k ([k]; p; s). Therefore, we have

a
(m+n)
ij =

r∑
k=1

a
(m)
ik a

(n)
kj =

s+p∑
k=1

v
(s+p−k+1)
m+s+p−i ([k]; p; s)v

(s+p−j+1)
n+s+p−k ([k]; p; s).

On the other side, we have a
(m+n)
ij = v

(s+p−j+1)
n+m+s+p−i([k]; p; s), which allows us to get

the following formula:

v
(s+p−j+1)
n+m+s+p−i([k]; p; s) =

s+p∑
k=1

v
(s+p−k+1)
m+s+p−i ([k]; p; s)v

(s+p−j+1)
n+s+p−k ([k]; p; s).

In summary, we have the following result.

Proposition 3. Let S([k];p;s) =
{
{v(j)n ([k]; p; s)}n≥0; 1 ≤ j ≤ p+ s

}
be the Fi-

bonacci fundamental system of the generalized ([k]; p; s)-Padovan–Perrin model (1).

Then, for all integers m,n ≥ 0 and 1 ≤ i, j ≤ s+ p, the following identity holds:

v
(s+p−j+1)
n+m+s+p−i([k]; p; s) =

s+p∑
k=1

v
(s+p−k+1)
m+s+p−i ([k]; p; s)v

(s+p−j+1)
n+s+p−k ([k]; p; s). (10)

In general, we have the following theorem below.

Theorem 2. Let S([k];p;s) =
{
{v(j)n ([k]; p; s)}n≥0; 1 ≤ j ≤ p+ s

}
be the Fibonacci

fundamental system of the generalized ([k]; p; s)-Padovan–Perrin model defined in

(1). Then, for all integers m,n ≥ 0 and t, q with 1 ≤ t, q ≤ s + p, the following

identities are verified:

v
(q)
m+n+t([k]; p; s) =(k2)2

p∑
d=1

v
(s+p)
m+t+d([k]; p; s)v

(s+p)
n+d−1+q([k]; p; s)

+ k2

s+p−1∑
d=p+1

v
(s+p)
m+t+d([k]; p; s)v

(s+p)
n+d−1+q([k]; p; s)

+ k2v
(s+p)
m+t ([k]; p; s)v

(s+p)
n+s+p−1+q([k]; p; s),
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for 1 ≤ q ≤ p,

v
(q)
n+m+t([k]; p; s) =k2

p∑
d=1

v
(s+p)
m+t+d([k]; p; s)v

(s+p)
n+d−1+(s+p)−q([k]; p; s)

+

p+s−1∑
d=p+1

v
(s+p)
m+t+d([k]; p; s)v

(s+p)
n+d−1+(s+p)−q([k]; p; s)

+ v
(s+p)
m+t ([k]; p; s)v

(s+p)
n+s+p−1+(s+p)−q([k]; p; s),

for p+ 1 ≤ q ≤ s+ p− 1, and, for q = s+ p,

v
(s+p)
n+m+t([k]; p; s) =k2

p−1∑
d=1

v
(s+p)
m+t+d([k]; p; s)v

(s+p)
n+d−1([k]; p; s)))

+

s+p∑
d=p+1

v
(d)
m+t([k]; p; s)v

(s+p)
n+d−1([k]; p; s).

Proof. Making the changes of variables s+p−j+1 = q, t = s+p−i, and d = s+p−
k+1 in Equation (10), we get v

(q)
n+m+t([k]; p; s) =

∑s+p
d=1 v

(d)
m+t([k]; p; s)v

(q)
n+d−1([k]; p; s),

for all integers m,n ≥ 0 and t, q with 1 ≤ t, q ≤ p+ s. Applying Lemma 1 we show

that v
(d)
n+t([k]; p; s) = v

(d)
m+t([k]; p; s) and v

(q)
m+d−1([k]; p; s) = v

(q)
n+d−1([k]; p; s) and

consequently,

v
(q)
n+m+t([k]; p; s) =

s+p∑
d=1

v
(d)
m+t([k]; p; s)v

(q)
n+d−1([k]; p; s)

=

s+p∑
d=1

v
(d)
m+t([k]; p; s)v

(q)
n+d−1([k]; p; s),

for integers m,n ≥ 0 and t, q such that 1 ≤ t, q ≤ s+ p.

