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Abstract

We prove a recent conjecture of Sean A. Irvine about a nonlinear recurrence, using
mechanized guessing and verification. Finite automata and the theorem-prover
Walnut play a large role in the proof.

1. Introduction

Mathematicians have long used intelligent guessing of a problem’s solution, followed

by rigorous verification (for example, by induction), to prove theorems. In this note

I show how to do this, at least in some cases, using a simple algorithm to infer a

finite automaton from empirical data. Once a candidate automaton is inferred, a

rigorous proof of its correctness can be supplied by using Walnut, a theorem-prover

for automatic sequences [8, 12].

On May 24 2017 Ilya Gutkovskiy proposed the following nonlinear recurrence as

sequence A286389 in the OEIS (On-Line Encyclopedia of Integer Sequences) [9]:

gn =

{
0, if n = 0;

n− gbgn−1/2c, otherwise.
(1)

The first few values of this sequence, which we call Gutkovskiy’s sequence, are given

in Table 1. This recurrence is a variation on similar sequences originally discussed

by Hofstadter [7, p. 137].

Then, on July 20 2022, Sean A. Irvine observed that this sequence seemed to be

given by the partial sums of the sequence A285431, which is the fixed point of the

morphism h, where h(1) = 110 and h(0) = 11. We denote the sequence A285431

by (kn)n≥1, in honor of its proposer, Clark Kimberling. The first few values of the

sequence A285431 are also given in Table 1; in order to maintain the indexing given
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in the OEIS, we define k0 = 0. More precisely, then, Irvine’s conjecture is that

gn =
∑

1≤i≤n ki.

n 0 1 2 3 4 5 6 7 8 9 10 11
gn 0 1 2 2 3 4 4 5 6 7 8 8
kn 0 1 1 0 1 1 0 1 1 1 1 0

Table 1: First few values of gn.

In this note we prove Irvine’s conjecture, as well as a number of related results,

using automata theory.

All the needed Walnut code to verify the claims of the paper is available on the

author’s website, https://cs.uwaterloo.ca/~shallit/papers.html.

2. From a Morphism to a Numeration System

We start with the morphism h : {0, 1} → {0, 1}∗ defined by 1 → 110, 0 → 11 that

generates OEIS sequence A285431. Define Kn = hn(1), so that K0 = 1, K1 = 110,

K2 = 11011011, and so forth.

Proposition 1. For n ≥ 2 we have Kn = Kn−1Kn−1Kn−2Kn−2.

Proof. By induction on n. The base cases of n = 0, 1 are trivial. Otherwise assume

n ≥ 2. Then

Kn = hn(1) = hn−1(h(1)) = hn−1(1)hn−1(1)hn−1(0)

= Kn−1Kn−1h
n−2(11) = Kn−1Kn−1Kn−2Kn−2.

Since each Ki is the prefix of Ki+1, it follows that there is a unique limiting

infinite word k = k1k2k3 · · · = 1101101111 · · · of which all the Ki are prefixes.

Furthermore, Proposition 1 shows that k is a “generalized automatic sequence” as

studied in [11], and hence there is a numeration system associated with it, where

kn can be computed by a finite automaton taking, as inputs, the representation of

n in this numeration system.

We now explain how this is done. Define Kn = |Kn|, so that K0 = 1, K1 = 3,

K2 = 8, and in general Kn = 2Kn−1 + 2Kn−2. This two-term linear recurrence is

sequence A028859 in the OEIS (and also A155020 shifted by one). The Binet form

for Kn, which can be easily verified, is

Kn =

(
1

2
+

√
3

3

)
γn +

(
1

2
−
√

3

3

)
δn, (2)

https://cs.uwaterloo.ca/~shallit/papers.html
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where γ = 1 +
√

3 and δ = 1−
√

3.

We now build a numeration system, which we call K-representation, out of the

sequence (Ki)i≥0. We represent every natural number as a sum
∑

0≤i≤t aiKi, where

ai ∈ Σ3 := {0, 1, 2}. Furthermore we associate a ternary word at · · · a0 with the

corresponding sum, as follows:

[at · · · a0]K :=
∑

0≤i≤t

aiKi. (3)

Notice that words are written “backwards” so the most significant digit is at the

left.

