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Abstract

The continued fraction expansions of quadratic irrational numbers are closely re-
lated to the fundamental units of the real quadratic fields. It is well known that
the continued fraction expansion of

√
d (respectively (1 +

√
d)/2) has the form

[a0; a1, . . . , ald−1, 2a0] (respectively [a′0; a′1, . . . , a
′
l′d−1

, 2a′0 − 1]),

where a1, . . . , ald−1 (respectively a′1, . . . , a
′
l′d−1

) is a palindromic sequence of positive

integers. In this paper, for any given positive integer ld (respectively l′d) and a
palindromic sequence of positive integers a1, . . . , ald−1 (respectively a′1, . . . , a

′
l′d−1

),

we completely classify when a value of d exists that conforms to the form of the
continued fraction
√
d = [a0; a1, . . . , ald−1, 2a0] (respectively (1 +

√
d)/2 = [a′0; a′1, . . . , a

′
l′d−1

, 2a′0 − 1]).

1. Introduction

Let d be a non-square positive integer. We denote the continued fraction of
√
d by

√
d = a0 +

1

a1 +
1

· · · +
1

ald +
1

a1 + · · ·

= [a0; a1, . . . , ald ],

where ld is the length of the period of the continued fraction expansion. Then the

period is palindromic, that is, ald−t = at for 1 ≤ t < ld and ald = 2a0 (see [15], Satz
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3.29). Similarly, we denote the continued fraction of (1 +
√
d)/2 by

1 +
√
d

2
= a′0 +

1

a′1 +
1

· · · +
1

a′l′d
+

1

a′1 + · · ·

= [a′0; a′1, . . . , a
′
l′d

],

where l′d is the length of the period of the continued fraction expansion. Then the

continued fraction of (1 +
√
d)/2 has a similar property with the continued fraction

of
√
d. In fact, the period is also palindromic and a′l′d

= 2a′0−1 (see [15], Satz 3.30).

There exist many results for the relation between the continued fraction of
√
d

and the fundamental unit of the real quadratic field Q(
√
d) [1, 2, 3, 4, 11, 12, 17, 18].

In particular, for an explicit form of the fundamental unit of Q(
√
d), the following

theorem is well known.

Theorem 1 ([4, 12]). Let d be a positive square-free integer and εd the fundamental

unit of the real quadratic field Q(
√
d). Let ld be the length of the period of the

continued fraction of
√
d and pld−1/qld−1 the (ld − 1)-th convergent of it. Then

εd = pld−1 + qld−1
√
d

or

ε3d = pld−1 + qld−1
√
d,

and the latter can only occur if d ≡ 5 (mod 8).

Theorem 1 says that except for the case in which d ≡ 5 (mod 8), the fundamental

unit of the real quadratic field Q(
√
d) is εd = pld−1 + qld−1

√
d. If d is a positive

square-free integer congruent to 5 modulo 8, then εd = pld−1 + qld−1
√
d or ε3d =

pld−1 + qld−1
√
d.

In this paper, for any given positive integer ld (respectively l′d) and a palin-

dromic sequence of positive integers a1, . . . , ald−1 (respectively a′1, . . . , a
′
l′d−1

), we

completely classify when a value of d exists that conforms to the form of the con-

tinued fraction

√
d = [a0; a1, . . . , ald−1, 2a0] (respectively (1 +

√
d)/2 = [a′0; a′1, . . . , a

′
l′d−1

, 2a′0 − 1]).

2. Preliminaries

In this section, we start with the basic properties of a continued fraction. Similar

discussion and the proofs for the properties can be seen in many excellent books and
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papers such as [5, 6, 8, 9, 13, 14, 16]. First, we obtain positive integers pn, qn from

partial quotients a0, a1, . . . , an of the continued fraction of
√
d by using recurrence

relations:

p−1 = 1, p0 = a0, pn = anpn−1 + pn−2 (n ≥ 1), (1)

q−1 = 0, q0 = 1, qn = anqn−1 + qn−2 (n ≥ 1),

r−1 = 1, r0 = 0, rn = anrn−1 + rn−2 (n ≥ 1).

Note that
pn
qn

= [a0; a1, . . . , an], limn→∞
pn
qn

=
√
d,

and
qn
rn

= [a1, a2, . . . , an].