Since Proposition 2 establishes v
(j)
n ([k]; p; s) = v

(s+p)
n+(s+p)−j([k]; p; s) for every j

such that p + 1 ≤ j ≤ s + p − 1, and v(j)n ([k]; p; s) = k2v
(s+p)
n+j ([k]; p; s) for every j

such that 1 ≤ j ≤ p, we get the following results:

v
(q)
m+n+t([k]; p; s) =(k2)2

p∑
d=1

v
(s+p)
m+t+d([k]; p; s)v

(s+p)
n+d−1+q([k]; p; s)

+ k2

s+p−1∑
d=p+1

v
(s+p)
m+t+d([k]; p; s)v

(s+p)
n+d−1+q([k]; p; s)

+ k2v
(s+p)
m+t ([k]; p; s)v

(s+p)
n+s+p−1+q([k]; p; s),
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for 1 ≤ q ≤ p, and

v
(q)
n+m+t([k]; p; s) =k2

p∑
d=1

v
(s+p)
m+t+d([k]; p; s)v

(s+p)
n+d−1+(s+p)−q([k]; p; s)

=

p+s−1∑
d=p+1

v
(s+p)
m+t+d([k]; p; s)v

(s+p)
n+d−1+(s+p)−q([k]; p; s)

+ v
(s+p)
m+t ([k]; p; s)v

(s+p)
n+s+p−1+(s+p)−q([k]; p; s),

for p+ 1 ≤ q ≤ s+ p− 1. Taking q = s+ p in Equation (10), we get

v
(s+p)
n+m+t([k]; p; s) =k2

p∑
d=1

v
(s+p)
m+t+d([k]; p; s)v

(s+p)
n+d−1([k]; p; s)))

+

s+p∑
d=p+1

v
(s+p)
m+t+s+p−d([k]; p; s)v

(s+p)
n+d−1([k]; p; s),

which concludes the proof.

To better clarify our results, we apply Theorem 2, for the case s = 2, p = k1 =

k2 = 1, associated with Padovan–Perrin numbers. Therefore, we arrive at the

corollary below.

Corollary 2. The terms of the Padovan–Perrin sequence {v(3)n }n≥0 with initial

conditions v0 = 0, v1 = 0 and v2 = 1, verify the following identity:

v
(3)
n+r([k]; 1; 2) = v

(3)
r+1([k]; 1; 2)v(3)n ([k]; 1; 2))) +

3∑
d=2

v
(3)
r+3−d([k]; 1; 2)v

(3)
n+d−1([k]; p; s).

4. Combinatorial Expression of the ([k]; p; s)-Padovan–Perrin Sequences

The combinatorial expressions of sequences {un}n≥0 defined by the recurrence re-

lation un+1 =
∑r−1

i=0 aiun−i−1, for n ≥ r, have been largely studied in the literature

(see, for example, [14, 18] and references therein). In [14], it was established that

the combinatorial form for un is given by

un = ρ(n, r)A0 + ρ(n− 1, r)A1 + · · ·+ ρ(n− r + 1, r)Ar−1, for every n ≥ r, (11)

such that Am = ar−1um + · · ·+ amur−1 and

ρ(n, r) =
∑

t0+2t1+···+rtr−1=n−r

(t0 + · · ·+ tr−1)!

t0!t1! . . . tr−1!
at00 a

t1
1 ...a

tr−1

r−1 , for every n ≥ r,

(12)
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where ρ(j, r) = 0 for 0 ≤ j ≤ r − 1 and ρ(r, r) = 1.