Evidently, numbers could have multiple representations in this system as we have

described it so far. For example, [22]K = 8 = [100]K . In order to get a unique,

canonical representation, we impose the restriction aiai+1 6= 22. This is in analogy

with a similar restriction for the Zeckendorf (or Fibonacci) numeration system.

We let (n)K denote this canonical representation for n. Table 2 gives the first few

representations in this numeration system. Notice that the canonical representation

for 0 is ε, the empty string.

n (n)K
0 ε
1 1
2 2
3 10
4 11
5 12
6 20
7 21
8 100
9 101
10 102

Table 2: Representation for the first few numbers.

It is now easy to see that the greedy algorithm produces the canonical represen-

tation [4]. Furthermore, it is easy to see that there is a finite automaton that takes,

as input, a string x over the alphabet Σ3, and accepts if and only if x is a canonical

representation. It is depicted in Figure 1. (We routinely omit useless states without

comment.)

Some of the sequences we study in this paper were previously studied by Fraenkel

and co-authors [5, 1], in the context of some variations on Wythoff’s game. These

authors already found the numeration system we described here. Also see [3]. Our
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0

0,1

12
0,1

Figure 1: Automaton accepting canonical representations.

main contribution is to combine the use of automata theory with the numeration

system.

3. An Incrementer Automaton for K-Representations

We claim that we can go from the K-representation of n to that of n+ 1 as follows:

if the last digit is 0, add one to it. If the last digit is 1, add one to it, except in

the case that the representation ends with a(21)i, for a ∈ {0, 1}, in which case the

representation of n+ 1 ends in (a+ 1)02i instead. If the last two digits are a2, for

a ∈ {0, 1}, then the last two digits of n + 1 are (a + 1)0. Verification of this is

straightforward and is left to the reader.

A synchronized automaton ‘incr’ implementing these rules is depicted in Fig-

ure 2. The meaning of “synchronized” here is that the DFA takes the canonical

K-representations of n and x in parallel as input, and accepts if x = n+ 1.

0

[0,0], [1,1]

1
[0,1], [1,2]

2

[2,2] 3[2,0]

[0,0], [1,1]

[0,1] [1,0]

Figure 2: Incrementer automaton for K-representations.
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4. An Adder Automaton for K-Representation

The next step is to build an “adder” for K-representations. This is a synchronized

automaton that takes, in parallel, the canonical K-representations of integers x, y, z,

and accepts if and only if x + y = z. The existence of this automaton for our

numeration system follows from very general results of Frougny and Solomyak [6].

However, in this case it is actually easier to just “guess” the automaton from em-

pirical data, and then verify its correctness. The method of guessing the automaton

for a language L is based on the Myhill-Nerode theorem from formal language the-

ory. For every string x, we define qx,n = {|y| ≤ n : xy ∈ L}. For each n there

are only finitely many distinct qx,n, and we can form an automaton out of them by

letting the initial state be qε,n, the final states be {qx,n : x ∈ L}, and the transition

function δ defined by δ(qx,n, a) = qxa,n. If we are lucky, the resulting automata, as

n grows, will appear to “converge” to a single automaton, which forms our guess.

For more details, see [12, Sec. 5.7]. In this case, our candidate adder automaton

has 42 states.

Once we have an automaton that we believe is an adder, we can verify its cor-

rectness by induction by checking the following conditions:

(i) ∀x, y ∃z add(x, y, z) (adder is well-defined)

(ii) ∀x, y, z, w (add(x, y, z) ∧ add(x, y, w)) =⇒ z = w (adder represents a func-

tion)

(iii) ∀x, y, z add(x, y, z) ⇐⇒ add(y, x, z) (commutative law)

(iv) ∀x, y, z, t (∃r add(x, y, r) ∧ add(r, z, t)) ⇐⇒ (∃s add(y, z, s) ∧ add(x, s, t))

(associative law)

(v) ∀x add(x, 0, x) (base case of induction)

(vi) ∀x, y add(x, 1, y) ⇐⇒ incr(x, y) (induction step).

