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Abstract
In this study, we investigate a model of generalized ([k];p; s)-Padovan—Perrin se-
quences and deal with a special case, namely, the k-Padovan—Perrin sequence. To
reach our goal, we consider some properties of the Fibonacci fundamental system,
related to the elements of this model. Several results of this model are established.
More specifically, we give some identities, as well as combinatorial and analytical
representations, related to the sequences of this model.

1. Introduction

Over the past decades, there have been several research papers on notable families
of number sequences defined by linear recursive relations, as well as their generaliza-
tions. In particular, the numbers of Fibonacci, Pell, Jacobsthal, Padovan, Perrin,
and Van der Laan are studied in the literature. These sequences of numbers have
been widely applied in various areas of mathematics and applied science, such as
physics and engineering, and also in architecture, nature, and art (see for example
[1, 11, 15] and references therein). The three classical families of integers of numbers
of Padovan, Perrin, and Van der Laan are defined by the following classical linear
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recursive relation of order 3 :
Vp = Up_o + v,_3, for every n > 3,

where the data of the initial conditions vy, v1, and ve, contributes to characterizing
the type of each sequence of these numbers. That is,

e for vy = vy = vy = 1, we get the Padovan numbers v,, = P,(Ll);
e for vg = 3, v; = 0 and vy = 2, we find the Perrin numbers v,, = Py(f);
e for vg =1, v1 = 0 and vy = 1, we obtain the Van der Laan numbers v,, = V,,.

Recently, abundant literature has been provided on generalizations of these three
types of sequences (see, for instance, [12, 13] and references therein). In addition,
several papers have established matrix representations of these sequences of num-
bers. In particular, the matrix representations of the sequences of Padovan and
Perrin numbers have been considered in many research papers (see, for instance,
[12)).

In the present study, we discuss the properties of a generalized model of Padovan
and Perrin numbers, defined by a general linear recursive relation. More precisely,
let k1, k2, p > 2, and s be positive integers, and set [k] = (k1,k2). Consider the
sequence {v,,([k]; p; ) }n>0 defined by the following linear recursive relation of order
S+p:

on([k];p; 8) = k1vn—s([k]; p; 8) + kovn—s—p([k]; 05 5), for n > s+ p, (1)

with initial conditions v;([k];p;s) = o € N, for 0 < j < s+p—1. As we will
see, Equation (1) represents the general model of the Padovan—Perrin recursive
relation called the ([k]; p; s)-Padovan—Perrin model. Our main tools are based on
the Fibonacci fundamental system related to the elements of the model defined by
Equation (1) and the matrix formulation of this linear recursive relation of order
s + p. Therefore, several new properties and identities of this general model are
established, and many results from the literature are recovered. More precisely, we
obtain the combinatorial expressions and the analytic formulas of sequences defined
by (1). Finally, several special cases of the literature and applications are discussed.

The outline of this paper is as follows. Section 2 concerns the generalized
([k]; p; s)-Padovan—Perrin model and its relation with the Fibonacci fundamental
system. Sections 3 and 4 are devoted to the matrix formulation and combinato-
rial study of sequences defined by (1). In Section 5, we establish the analytical
formulation for the generalized ([k]; p; s)-Padovan—Perrin model in terms of the pa-
rameters ([k];p;s). In Section 6, we apply our results to the special case of the
k-Padovan—Perrin sequence.
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2. The Generalized ([k];p;s)-Padovan—Perrin Model and Its Relation
with the Fibonacci Fundamental System

The general fundamental Fibonacci system related to sequences defined by a linear
recursive relation of the Fibonacci type represents a powerful tool for studying
these types of sequences. It has been considered in its general form for generalized
Fibonacci sequences by Rachidi et al. in [2, 8]. Subsequently, it was used in [16]
to study generalized Fibonacci numbers, in [17] to provide results on the gene-
ralized Pell numbers, and in [5] to establish the properties of a generalized Pell
model. Moreover, in [6] the generalized Cassini identities were provided using,
as an approach, properties of the Fibonacci fundamental system. This section
is devoted to the general fundamental Fibonacci system related to the ([k];p;s)-
Padovan—Perrin model defined in (1).

2.1. Preliminary Considerations on the ([k]; p; s)-Padovan—Perrin Model

As mentioned above, Equation (1) represents a general Padovan—Perrin model. In-
deed, we have the following special cases.

e For s = 1, Equation (1) is reduced to a recursive relation of order p, defining
a weighted p-generalized Fibonacci sequence.

e For s = 2, p = ky = ko = 1, Equation (1) represents the usual recursive
relation defining the Padovan—Perrin numbers (for more details, see [9, 19,
15)).

e For s=2,p=4k; =1 and k = ky > 2, Equation (1) represents the recursive
relation defining the k-Padovan—Perrin numbers.

e For s =2, p > 2and ks = k1 = 1, the recursive relation given by Equation
(1) defines the p-generalized Padovan—Perrin numbers.

e For s > 2, p > 2 and k; = ky = 1, the recursive relation given by Equation
(1) is nothing else but the (s, p)-generalized Padovan—Perrin numbers.

e For s > 2 p > 2 and k1 > 2 or ky > 2, the recursive relation given by
Equation (1) defines the ([k]; s; p)-generalized Padovan—Perrin numbers, or
just, ([k]; s; p)-Padovan—Perrin numbers.