By replacing the coefficients of the recurrence relation un+1 =
∑r−1

i=0 aiun−i−1 for

a0 = a1 = · · · = as−2 = 0; as−1 = k1, as = · · · = as+p−2 = 0 and as+p−1 = k2, with

the initial conditions α0, · · · , αr−2, αr−1, we get Equation (1) defining the model of

([k]; p; s)-generalized Padovan–Perrin sequences. Therefore, the construction that

was done in [14] and Equation (12) imply the following result on the combinatorial

aspect of the model of ([k]; p; s)-generalized Padovan–Perrin.

Proposition 4. Consider the sequence of the ([k]; p; s)-generalized Padovan–Perrin

numbers given by Equation (2), with initial conditions α0 = . . . = αs+p−2 = 0 and

αs+p−1 = 1. Then, the following identity is verified:

v(s+p)
n ([k]; p; s) = ρ(n+ 1, s+ p),

for n ≥ s+ p, with

ρ(n, s+ p) =
∑

(s)ts−1+(s+p)ts+p−1=n−(s+p−1)

(ts−1 + ts+p−1)!

ts−1!ts+p−1!
(k1)ts−1(k2)ts+p−1 ,

for every n ≥ s+ p, ρ(j, s+ p) = 0 for 0 ≤ j ≤ s+ p− 1, and ρ(s+ p, s+ p) = 1.

Proof. By the initial conditions α0 = . . . = αs+p−2 = 0 and αs+p−1 = 1, we have

A0 = 0, A1 = 0, . . . , As−1 = k1, As = 0, . . . , As+p−1 = k2. Then,

v(s+p)
n ([k]; p; s) = k1ρ(s− 2, s+ p) + k2ρ(n− (s+ p) + 1, s+ p)

= k1v
(s+p)
n+s ([k]; p; s) + k2v

(s+p)
n+s+p([k]; p; s),

or v
(s+p)
n ([k]; p; s) = ρ(n+ 1, s+ p), where

ρ(n, s+ p) =
∑

(s)ts−1+(s+p)ts+p−1=n−(s+p−1)

(ts−1 + ts+p−1)!

ts−1!ts+p−1!
(k1)ts−1(k2)ts+p−1 ,

for every n ≥ s+ p, ρ(j, s+ p) = 0 for 0 ≤ j ≤ s+ p− 1, and ρ(s+ p, s+ p) = 1.

In general, we have the theorem below.

Theorem 3. Consider the sequence of the ([k]; p; s)-generalized Padovan–Perrin

numbers given by Equation (1) with arbitrary initial conditions α0, . . . , αs+p−1.

Then, we have

vn([k]; p; s) = ρ(n, s+p)A0 +ρ(n−1, s+p)A1 + · · ·+ρ(n− (s+p)+1, s+p)As+p−1,

for every n ≥ r, such that A0 = k2α0 + k1αp, A1 = k2α1 + k1αp+1, . . . , As−1 =

k2αs−1 + k1αs+p−1, As = k2αs, . . . , As+p−1 = k2αs+p−1, and

ρ(n, s+ p) =
∑

(s)ts−1+(s+p)ts+p−1=n−(s+p−1)

(ts−1 + ts+p−1)!

ts−1!ts+p−1!
(k1)ts−1(k2)ts+p−1 ,

for every n ≥ s+ p, ρ(j, s+ p) = 0 for 0 ≤ j ≤ s+ p− 1 and ρ(s+ p, s+ p) = 1.
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Proof. The proof is given by the direct application of Expressions (11) and (12)

with arbitrary initial conditions α0, . . . , αs+p−1.

Definition 1, Theorem 3 and Proposition 4 show us that ρ(n + 1, s + p) is a

Fibonacci fundamental solution for the Fibonacci fundamental system of the gene-

ralized ([K]; p; s)-Padovan–Perrin model defined in (1).