To verify the correctness of the adder automaton using Walnut, we use the fol-

lowing straightforward implementation of the conditions above:

eval check_i "?msd_kim Ax,y Ez $add(x,y,z)":

eval check_ii "?msd_kim Ax,y,z,w ($add(x,y,z) & $add(x,y,w)) => z=w":

eval check_iii "?msd_kim Ax,y,z $add(x,y,z) <=> $add(y,x,z)":

eval check_iv "?msd_kim Ax,y,z,t (Er $add(x,y,r) & $add(r,z,t)) <=>

(Es $add(y,z,s) & $add(x,s,t))":

eval checkv "?msd_kim Ax $add(x,0,x)":

eval checkvi "?msd_kim Ax,y $add(x,1,y) <=> $incr(x,y)":

Walnut returns TRUE for all six statements. The correctness of the adder now follows.
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We briefly comment on the syntax of Walnut commands. Here A and E represent

the universal and existential quantifiers ∀ and ∃, respectively. The jargon ?msd kim

means to interpret the statements using the K-numeration system. The symbol &

means logical “and”, | means logical “or”, ~ is logical negation, => is implication,

and <=> represents “if and only if”. The command def defines an automaton, eval

evaluates truth or falsity, and reg converts a regular expression to an automaton.

5. The Kimberling Sequence

Define k′n = kn+1 for n ≥ 0. It is now easy to create a DFAO (deterministic finite

automaton with output) computing the sequence (k′n)n≥0, by associating states of

the DFAO with letters of the alphabet, and transitions with images of those letters,

as explained in [11]. It is depicted in Figure 3. This DFAO takes a canonical K-

0/1

0,1

1/02
0,1

Figure 3: DFAO computing k′n.

representation of n as input, and outputs (as the last state reached) the value of

k′n. In Walnut this is represented by the file KP.txt, as follows:

msd_kim

0 1

0 -> 0

1 -> 0

2 -> 1

1 0

0 -> 0

1 -> 0

Once we have this DFAO, we can get a DFAO for (kn)n≥0 simply by shifting the

index.
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def kks "?msd_kim KP[n-1]=@1":

combine K kks:

The resulting DFAO is depicted in Figure 4.

0/0

0

1/1

1
2/1

2

1
2

3/00

1
0

0, 1

2

Figure 4: DFAO for the sequence k.

We can now verify that this automaton actually does compute the Kimberling

sequence. We can do this by induction, by verifying that

k[1..Kn] = k[1..Kn−1] k[1..Kn−1] k[1..Kn−2] k[1..Kn−2].

To do so, we use the following Walnut code:

reg isk msd_kim "0*10*":

reg pair msd_kim msd_kim "[0,0]*[1,0][0,1][0,0]*":

eval checkk1 "?msd_kim At,x ($isk(x) & t>=1 & t<=x) => K[t+x]=K[t]":

eval checkk2 "?msd_kim At,x,y ($pair(x,y) & t>=1 & t<=y)

=> K[t+2*x]=K[t]":

eval checkk3 "?msd_kim At,x,y ($pair(x,y) & t>=1 & t<=y)

=> K[t+2*x+y]=K[t]":

Here isk(x) asserts that x = Kn for some n ≥ 1, and pair(x, y) asserts that x = Kn+1

and y = Kn for some n ≥ 1.

6. Synchronized Automaton for Gutkovskiy’s Sequence

The last piece of the puzzle we need is a synchronized DFA computing Gutkovskiy’s

sequence A286389. To find this automaton we once again guess it from empirical

data, and then verify it using Equation (1).

The guessed 17-state automaton is called ‘gut’, and is displayed in Figure 5.

https://oeis.org/A286389
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0

[0,0]

1
[1,0]

2

[1,1]

3

[2,1]

4

[2,2]

5[0,2]

[1,0]

[2,0]

6

[0,0]

7[2,1]

[1,2]

[0,2]

8[0,1]

[1,0]

[0,0]

[1,0]

[1,1]

[2,1]

[2,0]

[1,0]

[0,0]

[0,0]
[0,1]

[1,1]

9

[1,2]

10

[2,2]

[1,0]

11

[2,0]

[1,1]

12

[0,0]

13[0,1]

[0,0]

[1,0]
[1,1]

[0,1]

[0,2]

[1,2]

[1,0]

14

[2,0] 15

[2,1]

[1,2]
[1,1]

[0,0]

[0,1]

Figure 5: Synchronized automaton for Gutkovskiy’s sequence gn.