The previous special cases show that Equation (1) defines a generalized Padovan—
Perrin model.
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2.2. The Fibonacci Fundamental System Related to (1)

For every j such that 1 < j < p 4+ s, we consider the sequence of the ([k];s;p)-
Padovan—Perrin numbers {vg )([k]; D; 8) }n>0 defined by

{vﬁlj)qk];p; s) = kv ([K]; pi s) + kvl (k)i ps s), for > s +p (2)

v%j)([k];p;s) = (5£le1; forn=0,1,...,s+p—1,
where 51-(j) =1ifi=j,and (51@ = 0 otherwise.
Example 1. For s =2, p = k; = ko = 1, Equation (2) is given by

v (1K) 152) = 05 (K); 152) + v 5([K); 1;2), for n > s +p
v (k)3 152) = 69) 5 for n =0, 1, 2.

Table 1 describes the values of these sequences for 0 < n < 11.

n 0[1[2[3[4[5[6]7][8]9][10]11
oK) [tlololiof1la]1]2]2]3]4
VD2 ool 1]2l2]3]a]l5 ] 7
WD) ool 1lolr[1]1]2]2]3 5

Table 1: Sequences {vflj)([k]; 1;2)} >0 with parameter [k] = (1,1) and 1 < j < 3.

Consider the set S((x};p:s) = {{v,&j)([k};p; $)in>0; 1<j<p+ s} Let us consider
the sequence {v,, ([k]; p; ) }n>0 defined by (1) with initial conditions ay, ..., apts—1-

Let {wy, ([k];p; ) }n>0 be the sequence of general terms

pts—1
wy ([k];p; 5) = Z a9 ([K]; s 5).
j=0

Then, using (2), we can derive that w;([k];p;s) = v;([k];p;s) = oy, for j =
0,1,---,p+s—1. We can show that the set S],p;s) generates the sequences of the
Padovan—Perrin model defined in (1), namely, w,, ([k]; p; s) = vn([k]; p; s), for every
n > 0. More precisely, we have the following result.

Proposition 1. Let {v,([k]; p; s)}n>0 be the sequence defined by the recursive rela-
tion (1) and with initial conditions ag, a1, ..., Qprs—1. Then, for every n > 0, we

have
p+s—1

vn([Klipis) = Y ool PO ((E]; s 9).
=0
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Proof. Let {w,,([k]; p; $) }n>0 be the sequence defined by

pts—1
wn([k);ps) = Y ootV (k] p;s), for every n > 0,
7=0

with initial conditions (oo, a1, ..., apts—1). For every n > p + s, we have
pts—1
wa([klspis) = Y ootV (k] p;s)
3=0
pt+s—1 ‘ )
= > aslkro (K] pis) + kav (K] i 8)]
3=0

= klwn—S([k];p; S) + k?’wn—p—s([k};p; 8)
Therefore, the sequence {wy,([k];p;s)}n>0 satisfies the recursive relation (1). In
addition, for every d such that 0 < d <p+ s — 1, we get

p+s—1
wa([kipss) = > o T (Kl pis) = aa,
j=0

because vfljﬂ)([k‘];p; s)=1if j =d, and Uéjﬂ)([k’];p; s) = 0if j # d. Thus, the two
sequences {v, ([k]; p; $) tn>0 and {wy, ([k]; p; s) }n>0 satisfy the recursive relation (1)

and own the same initial conditions ag, a1, ..., 0ps—1. Therefore, for every n > 0,
we have vy, ([k]; p; s) = w, ([k]; p; 8) = ?igil ajv,(fﬂ)([k];p; s). O

The proof of Proposition 1 is based on the following lemma.

Lemma 1. Consider two sequences {v, }n>0 and {wy }n>0 of the real vector space
E([k];p; s) of sequences satisfying the recursive relation (1), whose initial conditions
are ag, 1, ..., a1, and Bo, B1, ..., Br_1, respectively. Suppose that there exist ng,
mo, N in N such that vjin, = Wjtm,, for N < j < N 4+ r —1. Then, we have
Untng = Wntmg, for everyn > N.

The proof of Lemma 1 is similar to the proof of Lemma 2.6 of [17].

Let &([k];p;s) be the set of sequences {v,([k];p;s)}n>0 satisfying (1). Con-
sider the sequences {v, ([k]; p; s) tn>0 and {w, ([k]; p; s) }n>0 satistying (1), with ini-
tial conditions o, aq, ..., apys—1, and Bo, B, ..., Bpts—1, respectively. Applying
Proposition 1, we define the addition and the multiplication by a scalar as follows:

p+s—1
vn([K; 9 8) + wa((kipis) = D (g + Bvd TV (ks ps )
=0
3)
p+s—1

yeoon((kipis) = D v oot ([Kips s),

=0
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for every v € R. As a consequence of Proposition 1 we have the following corollary.

Corollary 1. The set E([k];p;s) of sequences satisfying the recursive relation (1),

equipped with the addition and the multiplication by scalars (3), is a real vector
space. Moreover, the set S((xj:p:s) = {{vg)([k];p; $)tnso; 1<j<p—+ s} is a gene-

rator system of E([k]; p; s).
Therefore, we have the following definition.

Definition 1. The set S((x);p;s) = {{vflj)([k};p; $)tnso; 1<j<p+ 5} is called the
Fibonacci fundamental system of the generalized ([k]; p; s)-Padovan—Perrin model
defined in (1).

2.3. Fibonacci Fundamental Solution Related to Equation (1)

For the Fibonacci fundamental system (2) related to the generalized ([k];p;s)-
Padovan-Perrin model (1), namely, S((i};p;s) = {{vg)([k];p; $)tnso; 1<j<p—+ s},

the sequences {v{") ([k]; p; s) }n>0 play a central role, in the sense that any other e-
lement of this system can be expressed in terms of this solution. More precisely, we
have the following result.