Combining Propositions 4 and 2 we obtain the following combinatorial identities

for the sequences of the Fibonacci fundamental system related to the generalized

([k]; p; s)-Padovan–Perrin model defined in (1).

Proposition 5. Let S([k];p;s) =
{
{v(j)n ([k]; p; s)}n≥0; 1 ≤ j ≤ p+ s

}
be the Fi-

bonacci fundamental system of the generalized ([k]; p; s)-Padovan–Perrin model given

in (1). Then, for every n ≥ 0, we have:

v(j)n ([k]; p; s) = v
(s+p)
n+(s+p)−j([k]; p; s) = ρ(n+ (s+ p)− j + 1, s+ p),

for every j such that p+ 1 ≤ j ≤ p+ s− 1, and

v(j)n ([k]; p; s) = k2ρ(n+ j + 1, s+ p),

for every j such that 1 ≤ j ≤ p, where

ρ(n, s+ p) =
∑

(s)ts−1+(s+p)ts+p−1=n−(s+p−1)

(ts−1 + ts+p−1)!

ts−1!ts+p−1!
(k1)ts−1(k2)ts+p−1 ,

for every n ≥ s+ p, ρ(j, s+ p) = 0 for 0 ≤ j ≤ s+ p− 1, and ρ(s+ p, s+ p) = 1.

Moreover, following Proposition 3 and Theorem 2, we obtain the combinatorial

identities below.

Theorem 4. Let S([k];p;s) =
{
{v(j)n ([k]; p; s)}n≥0; 1 ≤ j ≤ p+ s

}
be the Fibonacci

fundamental system of the generalized ([k]; p; s)-Padovan–Perrin model (1). Then,

for all integers m,n ≥ 0 and t, q such that 1 ≤ t, q ≤ s+ p, we have

v
(q)
m+n+t([k]; p; s) =(k2)2

p∑
d=1

ρ(m+ t+ d+ 1, s+ p)ρ(n+ d+ q, s+ p)

+ k2

s+p−1∑
d=p+1

ρ(m+ t+ d+ 1, s+ p)ρ(n+ d+ q, s+ p)

+ k2ρ(m+ t+ 1)ρ(n+ s+ p+ q),
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for 1 ≤ q ≤ p,

v
(q)
n+m+t([k]; p; s) =k2

p∑
d=1

ρ(m+ t+ d+ 1, s+ p)ρ(n+ d+ (s+ p)− q, s+ p)

+

p+s−1∑
d=p+1

ρ(m+ t+ d+ 1, s+ p)ρ(n+ d+ (s+ p)− q, s+ p)

+ ρ(m+ t+ 1, s+ p)ρ(n+ s+ p+ (s+ p)− q, s+ p),

and for p+ 1 ≤ q ≤ s+ p− 1,

ρ(n+m+ t+ 1, s+ p) =k2

p−1∑
d=1

ρ(m+ t+ d+ 1, s+ p)ρ(n+ d, s+ p)

+

s+p∑
d=p+1

ρ(m+ t+ 1, s+ p)ρ(n+ d, p+ s),

where

ρ(n, s+ p) =
∑

(s)ts−1+(s+p)ts+p−1=n−(s+p−1)

(ts−1 + ts+p−1)!

ts−1!ts+p−1!
(k1)ts−1(k2)ts+p−1 ,

for every n ≥ s+ p, ρ(j, s+ p) = 0 for 0 ≤ j ≤ s+ p− 1, and ρ(s+ p, s+ p) = 1.

Observe that the results of this section give us explicit formulas for the Fi-

bonacci fundamental system of the generalized ([k]; p; s)-Padovan–Perrin model in

(1). Moreover, it seems to us that the combinatorial identities presented in this

section are new in the literature.

5. Analytic Expression of the ([k]; p; s)-Padovan–Perrin Sequences

Let {vn([k]; p; s)}n≥0 be the sequence defined by the recursive relation (1) and with

initial conditions (α0, α1, . . . , αp+s−1). Its characteristic polynomial is given by

P (z) = zs+p − k1zp − k2.

