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Abstract

Let f = (fn)n be a sequence of positive integers. If the f -nomid coefficient[
n
k

]
f

:=
fnfn−1 . . . fn−k+1

fkfk−1 . . . f1

is an integer for all n, k ∈ N with n ≥ k, then f is called a binomid sequence. A
binomid sequence can be expressed as a product of p-factors (pen)n where p is a
prime number. The sequence (en)n of nonnegative exponents or any of its finite
prefixes is called a binomid index. In this paper, we discuss the problem of extending
a finite binomid index into an infinite one that is lexicographically minimal. We
show that these extensions are eventually periodic and form a monoid with respect
to componentwise addition.

1. Introduction

Let N := {1, 2, 3, . . . }. Let f : N −→ N be a sequence given by f = (fn)n =

(f1, f2, . . . ). For n, k ∈ N with n ≥ k, define the f -nomid coefficient[
n
k

]
f

=
fnfn−1 . . . fn−k+1

fkfk−1 . . . f1
.

We define

[
n
0

]
f

:= 1 for n ≥ 0. If

[
n
k

]
f

∈ N for all n, k ∈ N, then we say that f

is a binomid sequence [6]. Binomid sequences and f -nomid coefficients have been
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studied by several authors using various terms to refer to them including Raney

sequences [2] and, as mentioned in [6], Fontenè-Ward coefficients. Observe that

setting f = (n)n = (1, 2, 3, . . . ) recovers the usual binomial coefficients. Hence,

(n)n is binomid. The following integer sequences are also binomid:

1. F = (Fn)n where Fn is the n-th Fibonacci number (see [3], where the F -nomid

coefficients are called Fibonomial coefficients),

2. Gq =

(
n−1∑
i=0

qi

)
n

where q ∈ N (see [6]),

3. any column of Pascal’s triangle (see [6]),

4. a strong divisibility sequence (SDS) (fn)n i.e., gcd(fm, fn) = fgcd(m,n) for all

m,n ∈ N (see [1]).

If f and g are binomid, then the componentwise product fg is also binomid.

On the other hand, if fg is binomid, then f and g are not necessarily bino-

mid. For instance, if f = (1, 1, 3, 4, 5, . . . ) and g = (1, 2, 1, 1, 1, . . . ), then fg =

(1, 2, 3, 4, 5, 6, . . . ) is binomid. However, g is not binomid since

[
4
2

]
g

= 1
2 .

Let P be the set of prime numbers. For p ∈ P and a sequence f = (f1, f2, . . . )

of positive integers, we define the p-factor of f as the sequence f(p) = (pνp(fn))n
where νp(fn) is the p-adic valuation of fn. If f = (f1, f2, . . . ) is binomid, then f

has the following factorization into its p-factors:

f =
∏
p∈P

f(p).

Moreover, for each p ∈ P, f(p) is binomid and[
n
k

]
f

=
∏
p∈P

[
n
k

]
f(p)

.

Note that if p is not prime, then f(p) may not be binomid, even if f is binomid.

For instance, let f = (1, 36, 4, 9, 36). Then f(6) = (1, 36, 1, 1, 36) is not binomid.

Suppose f(p) = (pe1 , pe2 , . . . ) where ei ∈ N ∪ {0}. Then[
n
k

]
f(p)

=
penpen−1 . . . pen−k+1

pekpek−1 . . . pe1

for all n, k ∈ N with n ≥ k. It is clear that f(p) is a binomid sequence if and only if

n∑
i=n−k+1

ei ≥
k∑
i=1

ei.
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Note that (pe1 , pe2 , . . . ) is binomid if and only if (qe1 , qe2 , . . . ) is also binomid for

1 6= p, q ∈ N.

Definition 1. Let η = (ei)i<m be an infinite or finite sequence of nonnegative

integers, where m ∈ N ∪ {∞}. We call η a binomid index if, for all k, n such that

1 ≤ k ≤ n < m,
n∑

i=n−k+1

ei ≥
k∑
i=1

ei.

Note that the componentwise sum of two binomid indices is a binomid index.

Consider f = (pen)n with p ∈ P and ei ∈ N∪{0} such that en+1 ≥ en for all n ∈ N.

Then f = (pen)n is a divisor-chain, i.e., fn | fn+1. By Lemma 3 (2) of [6], f is

binomid.