Proposition 2. Let S(ips) = {{vfmj)([k];p; $)tnz0; 1<j §p+3} be the Fi-
bonacci fundamental system of the generalized ([K]; p; s)-Padovan—Perrin model (1).
Then, for every j such thatp+1<j <p+s—1, we have

v ([K];p; ) = kvl P (K] pi ) + koo (K] pss) = 00, (K5 s s)

forn > 0. In particular, we have Ugj)([k’];p; s) = kgvflff)([k];p; s), for every j such

that 1 < j <p.

The proof of Proposition 2 is based on Lemma 1. Indeed, using Lemma 1 and
induction on j, we can prove Proposition 2 in a similar way to the proof of Theorem
2.1 of [17]. In addition, following Proposition 1, every {v, ([k];p; s)}n>0 defined by
the recursive relation (1) and with initial conditions (ag, a1, ..., pts—1), can also
be expressed in terms of the solution {v+?)([k]; p; ) }n>0. Indeed, we have

b
on(K]ipis) =k2 3 s (K] s 5)
=0

s+p—1
+ 3 gl (K] D5 8) + cspo 10§ (K] s ).
Jj=p+1

Taking into account the previous properties, we introduce the following definition.
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Definition 2. The sequence {0\ ([k]; p; ) }n>0, given by Equation (2) (with j =
r), is called the the Fibonacci fundamental solution of the generalized ([K];p;s)-
Padovan—Perrin model.

3. Matrix Formulation and Its Related Fibonacci Fundamental System

The matrix formulation related to sequences defined by a linear recursive relation of
the Fibonacci type has been considered in several papers. In addition, the relation
between matrices and the Fibonacci fundamental system provides interesting results
(see [5, 16, 17]). This section is devoted to exploring the matrix formulation of
Equation (1) and its close connection with the Fibonacci fundamental system.

3.1. Matrix Formulation of Equation (1)

The general setting of the matrix formulation of the recursive relation (1) is given
by

Vo ([k]; p; s) = A(([K]; p; 8))Vi—1([K]; p; 5), for every n > s+ p, (4)
where ~ ;
0 ... 0 k 0 ... 0 ko
1 ... 0 0 0 ... 0 0
01 0 ... 0 ...00
Akliprs)= |+ .. . o 11, ()
0 0 1 0 0
0 0 0 1 0]

Va-1([k];p;8) = Un—s([k];p;s)

Un—s—p([k]; ; 5)
Note that the matrix A([k];p;s) is of order s + p, the integer k; is located at the
s-th column, and the integer ko is located at the (s + p)-th column.
As an example, consider s = p = 2. Then, Equation (1) takes the form
vn([k];2;2) = kivn—2([k];2;2) + kv 4([1@] ;2) for n > 4, and its matrix for-
) = A([k]; 2

mulation is given by V,,([£];2;2) = A([k];2;2)V,_1([k]; 2;2), where

0 k1 0 ko Un 1([14;];2;2)
Mz = |3 ] ) b vz = 1D
00 1 0 vn—a([k];2;2)
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Note that the matrix A([k];2;2) is of order p + s = 4.
3.2. Powers of the Companion Matrix (5) by the Fibonacci Fundamental

System

A direct computation allows us to show that Equation (4) is equivalent to the
following matrix formulation:

Vo ([k];pss) = Ak p; )" P Vpysa (K] ps ),
where V4 s_1([k]; p; s) is as in (5), namely,

Up+s—1 ([k]7p7 S)
Vpis—1([k];p;s) = vp([k].;p; s)

Uo([ﬂ%?? s)

In this subsection we will give an explicit form of the entries of the matrix powers
A" ([k]; p; 8), in terms of the elements of the Fibonacci fundamental system (2).
This will allow us to obtain properties of the ([k]; p; s)-Padovan—Perrin sequences.
To reach our goal, we consider the well-known Casoratian matrix, related to the
Fibonacci fundamental system (2).

The Casoratian matriz a(n)7 associated to the family of sequences given by

{vn([k];p; s)(l)} neNy «- {Un([k];p; S)(S+p)}n€N; is defined by é(n) = (‘7(1)(”)’
., V() where VU (n), with 1 < j < s+ p, is the vector column V) (n) =
(Uf(lj)([kLpa S)a T ’Uizj—&)-s—&-p—l([k];p; S))t7 namQIY7
o (Kipis) o o (Rips) e o (Rprs)
C(n) = : ' : - :
Uy (Bhps) o ol i (Rhps) o ol (Miwss)

(see, for instance, [4]).
A direct verification shows that the Casoratian matrix C(n) can be written in
the form C'(n) = J x M, ([k]; p; s) x J, where M, ([k]; p; s) is in the form:

o (Kpss) o 0P (Kpss) o o (K] pis)
: : : . : , (6)
o (s oK) e (Kess)

where J = (b;, j)1<i, j<p+s is the anti-diagonal unit matrix, whose entries are given
by b; j=1fori+j=p+s+1andb; ; =0 otherwise.