Suppose that λ is a double root of P (z). Then, we have

P (λ) = 0 and P ′(λ) = 0.

where P ′(z) = dP
dz (z).

Consider the parameter p = 1, or P (z) = zs+1 − k1z − k2. Then, we have the

following algebraic equations,

λs+1 = k1λ+ k2 and (s+ 1)λs = k1.
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Hence, we get λs =
k1
s+ 1

. Since λs+1 = λsλ = k1λ+ k2, then we derive,

λ

(
1

s+ 1
− 1

)
=
k2
k1
.

Thus, if λ a double root of P (z) with p = 1, then λ =
−k2(s+ 1)

k1s
. Hence,(

−k2(s+ 1)

k1s

)s

=
k1
s+ 1

.

Therefore, we get the following result.

Lemma 2. Let k1, k2 and s be positive integers, and p = 1. Suppose

(
−k2(s+ 1)

k1s

)s

6= k1
s+ 1

. Then, the roots of the polynomial P (z) = zs+1 − k1z − k2 are simple.

Now suppose that p ≥ 2. Hence, we have the following algebraic equations:

λs+p = k1λ
p + k2 and (p+ s)λs+p−1 = pk1λ

p−1.

Therefore, we get λs =
pk1
p+ s

. Since λs+p = λpλs = k1λ
p + k2, then we derive

λpλs − k1λp = k2. Hence, we obtain

(λs − k1)λp = (k1λ
p−1 − k1)λp =

(
pk1
p+ s

− 1

)
k1λ

p = k2.

Thus, we obtain λp = −p+ s

s

k2
k1
. Therefore, we have

s ln(|λ|) = ln

(
pk1
p+ s

)
and p ln(|λ|) = ln

(
p+ s

s

k2
k1

)
.

Hence, we have (
pk1
p+ s

) 1
s

=

(
p+ s

s

k2
k1

) 1
p

,

and a direct computation implies that(
p+ s

p

)s−p

=
ks+p
1

ks2
.

In summary, we obtain the following lemma.

Lemma 3. Let k1, k2, p and s be positive integers, with p ≥ 2. Suppose that(
p+s
p

)s−p
6= ks+p

1

ks
2

. Then, the roots of the polynomial

P (z) = zs+p − k1zp − k2

are simple.
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Moreover, as we have

|λ|s =
pk1
p+ s

and |λ|p =
p+ s

s

k2
k1
,

we show that |λ|s < k1 and |λ|p > k2
k1
. Suppose that k21 < k2 and p < s, then we

have

|λ|p > k2
k1

=
k2
k21
k1 > k1 ≥ 1.

Thus, we get |λ| > 1 and

|λ|p > k1 > |λ|s,

which is impossible, because |λ| > 1 and p < s.

Lemma 4. Let k1, k2, p and s be positive integers, with p ≥ 2. Suppose that

k21 < k2 and p < s. Then, the roots of the polynomial

P (z) = zs+p − k1zp − k2

are simple.

For a linear recursive sequence of Fibonacci type {un}n≥0 defined by recurrence

relation un+1 =
∑r−1

i=0 aiun−i−1, for n ≥ r, the analytic expression is expressed in

terms of the roots of the associated so-called characteristic polynomial and their

multiplicities (see, instance, [3, 7, 18]). More precisely, the sequence {ρ(n, r)}n≥0
defined by (12) is expressed in the analytical form given in the following lemma.

Lemma 5. Let {ρ(n, s+ p)}n≥0 be the sequence defined by (12). Suppose the roots

λ1,· · · , λs+p of its characteristic polynomial

P (z) = zs+p − a0zs+p−1 − ...− as+p−2z − as+p−1

(as+p−1 6= 0) satisfy λi 6= λj for i 6= j. Then, we have

ρ(n, s+ p) =

s+p∑
i=1

λn−1i

P ′ (λi)
=

s+p∑
i=1

λn−1i∏
k 6=i

(λi − λk)
for every n ≥ s+ p;

otherwise ρ(s+ p, s+ p) = 1, ρ(i, s+ p) = 0 for i ≤ s+ p− 1, where P ′(z) = dP
dz (z).