Proposition 1. Let (ei)i be a monotonic increasing sequence of nonnegative inte-

gers, i.e., en+1 ≥ en for all n ∈ N. Then (ei)i is a binomid index.

In the next section, we consider a class of binomid indices that falls outside of

Proposition 1 by imposing a certain property of minimality. In particular, given a

finite binomid index, we show that this can be extended into an infinite binomid

index that is lexicographically minimal. In Section 3, we show that this lex-minimal

extension is eventually periodic. This result, interestingly, is similar to the follow-

ing: an SDS (automatically, a binomid sequence) {un}n≥0 with u0 6= 0 satisfying

a k-th order linear recurrence is necessarily purely periodic [4]. Meanwhile, lex-

minimality, in some sense, is a form an ‘infinite’ order linear recurrence (see Lemma

1). Moreover, we show that lex-minimality is closed under componentwise addition.

In Section 4, using the framework of lex-minimal extensions, we give an alternative

proof that, given a prime number p, Pascal’s triangle contains infinitely many rows

of zeroes (excluding the boundaries of the rows) when reduced modulo p. We also

deduce a similar result for the ‘triangle’ arising from the Fibonacci numbers. In

Section 5, we consider the reverse problem of determining whether an eventually

periodic binomid sequence is a lex-minimal extension of some finite binomid index.

Note that the answer is affirmative for purely periodic binomid indices. We pose a

question on the structure of the space of eventually periodic binomid indices.

2. Space of Binomid Indices

Let (N ∪ {0})N be the space of all infinite sequences of nonnegative integers. For a

finite word w, let wk denote the concatenation of k copies of w where k ∈ N∪{∞}. In

particular, for n ∈ N∪{0}, we have n∞ = (n, n, n, . . . ) is an element of (N ∪ {0})N.

Under componentwise addition, (N ∪ {0})N is a monoid with 0∞ = (0, 0, 0, . . . ) as

the identity element. With respect to the lexicographic order, (N ∪ {0})N is totally
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ordered. Let I be the set of all infinite binomid indices. Then I is a totally ordered

submonoid of (N ∪ {0})N. Let η = (ei)i be an element of I. Since e1 ≤ ei for all

i ∈ N, it follows that η′ = (ei − e1)i is a binomid index. Indeed,

n∑
i=n−k+1

(ei − e1) =

n∑
i=n−k+1

ei − ke1 ≥
k∑
i=1

ei − ke1 =

k∑
i=1

(ei − e1).

Thus, every η = (ei)i ∈ I has a decomposition η = e∞1 +η′, where the first coordinate

of η′ is zero. Let I0 be the subset of all elements in I whose first coordinate is zero.

If we identify n∞ with n ∈ N ∪ {0}, then I = (N ∪ {0})⊕ I0.

For finite or infinite sequences η = (ei)i<m and τ = (ti)i<n such that m ≤ n and

ei = ti for all i < m, we call η a prefix of τ and τ an extension of η.

Definition 2. Let η be a finite binomid index. Let Iη = {τ ∈ I : η is a prefix of

τ}. If η̃ ∈ Iη is the minimum element of Iη lexicographically, then we call η̃ the

lex-minimal extension of η.

First, we show that the lex-minimal extension of a finite binomid index always

exists.

Proposition 2. Let η = (ei)i<m be a finite binomid index. The lex-minimal ex-

tension of η is the binomid index η̃ = (fn) where if n < m, then fn = en, and if

n ≥ m, then

fn = max
1≤k<n

(
k∑
i=1

fi −
n−1∑

i=n−k+1

fi

)
,

with

n−1∑
i=n

fi = 0 for k = 1.

Proof. Let η̃ = (fn) be defined as above. Then, for n ≥ m, we have

n∑
i=n−k+1

fi = fn +

n−1∑
i=n−k+1

fi

= max
1≤k<n

(
k∑
i=1

fi −
n−1∑

i=n−k+1

fi

)
+

n−1∑
i=n−k+1

fi

≥

(
k∑
i=1

fi −
n−1∑

i=n−k+1

fi

)
+

n−1∑
i=n−k+1

fi

=

k∑
i=1

fi.