INTEGERS: 24 (2024) 9

Consider the sequence {v,([k];p;$)}n>0 given in Equation (1) and the vector
column Y,, = (Ungpts—1([k];p;8), -.., vn([k];p;s))". The sequences defined by (1)
take the equivalent matrix form:

Yot1 = A([k;p;8)Yp, n>s+p—1, (7)

where A([k]; p; $) is the companion matrix (5). That is, Equation (7) can be written
in the form:
Yogsip-1 = A"([k;p;8)Ysyp1, n2s+p—1,

where Ys,—1 is the vector column Ysi,—1 = (vpys—1([k];p;s), -.., vo([k];p;s))t.
By considering the generalized fundamental system, a direct computation shows
that the vector Y, 4s1p—1 can be written in the matrix form:

Yn+s+p—1 = Mn([kLP, S)Ys+p—la (8)

where the entries m&?) of the matrix M, ([k];p;s) = A"([k];p;s) are stated, in
terms of the elements of the generalized Fibonacci fundamental system, in the form
mz(?) = Uiiﬂ_;jil)([k]; p;s) (for more details, see [2, 8]). Equations (7) and (8)
permit us to establish the following result.

Theorem 1. Let Srjpis) = {{vy(lj)([k];p;s)}nzo; 1<j<p+ s} be the Fibonacci
fundamental system of the generalized ([k]; p; s)-Padovan—Perrin model defined in
(1). Then, for every n > 0, the entries of the powers A™([k]; p;s) = (G’E?))lﬁiJSZD-FS
are given in the form:

aif) = o L (K s). (9)

In other terms, we have A™([k]; p; s) = M, ([k]; p; s).

It is worth noting that Equation (9) has been established by induction (see [2, 8],
and references therein). Since the Casoratian matrix of the Fibonacci fundamental
system of the generalized ([k];p; s)-Padovan—Perrin model defined in (1), namely,

S((k]ipss) = {{v,(lj)([k};p; $)tnso; 1<j<p+ s}, is defined by é(n) and Expression

(6), the result of Theorem 1 allows us to connect the Casoratian matrix C (n) of the
Fibonacci fundamental system (1) with the powers A™([k]; p; s) of the matrix (5).

3.3. Some Identities of the Generalized ([k]; p; s)-Padovan—Perrin Model

In this subsection, we will emphasize some identities of the generalized ([k]; p; s)-
Padovan—Perrin model. For this purpose we will start by talking about the entries
of the companion matrix, then we will generalize the results. As a consequence of
the previous propositions, we can exhibit some identities satisfied by the elements
of the generalized Fibonacci fundamental system.
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Equation (6) allows us to write C(n +m) = JA™™([k];p;s)J = JA™([k]; p; s)
A™([k];p;s)J. Since J is an anti-diagonal matrix, then it follows that J - J =
diag(1 7...,1). Hence, we get C(n +m) = (JA"([k];p;s)J) - (JA™([k];p; s)J) =

C (n) .C (m). Then, for every positive integer n and m, we can verify the Casoratian
matrix property, C(n+m) = C(n) - C(m). In general, given that A™"([k]; p;s) =
A™([K];pis) - A™([K];pis) = AP (Kl prs) - A™([K]ipss) = (@l )1<i j<asps it fol-
lows

s+p s+p

m+" Zak ag;) Za(z)akj .

By Equation (9), the identity a(") — plstr- J_Jr.l)([k];p; s) is verified, which implies

n+s+p—1i
that a(z) = Uﬁls;:fgﬂplﬁl)([k],p, s) and a(n) = visfszjjkl)([k};p; s). Therefore, we have
s+p .
m+n s+p—k+1 s+p—j+1
) Ejakam = > oty (K ps )0, L (K pis).
k=1
On the other side, we have ai;mrn) = vi‘iﬁ;@i;ll([k], p; s), which allows us to get
the following formulas:
( ) 5= ) ( )
s+p—j+1 s+p—k+1 s+p—j+1
vn+71r)L+js+p 7 va+§+p 7 } p;s)vn—l-szzi-p]—k ([k]vpvs)

In summary, we have the followmg result.

Proposition 3. Let S(ipis) = {{véj)([k];p; $)tnso; 1<j<p+ 3} be the Fi-

bonacci fundamental system of the generalized ([k]; p; s)-Padovan—Perrin model (1).

Then, for all integers m,n >0 and 1 <i,5 < s+ p, the following identity holds:
s+p

s+p—j+1 s+p—k—+1 s+p—j+1
Uﬁ;,—ri-‘,—i-{-p) ’L Z vm-‘,—g-‘,—p i ) } p; S)”i:-sli{-pj—k; )([k] 3 p3 S) (10)
In general, we have the following theorem below.

Theorem 2. Let S((;pis) = {{U(J)([ LDy 8)tn>0; 1 <ji<p+ s} be the Fibonacci
fundamental system of the generalized ([k]; p; s)-Padovan—Perrin model defined in
(1). Then, for all integers m,n > 0 and t,q with 1 < t,q < s+ p, the following
identities are verified:

U’(glnﬂ([ =(k2) vaiﬁd )T(L:f)uq([k];p; s)
s+p—1
thy Y vt (g )0l (K s)
d=p+1

+ kol (K] s )0y (K] s 8),
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for1<q<p,
(q) —k Z (s+p) :5) (s+p) ([k]); p; 5)
(| 2D Vpierallklipss Untd—14(s+p)—q LKL P38
pt+s—1
(s+p) (s+p) “ e
+ Z Um+t+d p;s)v Untd—1+(s+p)— q([k]’p’ 5)
d=p+1

+ ot ([K]: p; S)viiﬁp,mﬁp),q([k];p; 5);

forp+1<qg<s+p-—1, and, for q= s+ p,

vt (K] kQZv,:ii;d )0l (K] i s))
s+p p
+
+ 3 oS (K)ol (K] s ).
d=p+1

Proof. Making the changes of variables s+p—j+1=g¢q,t = s+p—i,andd = s+p—

k+1 in Equation (10), we get Uﬁlﬁert([k] p;s) = flﬂl) vfjit([lﬂ];p; s)vr(:ﬂzd_l([k];p; s),

for all integers m,n > 0 and ¢,q with 1 <t¢,q < p+ s. Applying Lemma 1 we show
d d

that v\, ((Kl;pss) = vl (K] pss) and o0, ([K];ps) = v\, ([K];p;s) and

consequently,

s+p

U’SLq‘i)”rTL*Ft Z Um+t gl-s)-d 1 ([k]; p3 s)
5+p
= vaﬂ 7(qud L([Flips s),

for integers m,n > 0 and ¢, q such that 1 <t,q < s+ p.