Combining the result of Theorem 3 and Lemmas 3, 4, and 5 we obtain the

following analytical identities.

Proposition 6. Consider k1, k2, p, and s in N∗, with p ≥ 2. Suppose that k21 < k2
and p < s. Consider the sequence of the ([k]; p; s)-generalized Padovan–Perrin
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numbers given by Equation (1), with arbitrary initial conditions α0, . . . , αs+p−2,

αs+p−1. Suppose the roots λ1,· · · , λs+p of its characteristic polynomial

P (z) = zs+p − a0zs+p−1 − ...− as+p−2z − as+p−1

(as+p−1 6= 0) satisfy λi 6= λj for i 6= j. Then, it is verified that:

vn([k]; p; s) = A0

s+p∑
i=1

λn−1i∏
k 6=i

(λi − λk)
+ · · ·+As+p−1

s+p∑
i=1

λ
n−(s+p)
i∏

k 6=i

(λi − λk)
,

for every n ≥ s+ p, such that A0 = k2α0 + k1αp, A1 = k2α1 + k1αp+1, . . . , As−1 =

k2αs−1 + k1αs+p−1, As = k2αs, . . . , As+p−1 = k2αs+p−1.

6. A Special Case

In this section, we present the results of the previous sections applied to a special

integer sequence, namely, the k-Padovan–Perrin numbers.

Recall that for s = 2, p = 1 and [k] = (1, k), k ≥ 2, Equation (1) represents the

recursive relation defining the k-Padovan–Perrin numbers, namely,

vn([k]; 1; 2) = vn−2([k]; 1; 2) + kvn−3([k]; 1; 2), for n ≥ 3, (13)

with initial conditions vj([k]; p; s) = αj , for 0 ≤ j ≤ 2, where αj ∈ N.

The Fibonacci Fundamental System S([k];1;2) =
{
{v(j)n ([k]; 1; 2)}n≥0; 1 ≤ j ≤ 3

}
associated to the k-Padovan–Perrin numbers is given by{

v
(j)
n ([k]; 1; 2) = v

(j)
n−2([k]; 1; 2) + kv

(j)
n−3([k]; 1; 2), for n ≥ s+ p

v
(j)
n ([k]; 1; 2) = δ

(j)
n+1; for n = 0, 1, 2,

where δ
(j)
i = 1 if i = j, and δ

(j)
i = 0, otherwise. Thus, by Proposition 1, the

k-Padovan–Perrin numbers are given in the form, for every n ≥ 0,

vn([k]; 1; 2) = α0v
(1)
n ([k]; 1; 2) + α1v

(2)
n ([k]; 1; 2) + α2v

(3)
n ([k]; 1; 2).

In addition, following Proposition 2, we have v
(1)
n ([k]; 1; 2) = kv

(3)
n+1([k]; 1; 2), and

v
(2)
n ([k]; 1; 2) = v

(3)
n+1([k]; 1; 2) for n ≥ 0. Therefore,

vn([k]; 1; 2) = (kα0 + α1)v
(3)
n+1([k]; 1; 2) + α2v

(3)
n ([k]; 1; 2).

The matrix formulation for Equation (13) is given by

Vn([k]; 1; 2) = A([k]; 1; 2)Vn−1([k]; 1; 2),
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where

A([k]; 1; 2) =

0 k1 k2
1 0 0
0 1 0

 and Vn−1([k]; 1; 2) =

vn−1([k]; 1; 2)
vn−2([k]; 1; 2)
vn−3([k]; 1; 2)

 .
By direct application of Theorem 1, the entries of the powers An([k]; 1; 2) =

(a
(n)
ij )1≤i,j≤3 are given by a

(n)
ij = v

(3−j+1)
n+3−i ([k]; 1; 2), for every n ≥ 0. Then, using

Proposition 3 and Theorem 2, we derive the following proposition.