Thus, the sequence η̃ ∈ Iη. The minimality of η̃ is trivial.
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η lex-minimal extension η̃ pre-period period

(0,6,1,18,0) (0, 6, 1, 18)∞ 0 4
(0,6,1,18,1) (0, 6)(1, 18, 1, 5)∞ 2 4
(0,6,1,18,2) (0, 6, 1, 18)(2, 4, 2, 17)∞ 4 4
(0,6,1,18,3) (0, 6, 1, 18)(3, 3, 3, 16)∞ 4 4
(0,6,1,18,4) (0, 6, 1, 18, 4, 2, 4, 15, 4, 4, 2, 15)(4, 4, 4, 13)∞ 12 4
(0,6,1,18,5) (0, 6, 1, 18, 5, 1, 5, 14, 5, 5, 1, 14)(5, 5, 5, 10)∞ 12 4
(0,6,1,18,6) (0, 6, 1, 18, 6, 0, 6, 13, 6, 6, 0, 13)(6, 6, 6, 7)∞ 12 4
(0,6,1,18,7) (0, 6, 1, 18, 7, 0, 6, 12, 7, 7, 0, 11)(7, 7, 7, 4)∞ 12 4
(0,6,1,18,8) (0, 6, 1, 18, 8, 0, 6, 11, 8, 8, 0, 9)(8, 8, 8, 1, 8)∞ 12 5
(0,6,1,18,9) (0, 6, 1, 18, 9, 0, 6, 10, 9, 9)(0, 7, 9, 9, 9)∞ 8 5
(0,6,1,18,10) (0, 6, 1, 18)(10, 0, 6, 9, 10)∞ 4 5

Table 1: The lex-minimal extension of (0, 6, 1, 18, i) where 0 ≤ i ≤ 10.

Remark 1. 1. For the length-one index η = (n) where n ∈ N ∪ {0}, the lex-

minimal extension is η̃ = n∞. Meanwhile, if η = (e1, e2) where e2 ≥ e1, then

η̃ = (e1, e2)∞ (see Proposition 3). Note that both n∞ and (e1, e2)∞ are purely

periodic.

2. In Table 1, we give the lex-minimal extension of the finite word η = (0, 6, 1, 18, i)

where 0 ≤ i ≤ 10, which is lifted from an experiment that computes the lex-

minimal extension of all length 5 finite word (0, e2, e3, e4, e5) with 0 ≤ ei ≤ 20.

Observe that all of the computed extensions are eventually periodic. The

length of the periodic part is bounded above by 5, which is the length of η

(see the proof of Theorem 1). The pre-period seems to be bounded above by

12.

Question. In general, if η is finite of length m and its lex-minimal extension

is eventually periodic, does there exist an integer constant, depending on m,

that bounds the pre-period?

For η = (ei)i ∈ (N ∪ {0})∞, define S(η) = (
∑i
j=1 ej)i ∈ (N ∪ {0})∞. Then S is

a lexicographic order-preserving monoid homomorphism. Moreover, the following

simple characterization follows immediately from Proposition 2.

Lemma 1. Let η ∈ (N ∪ {0})∞ and S(η) = (sn)n. Then η is a binomid index if

and only if sn ≥ sn−k + sk for 1 ≤ k < n. In particular, if η is the lex-minimal

extension of a finite binomid index of length m, then

sn = max
1≤k<n

(sn−k + sk)

for all n > m.
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3. Properties of the Lex-Minimal Extension

We begin this section by providing a sufficient condition for pure periodicity of the

lex-minimal extension of a finite binomid index.

Proposition 3. Let η be a finite binomid index. If η is monotonic increasing, then

η̃ = η∞.

Proof. Let η = (e1, . . . , em) such that e1 ≤ · · · ≤ em. Let S(η∞) = (sn)n. We first

show that, for i, j < m, we have si+j ≥ si + sj by considering two cases.

Case 1. i+ j ≤ m. By the monotonicity of η, we have

si + sj = si + e1 + · · ·+ ej ≤ si + ei+1 + · · ·+ ei+j = si+j .

Case 2. i + j > m. By the monotonicity of η and the pure periodicity of η∞, we

have

si + sj = si + e1 + · · ·+ ei+j−m + ei+j−m+1 + · · ·+ ej

≤ si + si+j−m + ei+1 + · · ·+ em

= sm + si+j−m

= si+j .