Since Proposition 2 establishes v(])([k:];p; s) = Ufls_:r(z)_kp) ;([K]; p; s) for every j

such that p+1 < 7 <s+p—1, and vg)([k] p;s) = kgvn‘irjp)([k];p; s) for every j
such that 1 < j < p, we get the following results:

s+ s+
U’(glnﬂ([ Z vm+f+d S)v£+f21+q([k];p; s)
s+p—1
+ .
ke Y o () p )0l (R i)
d=p+1

+ kvt (K] s )l (KD pss),
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for 1 < g <p, and

+ s+
vf{’lm+t([k];p; s) =k Z vv(rj-s-f-)s-d p; s)vf;ff)u(ﬁp)—q([k};p; 5)
' o) (s+9)
s+ s+
Z ’Um+f+d S)Un+;)—1+(s+p)—q([k];p; S)
d=p+1
s 5+
+ Ugnif)([k]apv 5)1}7(1152p_1+(5+p)_q([k];p; 5)3

forp+1<g<s+p—1. Taking ¢ = s+ p in Equation (10), we get

oo (] kzzvfsifid pis)uy oL (K 9))
s+P
+ Y it resp-a(Fips sy (K s o),
d=p+1
which concludes the proof. O

To better clarify our results, we apply Theorem 2, for the case s = 2,p = k; =
ko = 1, associated with Padovan—Perrin numbers. Therefore, we arrive at the
corollary below.

Corollary 2. The terms of the Padovan—Perrin sequence {U7(L3)}n20 with initial
conditions vg = 0,v1, = 0 and vy = 1, verify the following identity:

o (K] 152) = o, (K] 1;2)0 (| +Zvr+g k) 152)08) (ks s 9).

4. Combinatorial Expression of the ([k]; p; s)-Padovan—Perrin Sequences

The combinatorial expressions of sequences {u, },>o defined by the recurrence re-
lation u,4+1 = Z:;(} a;Un_;—1, for n > r, have been largely studied in the literature
(see, for example, [14, 18] and references therein). In [14], it was established that
the combinatorial form for u,, is given by

Up = p(n,m)Aog +p(n—1,r)A1 +---+p(n—r+1,r)A,_1, for every n >r, (11)

such that 4,, = a,_1um + - - - + aur—1 and

to+ -+ t—1)! ¢
p(n,r) = E ( -~ a ') ag’alt...a; =), for every n > r,
) - tolt! .t !
o+2t1+-+rtr_1=n—r

(12)
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where p(j,7) =0for 0 <j <r—1and p(r,r) =1.

By replacing the coefficients of the recurrence relation u,+1 = Z::_Ol iUy —;—1 for
ap=a1 =-+=0as5-2=0;as_1 =ki, a5 =+ = asyp—2 = 0 and as4p—1 = ko, with
the initial conditions ag, - -+ , @y—2, a1, we get Equation (1) defining the model of
([k]; p; s)-generalized Padovan—Perrin sequences. Therefore, the construction that
was done in [14] and Equation (12) imply the following result on the combinatorial
aspect of the model of ([k]; p; s)-generalized Padovan—Perrin.

Proposition 4. Consider the sequence of the ([k]; p; s)-generalized Padovan—Perrin
numbers given by Equation (2), with initial conditions oy = ... = asyp—2 =0 and
0syp—1 = 1. Then, the following identity is verified:

v P (K] pis) = p(n+ 1,5+ p),
forn > s+ p, with

ts—1 + tspp—1)!
p(n,s +p) = Z M(kl)ts—l(kg)ts-ﬂ;—l,

ts_1'tsaip_1!
(8)ts—1+(s4+P)tosp_1=n—(s+p—1) ° Poetp—1

for everyn >s+p, p(j,s+p)=0for0<j<s+p—1, and p(s+p,s+p) =1.
Proof. By the initial conditions ag = ... = as4p—2 = 0 and asy,—1 = 1, we have
Ap=0,41=0,..., A1 =k, A =0,..., Asyp—1 = k2. Then,
o (k) pi ) = kipls = 2,5 +p) + kap(n — (s +p) + L5 +p)
= kol (k)i ps 8) + kv (K s ),
or v7(f+p)([k};p;s) = p(n+1,s+p), where

(ts—l + ts+p—1)!

|

k ts—1 k tstp—1
T (k1)"" (k2) :

p(n,s+p) =
(8)tam1+(5+p)tatp1=n—(s+p—1)

for every n > s+p, p(j,s+p) =0for 0 < j<s+p—1,and p(s+p,s+p)=1. O

In general, we have the theorem below.