To verify its correctness we use the following Walnut code:

eval check1 "?msd_kim An Ex $gut(n,x)":

eval check2 "?msd_kim An,x,y ($gut(n,x) & $gut(n,y)) => x=y":

eval check3 "?msd_kim $gut(0,0) & An,x,y,z (n>=1 & $gut(n,x) &

$gut(n-1,y) & $gut(y/2,z)) => x+z=n":

Thus our automaton correctly computes Gutkovskiy’s sequence.

As an example, consider the path

0
[1,0]−−−→ 1

[0,2]−−−→ 5
[2,1]−−−→ 3

[0,1]−−−→ 8

corresponding to the representations 1020 and 0211 for 28 and 20, respectively.

Indeed, g28 = 20.

7. Proof of Irvine’s Conjecture and More

We now have everything we need to prove Irvine’s conjecture.

Theorem 1. For n ≥ 0 we have gn =
∑

1≤i≤n ki.

Proof. We use the following Walnut code:

eval check "?msd_kim An K[n]=@1 <=> (Ex $gut(n-1,x) & $gut(n,x+1))":

and Walnut returns TRUE.
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Dekking, in the ‘formula’ section of sequence A286389, observed that gn = (
√

3−
1)n+O(1). In fact we can prove a more exact expression, a kind of “closed form”

for gn.

Theorem 2. Define α = (
√

3− 1)/2 and β =
√

3/3. We have

gn =

{
2bαnc+ 1, if [n]K ends in 1;

2bαn+ βc, if [n]K ends in 0 or 2.

Proof. The starting point is the Binet form given in Equation (2). From this, we

easily verify that

Ki+1 − γKi = (2−
√

3)δi (4)

for i ≥ 0.

Now suppose x = atat−1 · · · a0 ∈ {0, 1, 2}∗. From Equation (3) we have

[x]K =
∑

0≤i≤t

aiKi

and

[x0]K =
∑

0≤i≤t

aiKi+1.

Then, from Equation (4), we get

[x0]K − γ[x0]K =
∑

0≤i≤t

ai(2−
√

3)δi. (5)

Since −1 < δ < 0, we can bound the left-hand side of Equation (5) by considering

even powers of δ separately from odd powers of δ. Summing to infinity, we get

− 2 +
2
√

3

3
< [x0]K − γ[x]K <

2
√

3

3
. (6)

This is one of the two crucial relations.

The second crucial relation, which can be proved by Walnut, is

g([xa]K) = 2[x]K + a. (7)

for a ∈ {0, 1, 2}. Here I am writing g() instead of g to make it easier to understand.

To prove it, we use the following Walnut code:

reg has22 {0,1,2} "(0|1|2)*22(0|1|2)*":

reg lastd {0,1,2} {0,1,2}

"()|([0,0]|[1,0]|[2,0])*([0,0]|[1,1]|[2,2])":

def lastdig "?msd_kim $lastd(n,x) & ~$has22(n)":

eval testeq "?msd_kim An,x,y,z ($gut(n,x) & $lastdig(n,y) &

$kshift(n,z)) => x=2*z+y":

https://oeis.org/A286389
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Here

• has22 checks for occurrence of the forbidden pattern 22 in an expansions;

• lastd takes two inputs x and y and accepts if y is the last digit of x;

• lastdig further enforces the condition that the inputs be in the proper form

for a Kimberling expansion; and

• kshift is a simple 3-state automaton that accepts, in parallel, inputs of the

form xa and 0x.

Since the last command returns TRUE, the result is proved.

Now let n be a positive integer with Kimberling expansion xa, for some string x

and a ∈ {0, 1, 2}. Then it is trivial that n = [x0]K + a. Multiply Equation (6) by

−2/γ, which reverses the inequalities, to get

2
√

3

3
− 2 < 2[x]K − (2/γ)[x0]K <

8
√

3

3
− 4. (8)

Now add a(1− 2/γ) to both sides of Equation (8) to get

2
√

3

3
− 2 + a(1− 2/γ) < 2[x]K + a− (2/γ)([x0] + a) <

8
√

3

3
− 4 + a(1− 2/γ). (9)

Finally, since n = [xa] and gn = 2[x] + a and [x0] + a = [xa] and 1− 2/γ = 2−
√

3,

we get

2
√

3

3
− 2 + a(2−

√
3) < gn − (2/γ)n <

8
√

3

3
− 4 + a(2−

√
3). (10)

From Equation (7) we see that g(n) is odd if and only if a = 1. In this case,

setting a = 1, subtracting 1 from Equation (10) and dividing by 2, we get

−0.7886751347 · · · = −(
√

3/6 + 1/2) < (g(n)− 1)/2− n/γ < 5
√

3/6− 3/2

= −0.0566243267 . . .

and hence d(g(n) − 1)/2 − n/γe = 0. But (g(n) − 1)/2 is an integer, so we can

shift it out of the ceiling expression to get (g(n) − 1)/2 + d−n/γe = 0. Using

−bxc = d−xe, we get (g(n) − 1)/2 − bn/γc = 0 and hence (g(n) − 1)/2 = bn/γc.
Thus g(n) = 2bn/γc+ 1.