Since η∞ is purely periodic, if q ∈ N and r ∈ {0, 1, . . . ,m − 1}, then sqm+r =

qsm + sr. Hence, si+j ≥ si + sj for all i, j ≥ 1. By Lemma 2.2, η∞ is a binomid

index. Moreover, for any k > m, write k = qm+ r where q ∈ N and 0 ≤ r < m. If

r 6= 0, then sk = sqm + sr. If r = 0, then sk = s(q−1)m + sq. Thus,

sk = max{si + sj | i+ j = k}.

Therefore, η∞ is the lexicographically minimal extension of η.

To illustrate Proposition 3, if η = (0, 2, 3, 12, 20), then η̃ = η∞. Meanwhile, if

η = (0, 2, 3, 0, 2), then η̃ = (0, 2, 3)∞. On the other hand, if η = (0, 5, 3, 4, 5), then

η̃ = η∞. Hence, the converse of Proposition 3 does not hold.

Question. What are the solutions to η̃ = η∞? (cf. Proposition 5)

Let η = (ei)i be a binomid index and S(η) = (si)i be its sequence of partial

sums. For i, l ≥ 1, we define the following averages associated with η:

Ai,l(η) :=
si+l − sl

i

Ai,0(η) :=
si
i

Al(η) := lim sup
i

Ai,l(η).

We drop the argument η when the context is clear.
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Lemma 2. Let η be a binomid index. For i, l ≥ 1, we have

1. Ai,l ≥ Ai,0

2. Aki,0 ≥ Ai,0

3. Ai+l,0 = i
i+lAi,l + l

l+iAl,0

4. A0(η) = supiAi,0.

Proof. By Lemma 1, si+l ≥ sl + si. Then (1) follows immediately. For (2), using

(1), we obtain

ski = si +

k∑
j=2

(sji − s(j−1)i) = iAi,0 + i

k∑
j=2

Ai,(j−1)i ≥ kiAi,0.

Note that (3) is straightforward. For (4), first fix i ∈ N. For k ∈ N, we have

Ai,0 ≤ Aki,0 ≤ sup
j≥k

Aj,0.

Since k is arbitrary, we have Ai,0 ≤ lim supk Ak,0 = A0(η). Thus, supiAi,0 ≤ A0(η).

The reverse inequality is clear.

Lemma 3. Let η̃ be the lex-minimal extension of a finite binomid index η. Then

η̃ satisfies the following Average Condition: there exists i ∈ N such that A0(η̃) =

Ai,0(η̃).

Proof. Let η = (ej)j≤l. Take a number i ≤ l such that

Ai,0(η̃) = max
k≤l

Ak,0(η̃).

We show Ai,0(η̃) = A0(η̃). Let S(η̃) = (sj)j . By Lemma 1, for any m > l,

there exist m′ < m and m′′ < m such that sm = sm′ + sm′′ . By applying this

argument repeatedly, we can show that there is a decomposition m =

t∑
k=1

j(k)

where 1 ≤ j(k) ≤ l and sm =

t∑
k=1

sj(k). It follows that

sm =

t∑
k=1

sj(k) =

t∑
k=1

j(k)Aj(k),0(η̃) ≤
t∑

k=1

j(k)Ai,0(η̃) = mAi,0(η̃).

Thus, Am,0(η̃) ≤ Ai,0(η̃). Since m > l is arbitrary, it follows that

A0(η̃) = sup
m
Am,0((η̃)) ≤ Ai,0(η̃).
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Theorem 1. Let η be an infinite binomid index satisfying the Average Condition.

Then η is the lex-minimal extension of some finite binomid index. Moreover, η is

eventually periodic.

Proof. Take i ∈ N satisfying A0(η) = Ai,0(η). Since Ai,0 ≤ Aki,0 ≤ A0(η) = Ai,0, it

follows that, for any k ∈ N, ski = ksi. For j < i and k ∈ N,

jAj,(k+1)i = s(k+1)i+j − s(k+1)i

≥ ski+j + si − (k + 1)si

= ski+j − ksi
= ski+j − ski = jAj,ki.

Moreover, since (sk)k is increasing,

jAj,ki = ski+j − ski ≤ s(k+1)i − ski = (k + 1)si − ksi = si.