Theorem 3. Consider the sequence of the ([k]; p; s)-generalized Padovan—Perrin
numbers given by Equation (1) with arbitrary initial conditions ag,. .., Xstp_1-
Then, we have

vn([k];p3s) = p(n, s+p)Ag+p(n—1,5+p)A1+---+p(n—(s+p)+1,5+p)Aspp_1,

for every m > r, such that Ay = koo + k1ap, A1 = kaos + k1ot ..., Asm1 =
koas—1 + kragyp1, As = kaaus, ..., Agyp1 = kaasyp1, and

ts— + ts — '
pln.s+p) = ) (aoa o) e oo,
(8)ts—1+(s+p)tsyp—1=n—(s+p—1)

t571!t5+p71~
for everym >s+p, p(j,s+p) =0 for0<j<s+p—1and p(s+p,s+p)=1.
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Proof. The proof is given by the direct application of Expressions (11) and (12)
with arbitrary initial conditions ay, ..., ®s1p—1. O

Definition 1, Theorem 3 and Proposition 4 show us that p(n + 1,5 4+ p) is a
Fibonacci fundamental solution for the Fibonacci fundamental system of the gene-
ralized ([K]; p; s)-Padovan—Perrin model defined in (1).

Combining Propositions 4 and 2 we obtain the following combinatorial identities
for the sequences of the Fibonacci fundamental system related to the generalized
([k]; p; s)-Padovan—Perrin model defined in (1).

Proposition 5. Let Sipis) = {{vfmj)([k];p; $)tnz0; 1<j §p+3} be the Fi-
bonacci fundamental system of the generalized ([k]; p; s)-Padovan—Perrin model given
in (1). Then, for every n > 0, we have:

wpqmwﬁ):Ugﬁlmﬁqum):pmwws+p)—j+Ls+pL

for every j such thatp+1<j<p+s—1, and
v ([K);ps 5) = kap(n + j + 1,5 + p),
for every j such that 1 < j < p, where

(ts—1+ ts-‘rp—l)!

|

kl ts—1 k‘g t.€+p—1)
i e LR C

p(n, s +p) =
(8)ts—1+(s+p)tsyp—1=n—(s+p—1)

for everymn >s+p, p(j,s+p) =0 for0<j<s+p—1, and p(s+p,s+p) = 1.

Moreover, following Proposition 3 and Theorem 2, we obtain the combinatorial
identities below.

Theorem 4. Let S).pis) = {{vy(lj)([k];p;s)}nzo; 1<j<p+ s} be the Fibonacci
fundamental system of the generalized ([k]; p; s)-Padovan—Perrin model (1). Then,
for all integers m,n > 0 and t,q such that 1 <t,q < s+ p, we have

p
oD (Kipss) =(k2)® > plm 4+t +d+ 1,5+ p)p(n +d + g, +p)
d=1
s+p—1
+ ko Z pm+t+d+1,s+p)p(n+d+q,s+p)
d=p+1

+ kap(m +t+1)p(n+s+p+q),
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for1<q<p,

p
v (Kspss) =ka Y p(m+t+d+ 1,5 +p)pn+d+ (s +p) — q.5+p)

d=1
pts—1

+ Y plmtt+d+1s+pp(n+d+(s+p)—qs+p)
d=p+1

+pm+t+1,s+p)p(n+s+p+(s+p)—qs+p),

and forp+1<qg<s+p—1,

p—1
pn+m+t+1,s+p) =ky > pm+t+d+1,s+p)p(n+ds+p)
d=1
s+p
+ > plmtt+Ls+ppn+dpts),
d=p+1
where
ts—1 +tspp_1)!
p(n,s +p) = Z %(kl)ts‘—l<k2)ts+p—lj

to_1tsrp_1!
(s)ts—1+(s+p)tsyp—1=n—(s+p—1) s—1:ls+p—1

for everym > s+p, p(j,s+p)=0for0<j<s+p—1, and p(s+p,s+p) =1.

Observe that the results of this section give us explicit formulas for the Fi-
bonacci fundamental system of the generalized ([k]; p; s)-Padovan—Perrin model in
(1). Moreover, it seems to us that the combinatorial identities presented in this
section are new in the literature.

5. Analytic Expression of the ([k]; p; s)-Padovan—Perrin Sequences

Let {vn([k]; p; $) }n>0 be the sequence defined by the recursive relation (1) and with
initial conditions (ag, a1, ..., apts—1). Its characteristic polynomial is given by
P(z) = 2517 — k1 2P — ks,
Suppose that A is a double root of P(z). Then, we have
P(\) =0and P'(\) =0.

where P'(z) = 4£(z).
Consider the parameter p = 1, or P(z) = 25! — k2 — ky. Then, we have the

following algebraic equations,

)\S+1 = k1>\ + kz and (S + 1))\5 = ]{11.
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k
Hence, we get \° = _:1. Since ATt = XA\ = k1A + ko, then we derive,

S
1 ko
A —1) ==
<8+1 ) k1

Thus, if A a double root of P(z) with p =1, then A\ =

(—k2(3+1)>5 _k

kis s+1°

Therefore, we get the following result.

—k‘z(s + 1)

. Hence,
kl S

—kg(s+1))s

Lemma 2. Let kq, ko and s be positive integers, and p = 1. Suppose ( A
1S

k
+ +11. Then, the roots of the polynomial P(z) = 25T — kyz — ky are simple.
S
Now suppose that p > 2. Hence, we have the following algebraic equations:
/\Ser = k1>\p + k‘g and (p + 8))\3+p71 = pkl/\pil.

k
p—i—ls' Since AP = XPA% = k1 \P + kg, then we derive

APAS — k1 AP = ko. Hence, we obtain

Therefore, we get \° =

k
(A* — k)N = (kAP ! — k) AP = (pp+15 _ 1) AP = oo

k
pts =2, Therefore, we have
S kl

Thus, we obtain \P = —

sin(JA]) = 1n <;fg> and pln(|A]) = In (pl—s:j) .