Proposition 7. Let S([k];1;2) =
{
{v(j)n ([k]; 1; 2)}n≥0; 1 ≤ j ≤ 3

}
be the Fibonacci

fundamental system of the generalized ([k]; 1; 2)-Padovan–Perrin model (13). Then,

for all integers m,n ≥ 0 and i, t such that 1 ≤ i, t ≤ 3, the following identities are

verified:

v
(3−j+1)
n+m+3−i([k]; 1; 2) =

3∑
k=1

v
(3−k+1)
m+3−i ([k]; 1; 2)v

(3−j+1)
n+3−k ([k]; 1; 2),

v
(1)
m+n+t([k]; 1; 2) =(k)2v

(3)
m+t+1([k]; 1; 2)v

(3)
n+1([k]; 1; 2)

+ kv
(3)
m+t+2([k]; 1; 2)v

(3)
n+2([k]; 1; 2)

+ kv
(3)
m+t([k]; 1; 2)v

(3)
n+3([k]; 1; 2),

v
(2)
n+m+t([k]; 1; 2) =kv

(3)
m+t+1([k]; 1; 2)v

(3)
n+1([k]; 1; 2) + v

(3)
m+t+2([k]; 1; 2)v

(3)
n+2([k]; 1; 2)

+ v
(3)
m+t([k]; 1; 2)v

(3)
n+3([k]; 1; 2),

and

v
(3)
n+m+t([k]; 1; 2) =kv

(3)
m+t+1([k]; 1; 2)v(3)n ([k]; 1; 2)))

+

3∑
d=2

v
(3)
m+t+3−d([k]; 1; 2)v

(3)
n+d−1([k]; 1; 2).

Next, we will give explicit combinatorial formulas for k-Padovan–Perrin numbers.

By replacing the parameters s = 2, p = 1, and [k] = (1, k), k ≥ 2 in Equation (12)

we get

ρ(n, 3) =
∑

2t1+3t2=n−2

(t1 + t2)!

t1!t2!
(k)t2 , (14)

for every n ≥ 3, ρ(j, 3) = 0 for 0 ≤ j ≤ 2, and ρ(3, 3) = 1. Then, a direct application

of Theorem 3 allows us to obtain the following proposition.



INTEGERS: 24 (2024) 20

Proposition 8. Consider the sequence {vn([k]; 1; 2)}n≥0 of the k-Padovan–Perrin

numbers defined by Equation (13), with arbitrary initial conditions α0, α1, α2. Then,

we have

vn([k]; 1; 2) = ρ(n, 3)(kα0 + α1) + kα1ρ(n− 1, 3) + kα2ρ(n− 2, 3),

for every n ≥ r, such that ρ(n, 3) is given in the form (14).

Similarly as in Section 4, as a consequence of Propositions 5 and 8, we get the

explicit combinatorial formulas to the generalized ([k]; 1; 2)-Padovan–Perrin model

(13).

Proposition 9. Let S([k];1;2) =
{
{v(j)n ([k]; 1; 2)}n≥0; 1 ≤ j ≤ 3

}
be the Fibonacci

fundamental system of the generalized ([k]; 1; 2)-Padovan–Perrin model given in

(13). Then, for n ≥ 0, we have

v(3)n ([k]; 1; 2) = ρ(n+ 1, 3),

v(2)n ([k]; 1; 2) = ρ(n+ 2, 3),

v(1)n ([k]; 1; 2) = kρ(n+ 2, 3),

where ρ(n, 3) is given in the form (14).