We can easily prove the following recurrence relations for the sequences {pn}, {qn},
and {rn}:

qnrn−1 − rnqn−1 = (−1)n, (2)

qnrn−2 − rnqn−2 = (−1)n−1an, (3)

pn − a0qn = rn. (4)

We can also give a similar expression for the continued fraction expansion of (1 +√
d)/2. For any positive integer ld (respectively l′d) and a palindromic sequence of

positive integers a1, . . . , ald−1 (respectively a′1, . . . , a
′
l′d−1

), the necessary and suffi-

cient conditions for the existence of d having the form of the continued fraction

expansion

√
d = [a0; a1, . . . , ald−1, 2a0] (respectively (1 +

√
d)/2 = [a′0; a′1, . . . , a

′
l′d−1

, 2a′0 − 1])

are known as follows.

Proposition 1 ([7]). There exists d having the form of the continued fraction
√
d =

[a0; a1, . . . , ald−1, 2a0] if and only if one of the following two cases holds:

(i) qld−1 is odd;

(ii) both qld−1 and rld−2 are even, and qld−2 is odd.

Proposition 2 ([10]). We define p′i/q
′
i by the i-th convergent of the continued

fraction of [a′0; a′1, . . . , a
′
n] and q′i/r

′
i the i-th convergent of the continued fraction

of [a′1, . . . , a
′
n]. Then there exists d having the form of the continued fraction (1 +√

d)/2 = [a′0; a′1, . . . , a
′
l′d−1

, 2a′0 − 1] if and only if one of the following two cases

holds:

(i) q′l′d−1
is odd;
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(ii) both q′l′d−2
and r′l′d−2

are odd, and q′l′d−1
is even.

Propositions 1 and 2 give the necessary and sufficient conditions for the continued

fractions of
√
d (respectively (1+

√
d)/2) to exist. We are interested in the conditions

to immediately check from a given sequence a1, . . . , ald−1 (respectively a′1, . . . , a
′
l′d−1

)

whether the continued fraction of
√
d (respectively (1 +

√
d)/2) with that sequence

as partial quotients exists.

3. Main Theorems

First, we consider the recurrence relation qi and ri in Equation (1).

Proposition 3. For 0 ≤ i ≤ l − 2, we have the following recurrence relations:

(i) ql−1 = qiql−1−i + qi−1ql−2−i,

(ii) rl−2 = rirl−1−i + ri−1rl−2−i.

Proof. If i = 0, then ql−1 = q0ql−1 + q−1ql−2 since q−1 = 0 and q0 = 1 by Equation

(1). Suppose that ql−1 = qiql−1−i + qi−1ql−2−i for 1 ≤ i ≤ l − 3. Then

ql−1 = qiql−1−i + qi−1ql−2−i

= qi(al−1−iql−2−i + ql−3−i) + qi−1ql−2−i

= qi(ai+1ql−2−i + ql−3−i) + qi−1ql−2−i

= (ai+1qi + qi−1)ql−2−i + qiql−3−i

= qi+1ql−2−i + qiql−3−i

= qi+1ql−1−(i+1) + q(i+1)−1ql−2−(i+1).

In a similar way, one can also prove the recurrence relation (ii) for ri.

In particular, if l is even, we derive the following results for parity, which remain

relevant for understanding the structure of these sequences.

Corollary 1. For 0 ≤ i ≤ l − 2, we have the following equations for parity:

(i) ql−1 ≡ al/2ql/2−1(mod 2),

(ii) rl−2 ≡ al/2rl/2−1(mod 2).

Proof. Substituting i = l/2 in the recurrence relation (i) for qi of Proposition 3, we

have

ql−1 = ql/2ql/2−1 + ql/2−1ql/2−2

= ql/2−1(ql/2 + ql/2−2)

= ql/2−1(al/2ql/2−1 + 2ql/2−2)

≡ al/2ql/2−1(mod 2).
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In a similar way, one can also obtain the second part of Corollary 1 by using the

recurrence relation for ri of Proposition 3.

Now, we are ready to state our main theorems.

Theorem 2. (i) If ld is odd, there exists d having the form of the continued fraction

expansion
√
d = [a0; a1, . . . , ald−1, 2a0] if and only if qld−1 is odd.

(ii) If ld is even, there exists d having the form of the continued fraction expansion√
d = [a0; a1, . . . , ald−1, 2a0] if and only if both ald/2 and qld−1 are odd or ald/2 is

even.

Proof. First, note that qld−1 and qld−2 are relatively prime by the recurrence relation

for qi in Equation (1). Therefore, if ld is odd and qld−1 is even, then qld−2 is odd.