Hence, we have
pki \* _ (p+ska\?
p+s N s Kk ’

and a direct computation implies that

(p+s>5_p _ ka’p.
P k3

In summary, we obtain the following lemma.

Lemma 3. Let ki, ko, p and s be positive integers, with p > 2. Suppose that
A\ S—P s+
(m) #+ k- ° Then, the roots of the polynomial

P k3
P(2) = 2°TP — k2P — ko

are simple.
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Moreover, as we have

k k
A = pp L oand NP = EE5R2

+s s ki’

k
we show that |A|° < kq and |A]P > 1?2 Suppose that k3 < ko and p < s, then we
1

have . f
AP > 2 =22k >k > 1
[A[P > o k% 1> R =
Thus, we get [A| > 1 and
AP > k1 > A,

which is impossible, because |A| > 1 and p < s.

Lemma 4. Let ki, ko, p and s be positive integers, with p > 2. Suppose that
k? < ko and p < s. Then, the roots of the polynomial

P(z) = 2517 — k2P — ky
are simple.

For a linear recursive sequence of Fibonacci type {uy, },>0 defined by recurrence
relation u,4+1 = Z:Ol a;Uy_;_1, for n > r, the analytic expression is expressed in
terms of the roots of the associated so-called characteristic polynomial and their
multiplicities (see, instance, [3, 7, 18]). More precisely, the sequence {p(n,r)}n>0

defined by (12) is expressed in the analytical form given in the following lemma.

Lemma 5. Let {p(n,s+p)}n>0 be the sequence defined by (12). Suppose the roots
ALy o, Asyp Of its characteristic polynomial

P(z) = 2P — apz®tPl — . — Ggpp—2% — Gsyp—1
(asyp—1 # 0) satisfy \i # Aj for i # j. Then, we have

n—1
7

s+p )\TL*I
i=1 g

— TT (N =)

ki

(14

for every n > s+ p;

otherwise p(s+p,s+p) =1, p(i,s+p) =0 fori < s+p—1, where P'(z) = 2£(z).

Combining the result of Theorem 3 and Lemmas 3, 4, and 5 we obtain the
following analytical identities.

Proposition 6. Consider k1, ko, p, and s in N*, with p > 2. Suppose that k? < ko
and p < s. Consider the sequence of the ([k];p;s)-generalized Padovan—Perrin
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numbers given by Equation (1), with arbitrary initial conditions o, ..., Xs+p—2,
Osyp—1. Suppose the roots A1, -+, Asyp of its characteristic polynomial

_ st +p—1
P(z) =2°"P —qpz"P7" — . — Qeqp_22 — Qspp1

(asyp—1 # 0) satisfy \; # Aj for i # j. Then, it is verified that:

s+p )\7.’*1 s+p )\'(Lf(erp)
vn([k]ipis) = Ao Z m +o+ Aspa Z m,
=1 =1

for every m > s+ p, such that Ag = kacg + k10, Ay = koan + krogpyr, ..., As—1 =
]412045_1 + k’10¢s+p_1, As = ]{12045, ey As+p_1 = k2a5+p_1.

6. A Special Case

In this section, we present the results of the previous sections applied to a special
integer sequence, namely, the k-Padovan—Perrin numbers.

Recall that for s = 2, p =1 and [k] = (1, k), k > 2, Equation (1) represents the
recursive relation defining the k-Padovan—Perrin numbers, namely,

vn([k]; 1;2) = vp—a([k]; 1;2) + kv,—3([k]; 1;2), for n > 3, (13)

with initial conditions v, ([k]; p; s) = a;, for 0 < j < 2, where a; € N.
The Fibonacci Fundamental System S((.1;2) = {{véj)([k:]; 1;2)bn>0; 1 <j < 3}
associated to the k-Padovan—Perrin numbers is given by

v (k)5 152) = 05 (k)5 152) + kol ([k]; 152), for n > s +p
vﬁf)([k]; 1;2) = 57(1]-_‘)_1; forn=0,1, 2,

where 6§j) = 1if i = j, and (51-@ = 0, otherwise. Thus, by Proposition 1, the
k-Padovan—Perrin numbers are given in the form, for every n > 0,

vn([K];1;2) = ool ([k]; 152) + crv @ ([k]; 152) + asol® ([K]; 1;2).

In addition, following Proposition 2, we have w(ll)([k;]; 1;2) = kvfﬁl([kj]; 1;2), and
vg)([kj]; 1;2) = vfﬁl([k]; 1;2) for n > 0. Therefore,
on([k]; 1;2) = (kao + an)oly (K 152) + asel([K]; 1;2).

The matrix formulation for Equation (13) is given by

Va([k]; 152) = A([k]; 1;2) Vi1 ([K]; 15 2),
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where
0 ki1 ko vn 1([k]7 172)
A(k;1;2)=1(1 0 0] and V,_1([£];1;2) = 2([k]; 1;2)
0 1 0 /Un 3([k]7172)

By direct application of Theorem 1, the entries of the powers A™([k];1;2) =
(ag;))lgi)jgg) are given by al(-j) = vfidjtl)([k]; 1;2), for every n > 0. Then, using

Proposition 3 and Theorem 2, we derive the following proposition.
Proposition 7. Let S();1;2) = {{vm([ 13 1:2)bs0; 1 <5 < 3} be the Fibonacci
fundamental system of the generalized ([k]; 1;2)-Padovan—Perrin model (13). Then,

for all integers m,n > 0 and i,t such that 1 < i,t < 3, the following identities are
verified:

3
3—7+1 3—k+1 3 1
v (K 152) = S oD (k) 152008 D (K] 1 2),

k=1

U (R 152) =(k)05 oy (K] 15 2)0 2 ([K]: 132)
+ koS o (K] 12)05 5 (K] 152)

+ kol (K] 152) 025 (K] 15 2),

Ot (K 152) =kt (U] 15 200 () 152) 4+ 0o ()5 15 2)0 2 () 152)
() 152002 () 1:2),

and
v i (K] 1:2) kvESLtH([k]; 1;2)v) ([K]; 1;2)))

+ Z Um+t+3 (k] 15 Z)U,(ﬁd,l([k]; 1;2).