Now note that g(n) is even if and only if either a = 0 or a = 2. Then, starting

with Equation (10), and dividing by 2, we find

√
3/3− 1 < g(n)/2− n/γ <

√
3/3.
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Adding 1−
√

3/3 to these inequalities gives

g(n)/2− n/γ + 1−
√

3/3 ∈ (0, 1),

so dg(n)/2−n/γ+1−
√

3/3e = 1. But g(n)/2+1 is an integer, so we can pull it out of

the ceiling to get g(n)/2+1+d−n/g−
√

3/3e = 1. Thus g(n)/2+1−bn/g+
√

3/3c =

1, and hence g(n)/2 = bn/g +
√

3/3c, as desired.

Remark 1. The idea of the proof follows the general lines of a proof of Don Reble

for Fibonacci representations [10].

8. Some Related Sequences and a Problem of Fokkink, Ortega, and Rust

We now turn to three related sequences; for n ≥ 1 the first two give the n’th

positions of the ones (resp., zeros) in the sequence k. We call them An and Bn,

respectively. The third sequence, called Qn, has a more complicated definition:

Qn =



n, if n ≤ 1;

Qm, if n = Qm + 2m and there is

exactly one i < n with Qi = Qm;

least positive integer not in

{Q1, . . . , Qn−1}, otherwise.

(11)

It is sequence A026366 in the OEIS.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
An 0 1 2 4 5 7 8 9 10 12 13 15 16 17 18 20
Bn 0 3 6 11 14 19 22 25 28 33 36 41 44 47 50 55
Qn 0 1 2 1 3 4 2 5 6 7 8 3 9 10 4 11

Table 3: First few values of An, Bn, and Qn.

Once again we can guess synchronized automata computing these functions and

verify that they are correct. The guessed automaton for An has 23 states, the

guessed automaton for Bn has 24 states, and the guessed automaton for Qn has 45

states. We call them ‘aa’, ‘bb’, and ‘qq’, respectively.

We now verify correctness of A and B:

eval check_A_1 "?msd_kim An Ex $aa(n,x)":

eval check_A_2 "?msd_kim An,x,y ($aa(n,x) & $aa(n,y)) => x=y":

eval check_A_3 "?msd_kim Ax (En n>=1 & $aa(n,x)) <=> K[x]=@1":

eval check_A_4 "?msd_kim An,x,y ($aa(n,x) & $aa(n+1,y)) => x<y":

https://oeis.org/A026366
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eval check_B_1 "?msd_kim An Ex $bb(n,x)":

eval check_B_2 "?msd_kim An,x,y ($bb(n,x) & $bb(n,y)) => x=y":

eval check_B_3 "?msd_kim Ax (En $bb(n,x)) <=> K[x]=@0":

eval check_B_4 "?msd_kim An,x,y ($bb(n,x) & $bb(n+1,y)) => x<y":

and Walnut returns TRUE for all of these.

To verify correctness of Q, we need to verify its definition:

def occurs_once_in "?msd_kim (Ei,x i>=1 & i<n & $qq(i,x) & $qq(m,x)) &

(~Ei,j,x i>=1 & i<j & j<n & $qq(i,x) & $qq(j,x) & $qq(m,x))":

# true if Q_m occurs exactly once in Q_0, Q_1, ..., Q_{n-1}

def occurs_in "?msd_kim Ei,y i<n & $qq(i,y) & $qq(i,x)":

# true if x occurs in Q_0, ..., Q_{n-1}

def least_not_in "?msd_kim (~$occurs_in(n,x)) &

(Az (~$occurs_in(n,z)) => z>=x)":

# true if x is the least integer not in Q_1, ..., Q_{n-1}

eval check_Q_1 "?msd_kim An Ex $qq(n,x)":

eval check_Q_2 "?msd_kim An,x,y ($qq(n,x) & $qq(n,y)) => x=y":

eval check_Q_3 "?msd_kim Am,n,y,z (1<=m & m<n & $occurs_once_in(m,n) &

$qq(m,y) & n=y+2*m & $qq(n,z)) => y=z":

eval check_Q_4 "?msd_kim An,y ($qq(n,y) & ~(Em 1<=m & m<n &

$occurs_once_in(m,n))) => $least_not_in(n,y)":

So indeed our automaton computes Qn correctly.