On the other hand, qld−1rld−2 − rld−1qld−2 = (−1)ld−1 = 1, which means that

qld−1rld−2 − q2ld−2 = 1 since rld−1 = qld−2 (see (2.7) of [10]). But, if rld−2 is even,

then qld−1rld−2 − q2ld−2 ≡ 3 (mod 4), which is a contradiction. It means that rld−2
should be odd. Therefore, by Proposition 1, there exists d having the form of the

continued fraction expansion
√
d = [a0; a1, . . . , ald−1, 2a0] if and only if qld−1 is

odd. Next, suppose that ld is even and ald/2 is even. Then, by Corollary 1, qld−1
and rld−2 are even. It means that there exists d having the form of the continued

fraction expansion
√
d = [a0; a1, . . . , ald−1, 2a0] by Proposition 1. Suppose ld is even

and ald/2 is odd. If qld−1 is even, then qld/2−1 is even by part (i) of Corollary 1,

which means that rld/2−1 is odd because qld/2−1 and rld/2−1 are relatively prime.

Therefore, rld−2 ≡ ald/2rld/2−1 ≡ 1(mod 2) and there does not exist d having the

form of the continued fraction expansion
√
d = [a0; a1, . . . , ald−1, 2a0] by Proposition

1. This completes the proof of Theorem 2.

Let us move to the case for (1 +
√
d)/2.

Theorem 3. (i) If l′d is odd, there always exists d having the form of the continued

fraction expansion (1 +
√
d)/2 = [a′0; a′1, . . . , a

′
l′d−1

, 2a′0 − 1].

(ii) If l′d is even, there exists d having the form of the continued fraction expansion

(1 +
√
d)/2 = [a′0; a′1, . . . , a

′
l′d−1

, 2a′0 − 1] if and only if a′l′d/2
is odd.

Proof. If l′d is odd and q′l′d−1
is odd, there always exists d having the form of the

continued fraction expansion (1+
√
d)/2 = [a′0; a′1, . . . , a

′
l′d−1

, 2a′0 − 1] by Proposition

2. If l′d is odd and q′l′d−1
is even, by an argument similar to the case where ld is odd,

we can check that both q′l′d−2
are r′l′d−2

are odd. Therefore, by Proposition 2, there

always exists d having the form of the continued fraction expansion (1 +
√
d)/2 =

[a′0; a′1, . . . , a
′
l′d−1

, 2a′0 − 1] in the case that l′d is odd. Next, suppose l′d is even and

a′l′d/2
is even. Then by Corollary 1, both q′l′d−1

and r′l′d−2
are even, which means

that there does not exist d having the form of the continued fraction expansion
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(1 +
√
d)/2 = [a′0; a′1, . . . , a

′
l′d−1

, 2a′0 − 1] by Proposition 2. If l′d is even and a′l′d/2
is odd, we consider the two cases separately, that is, q′l′d/2−1

is odd or q′l′d/2−1
is

even. If q′l′d/2−1
is odd, then q′l′d−1

is odd and there exists d having the form of the

continued fraction expansion (1 +
√
d)/2 = [a′0; a′1, . . . , a

′
l′d−1

, 2a′0 − 1] by part (i) of

Corollary 1 and Proposition 2. Finally, if q′l′d/2−1
is even, then q′l′d−1

is even by part

(i) of Corollary 1. But then r′l′d/2−1
is odd since q′l′d/2−1

and r′l′d/2−1
are relatively

prime. Therefore, r′l′d−2
is odd and there exists d having the form of the continued

fraction expansion (1 +
√
d)/2 = [a′0; a′1, . . . , a

′
l′d−1

, 2a′0 − 1] by part (ii) of Corollary

1 and Proposition 2, which completes the proof of Theorem 3.

Remark 1. The statement (i) of Theorem 3 gives the answer for the presented

problem of the continued fraction expansion of (1 +
√
d)/2 in Remark 3.9 of [10].

Also, if ld or l′d is even, the central terms ald/2 and a′l′d/2
of palindromic sequences

have a crucial role in our conditions.
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Verlagsgesellschaft, Stuttgart, 1954.

[16] K. H. Rosen, Elementary Number Theory and Its Applications, Fifth Edition, Addison Wesley
Longman Inc., Reading, MA, 2000.

[17] K. Tomita, Explicit representation of fundamental units of some real quadratic fields, I,
Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), 41-43.

[18] K. Tomita, Explicit representation of fundamental units of some real quadratic fields, II,
J. Number Theory 63 (1997), 275-285.