Next, we will give explicit combinatorial formulas for k-Padovan—Perrin numbers.
By replacing the parameters s = 2, p = 1, and [k] = (1, %),k > 2 in Equation (12)
we get

(t1 + t2)!
p(n,3) = Z W(k)t2’ (14)
2y +3ta=n—2 1%
for every n > 3, p(7,3) = 0 for 0 < j <2, and p(3,3) = 1. Then, a direct application
of Theorem 3 allows us to obtain the following proposition.
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Proposition 8. Consider the sequence {v,([k]; 1;2)}n>0 of the k-Padovan—Perrin
numbers defined by Equation (13), with arbitrary initial conditions ag, a1, aa. Then,
we have

vn([k]; 1;2) = p(n, 3)(kag + a1) + kaip(n — 1,3) + kagp(n — 2,3),
for every m > r, such that p(n,3) is given in the form (14).

Similarly as in Section 4, as a consequence of Propositions 5 and 8, we get the
explicit combinatorial formulas to the generalized ([k]; 1; 2)-Padovan—Perrin model
(13).

Proposition 9. Let S(i);1;2) = {{vﬁlj)([k‘]; 1;2) >0, 1<j < 3} be the Fibonacct

)
fundamental system of the generalized ([k];1;2)-Padovan—Perrin model given in
(13). Then, for n > 0, we have

v ([k];1;2) = p(n + 1,3),
vl ([K]; 152) = p(n + 2,3),
vV ([K]:1;2) = kp(n +2,3),

where p(n,3) is given in the form (14).
In addition, the combinatorial identities are provided in the result below

Theorem 5. Let S(jx);1;2) = {{véj)([k]; 1;2)bn>0; 1 <5 < 3} be the Fibonacci fun-
damental system of the generalized ([k]; 1;2)-Padovan—Perrin model defined in (13).
Then, for all integers m,n > 0, and t such that 1 <t < 3, it is verified that we have

+kp(m+t+3,3)p(n+3,3)
+Ekp(m+t+1,3)pn+s+p+1,3),
0 (K] 93 8) =kp(m + £+ 2,3)p(n + 2,3) + p(m +t + 3,3)p(n + 3,3)
+p(m+t+1,3)p(n+4,3),

and

3
pn+m+t+1,3) =kp(m+t+2,3)p(n+1,3)+ Y plm+t+1,3)pn+d,3),
d=2

where p(n,3) is given in the form (14).
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Now we will study the analytical formulas for v, ([k]; 1;2) using the determinant
approach. The Sylvester matriz is a matrix associated with two univariate polyno-
mials P(z) and Q(z), whose entries are given by coefficients of these two polynomials
[10]. When the determinant of the Sylvester matrix Sp ), called the resultant, is
zero, then the two polynomials have a common root (in the case of coefficients in
a field) or a non-constant common divisor (in the case of coefficients in an integral
domain). Considering the polynomial P(z) and its derivative P’(z), if the determi-
nant of the Sylvester matrix Sp p is different from 0, then the polynomials P(z)
and P’(z) do not have common roots. This means that if det(Sp p) # 0, then the
roots of P(z) are simple. In this special case the associated characteristic polyno-
mial is P(z2) = z® — 2z — k, with derivative P'(2) = 322 — 1, and its Sylvester matrix
associated to P and P’ is given by

10 -1 -k 0
01 0 -1 —k
Spp=|30 -1 0 o0
03 0 -1 0
00 3 0 -1

Hence, det(Sp p/) = 27k* — 4. Then, det(Sp p) # 0 if k # £,/ 5=, which permits
us to get the following analytical property.
Proposition 10. Consider the sequence {v,([k]; 1;2)}n>0 of the k-Padovan—Perrin
numbers defined by Equation (13) with arbitrary initial conditions ag, a1, . Sup-

pose that k # +4/ % and the roots \1,\a and A3 of its characteristic polynomial
P(z) = 23 — 2 — k, satisfy \; # \j for i # j. Then, the following is true:

3 n—1 n—2 n—3

(kap + a1) AP + kag A% + kag Al
([k] 1 2) — 7 7 7
Z:1 [T (N =)

ki

9

for every n > 3.

7. Concluding Remarks and Perspectives

In this paper, we have studied the model of generalized ([k]; p; s)-Padovan—Perrin
sequences. Moreover, some identities and combinatorial identities for the model of
generalized ([k]; p; s)-Padovan—Perrin are provided. On the other hand, we pre-
sented a study of the characteristic polynomial associated with the generalized
([k]; p; s)-Padovan—Perrin sequence and provided analytic formulas, without using
the usual method of determinant. Also, in the context of the special case of
([k]; 2; 1)-Padovan—Perrin sequences, we present several properties, namely, we give
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some identities and combinatorial identities related to this sequence. In addition,
the use of the determinants of the Sylvester matrix allows us to obtain a new ana-
lytic representation. It seems to us that several results of our study are new in the
literature.
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