In addition, the combinatorial identities are provided in the result below

Theorem 5. Let S([k];1;2) =
{
{v(j)n ([k]; 1; 2)}n≥0; 1 ≤ j ≤ 3

}
be the Fibonacci fun-

damental system of the generalized ([k]; 1; 2)-Padovan–Perrin model defined in (13).

Then, for all integers m,n ≥ 0, and t such that 1 ≤ t ≤ 3, it is verified that we have

v
(1)
m+n+t([k]; 1; 2) =(k)2ρ(m+ t+ 2, 3)ρ(n+ 1 + q, 3)

+ kρ(m+ t+ 3, 3)ρ(n+ 3, 3)

+ kρ(m+ t+ 1, 3)ρ(n+ s+ p+ 1, 3),

v
(2)
n+m+t([k]; p; s) =kρ(m+ t+ 2, 3)ρ(n+ 2, 3) + ρ(m+ t+ 3, 3)ρ(n+ 3, 3)

+ ρ(m+ t+ 1, 3)ρ(n+ 4, 3),

and

ρ(n+m+ t+ 1, 3) = kρ(m+ t+ 2, 3)ρ(n+ 1, 3) +

3∑
d=2

ρ(m+ t+ 1, 3)ρ(n+ d, 3),

where ρ(n, 3) is given in the form (14).



INTEGERS: 24 (2024) 21

Now we will study the analytical formulas for vn([k]; 1; 2) using the determinant

approach. The Sylvester matrix is a matrix associated with two univariate polyno-

mials P (z) and Q(z), whose entries are given by coefficients of these two polynomials

[10]. When the determinant of the Sylvester matrix SP,Q, called the resultant, is

zero, then the two polynomials have a common root (in the case of coefficients in

a field) or a non-constant common divisor (in the case of coefficients in an integral

domain). Considering the polynomial P (z) and its derivative P ′(z), if the determi-

nant of the Sylvester matrix SP,P ′ is different from 0, then the polynomials P (z)

and P ′(z) do not have common roots. This means that if det(SP,P ′) 6= 0, then the

roots of P (z) are simple. In this special case the associated characteristic polyno-

mial is P (z) = z3− z− k, with derivative P ′(z) = 3z2− 1, and its Sylvester matrix

associated to P and P ′ is given by

SP,P ′ =


1 0 −1 −k 0
0 1 0 −1 −k
3 0 −1 0 0
0 3 0 −1 0
0 0 3 0 −1

 .

Hence, det(SP,P ′) = 27k2− 4. Then, det(SP,P ′) 6= 0 if k 6= ±
√

4
27 , which permits

us to get the following analytical property.

Proposition 10. Consider the sequence {vn([k]; 1; 2)}n≥0 of the k-Padovan–Perrin

numbers defined by Equation (13) with arbitrary initial conditions α0, α1, α2. Sup-

pose that k 6= ±
√

4
27 and the roots λ1, λ2 and λ3 of its characteristic polynomial

P (z) = z3 − z − k, satisfy λi 6= λj for i 6= j. Then, the following is true:

vn([k]; 1; 2) =

3∑
i=1

(kα0 + α1)λn−1i + kα1λ
n−2
i + kα2λ

n−3
i∏

k 6=i

(λi − λk)

for every n ≥ 3.

7. Concluding Remarks and Perspectives

In this paper, we have studied the model of generalized ([k]; p; s)-Padovan–Perrin

sequences. Moreover, some identities and combinatorial identities for the model of

generalized ([k]; p; s)-Padovan–Perrin are provided. On the other hand, we pre-

sented a study of the characteristic polynomial associated with the generalized

([k]; p; s)-Padovan–Perrin sequence and provided analytic formulas, without using

the usual method of determinant. Also, in the context of the special case of

([k]; 2; 1)-Padovan–Perrin sequences, we present several properties, namely, we give
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some identities and combinatorial identities related to this sequence. In addition,

the use of the determinants of the Sylvester matrix allows us to obtain a new ana-

lytic representation. It seems to us that several results of our study are new in the

literature.
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