If we look at OEIS sequence A026367, we see that its description says (essentially)

“least t such that Qt = n”. This allows use to verify that A026367 is in fact An, as

follows:

def check_A_5 "?msd_kim An,t $aa(n,t) => $qq(t,n) & Au (u<t)

=> ~$qq(u,n)":

Similarly, if we look at OEIS sequence A026368, we see that its description says

(essentially) “greatest t such that Qt = n”. We can then verify that A026368 is in

fact Bn, as follows:

def check_B_5 "?msd_kim An,t $bb(n,t) => $qq(t,n) & Au (u>t)

=> ~$qq(u,n)":

In particular, we have proved Neil Sloane’s observation that “A026368 appears to

be [the] complement[ary] sequence of A026367 ”.

We can easily verify the observation of Fokkink, Ortega, and Rust [3] that Bn =

2An + n for n ≥ 0:

https://oeis.org/A026367
https://oeis.org/A026367
https://oeis.org/A026368
https://oeis.org/A026368
https://oeis.org/A026368
https://oeis.org/A026367
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eval check_FOR "?msd_kim An,x,y ($aa(n,x) & $bb(n,y)) => y=2*x+n":

and Walnut returns TRUE.

Finally, Fokkink, Ortega, and Rust [3] left the following as an open problem,

which we can turn into a theorem.

Theorem 3. For all n we have ABn
∈ {An +Bn − 1, An +Bn}.

Proof. We use the following Walnut code:

eval check_FOR_2 "?msd_kim An,t,x,y ($aa(n,t) & $bb(n,x) &

$aa(x,y)) => (y=t+x|y+1=t+x)":

and Walnut returns TRUE.

Remark 2. Furthermore we could, if it were desired, give a DFAO that computes,

for each input n, which of the two alternatives in Theorem 3 holds.

Similarly we can prove, for example, that BAn −An −Bn ∈ {−3,−2,−1, 0, 1}.

9. Two More Related Sequences

In this section we consider two additional related sequences: g′n := gn mod 2, and

hn :=
∑

0≤i<n g
′
n. The first few terms are given in Table 4.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
g′n 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1
hn 0 0 1 1 1 2 2 2 3 3 4 4 4 5 5 5 6 6

Table 4: First few values of g′n and hn.

Theorem 4. The sequence (g′n)n≥0 is sequence A284772 in the OEIS, that is, it is

the fixed point of the morphism u : 0→ 01, 1→ 0010.

Proof. First, we create an automaton (in the Kimberling numeration system) for

g′n with Walnut:

def gp "?msd_kim Ex,y $gut(n,x) & x=2*y+1":

combine GP gp:

which produces the automaton GP computing g′n displayed in Figure 6.

https://oeis.org/A284772
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Figure 6: DFAO computing g′(n).

From the transition diagram of this automaton, we can easily read off the mor-

phism r : 0 → 012, 1 → 012, 2 → 01 and coding s : 0, 2 → 0, 1 → 1, so that

(g′n)n≥0 = s(rω(0)).

It now remains to verify that uω(0) = s(rω(0)). To do this, we prove by induction

on n that

un(0) = s(rn−1(01)) and un(1) = s(rn−1(2012). (12)

The base case is n = 1 and is trivial. Now assume n ≥ 2. For the induction step,

assume that Equation (12) holds for n′ < n. Then

un(0) = un−1(01) = s(rn−2(01)rn−2(2012)) = s(rn−2(012012)) = s(rn−1(01))

un(1) = un−1(0010) = s(rn−2(01)rn−2(01)rn−2(2012)rn−2(01))

= s(rn−2(0101201201)) = s(rn−1(2012)),

as desired.

Theorem 5. For n ≥ 0 we have gn = 2hn + g′n.

Proof. We just sketch the proof, as the idea is similar to what we have done before.

First, we “guess” a synchronized automaton computing (hn)n≥0. Then we verify it

is correct using the fact that we must have hn+1 = hn + g′n. Finally, we verify the

equation gn = 2hn + g′n.
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10. Subword Complexity

Recall that the subword complexity function ρ(n) counts the number of distinct

factors of length n of an infinite word. In this section we compute this function for

k.

Call a factor w of an infinite binary word x right-special if both w0 and w1

appear in x. For binary words we know that ρ(n+ 1)− ρ(n) counts the number of

length-n right-special factors.

Walnut formulas for special factors are given in [12, Sec. 8.8.6]. Adapting them

to our situation, we have the following code:

def keqfac "?msd_kim At (t<n) => K[i+t]=K[j+t]":

def kisrs "?msd_kim Ej $keqfac(i,j,n) & K[i+n]!=K[j+n]":

eval nothree "?msd_kim Ei,j,k,n $kisrs(i,n) & $kisrs(j,n)

& $kisrs(k,n) & ~$keqfac(i,j,n) & ~$keqfac(j,k,n) &

~$keqfac(i,k,n)":

def hastwo "?msd_kim Ei,j $kisrs(i,n) & $kisrs(j,n) &

~$keqfac(i,j,n)":

Here

• keqfac asserts that k[i..i+ n− 1] = k[j..j + n− 1];

• kisrs asserts that k[i..i+ n− 1] is a right-special factor;

• nothree asserts that there is no n for which k has three or more distinct

right-special factors of length n;

• hastwo accepts precisely those n for which k has exactly two distinct right-

special factors of length n.

The automaton created by ‘hastwo’ is displayed in Figure 7.

We can now prove the following theorem.

Theorem 6. The infinite word k has exactly two distinct right-special factors of

length n if and only if there exists i ≥ 0 such that one of the following holds:

• x ≤ n < x+K2i, where x = K1 +K3 + · · ·+K2i+1;

• y ≤ n < y +K2i+1, where y = K0 +K2 + · · ·+K2i+2.

Proof. We use the following Walnut code:

reg ul msd_kim msd_kim "[0,0]*[1,1][0,1]([1,1][0,0])*(()|[1,1]":

eval check_sw "?msd_kim An $hastwo(n) <=> Ex,y $ul(x,y) & x<=n & n<y":

and Walnut returns TRUE.
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Figure 7: Automaton accepting those n for which k has exactly two distinct right-
special factors of length n.

Corollary 1. We have lim supn≥1 ρ(n)/n = (30 +
√

3)/23
.
= 1.37965438 and

lim infn≥1 ρ(n)/n = (3 +
√

3)/4
.
= 1.1830127.

11. Critical Exponents

Recall that we say p ≥ 1 is a period of a finite word x = x[1..n] if x[i] = x[i + p]

for 1 ≤ i ≤ n− p. The exponent of a finite word x is the length of x divided by its

shortest period. Finally, the critical exponent of an infinite word z is the supremum,

over all finite nonempty factors x of z, of the exponent of x.

Theorem 7. The critical exponent of k is (2
√

3 + 12)/3
.
= 5.1547.

Proof. Since the basic ideas have already been covered elsewhere in detail [12,

pp. 148–150], we just sketch them here. We create Walnut formulas for the short-

est period of a factor of k, and then obtain the corresponding longest words with

the given period. Then we restrict to those factors of exponent at least 5. The

resulting automaton, computed by ‘klong5’, accepts pairs of the form (n, p) =

([121(01)i0]K , [10(00)i0]K) and (n, p) = ([121(01)i02]K , [10(00)i00]K). Routine work

with two-term linear recurrences then gives the result.

def kperi "?msd_kim p>0 & p<=n & Aj (j>=i & j+p<i+n) => K[j]=K[j+p]":

def klper "?msd_kim $kperi(i,n,p) & (Aq (q>=1 & q<p) =>

~$kperi(i,n,q))":

def kleastp "?msd_kim Ei,n n>=1 & $klper(i,n,p)":

def klongest "?msd_kim (Ei $klper(i,n,p)) &

(Ar,i $klper(i,r,p) => r<=n)":

def klong5 "?msd_kim $klongest(n,p) & n>5*p":
2
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