Thus, (jAj,ki)k is an increasing and bounded sequence of nonnegative integers. Take

a sufficiently large k̃ such that Aj,ki = Aj,k̃i for 1 ≤ j < i and k ≥ k̃. It follows that

ski+j = jAj,ki + ski

= jAj,k̃i + ski

= sk̃i+j + (k − k̃)si

= sk̃i+j + s(k−k̃)i.

Clearly, ski = si + s(k−1)i. Thus, for n > k̃i, we can find an integer k such that

sn = sk + sn−k. This implies that η is the lex-minimal extension of (e1, e2, . . . , ek̃i)

by Lemma 1.

Finally, if 1 ≤ j < i and k ≥ k̃, we have

eki+j = ski+j − ski+j−1 = sk̃i+j − sk̃i+j−1.

If k > k̃, we have

eki = ski − s(k−1)i+(i−1) = ski − sk̃i+(i−1) − s(k−1−k̃)i = s(k̃+1)i − sk̃i+(i−1).

In the above calculation, we see that eki+j depends only on j and that

η = (e1, e2, . . . , ek̃i)(ek̃i+1, . . . , e(k̃+1)i)
∞.

Remark 2. Combining Lemma 3 and Theorem 1, the following are clear.

1. Let η be a finite binomid index. Then its lex-minimal extension η̃ is eventually

periodic.
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2. For an infinite binomid index, its lex-minimality as an extension of a finite

binomid index is equivalent to the Average Condition.

For the next result, we first remark that, in general settings, the minimality

(or maximality) of summands does not usually extend to the sum. For readers

familiar with beta expansions, which generalize the decimal expansions, consider

the following. Let β = 1+
√
5

2 be the base of the beta expansion. Under a greedy

process (akin to the Euclidean algorithm), the digits of the beta expansion can be

generated for any real number between 0 and 1. For example, the following are

(greedy) beta expansions: 3−
√
5

2 = (0, 0)(1, 0)∞ and
√
5−1
2 = (0, 1)∞. However, the

componentwise sum (0, 0)(1, 0)∞ + (0, 1)∞ = (0)(1)∞ cannot be a beta expansion

because it contains the illegal digit sequence (1, 1) (see [5]).

This is not the case for lex-minimality. The corollary below tells us that the

lex-minimal extensions form a monoid under componentwise addition.

Corollary 1. If η1 and η2 are lex-minimal extensions of some binomid indices,

then so is the componentwise sum η1 + η2. In other words, the space of lex-minimal

extensions is a monoid under componentwise addition.

Proof. Since binomid indices are closed under componentwise addition, η1 + η2 is a

binomid index. By Lemma 3, let j(i) be an index such that A0(ηi) = Aj(i),0(ηi) for

i = 1, 2. Since A0(ηi) ≥ Akl,0(ηi) ≥ Al,0(ηi), we have Aj(i),0(ηi) = Aj(1)j(2),0(ηi).

Moreover, Aj,0(η1 + η2) = Aj,0(η1) +Aj,0(η2) for all j ∈ N. Thus,

A0(η1 + η2) ≤ A0(η1) +A0(η2)

= Aj(1)j(2),0(η1) +Aj(1)j(2),0(η2)

= Aj(1)j(2),0(η1 + η2).

This implies that A0(η1 + η2) = Aj(1)j(2),0(η1 + η2). Therefore, η1 + η2 is a lex-

minimal extension by Theorem 1.

Using the previous results, it is possible to obtain a more detailed description of

the lex-minimal extensions, as in the next proposition.

Proposition 4. The periodic part of a lex-minimal extension does not begin at the

second coordinate.

Proof. Let η = (ei)i<m be a finite binomid index. Recall that I = (N ∪ 0) ⊕ I0.

Without loss of generality, we assume that η̃ ∈ I0, that is, the first component

of η is zero. By way of contradiction, we assume that η̃ = 0(p1, . . . , pn)∞. Let

S(η̃) = (si)i. Set Pl := p1 + · · ·+ pl for 1 ≤ l ≤ n and set P0 := 0. By periodicity,

skn+l+1 = kPn + Pl for 0 ≤ l < n and k ∈ N. Thus,

Akn+l+1,0 =
kPn + Pl
kn+ l + 1

.
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This implies that A0(η) = Pn
n . By Lemma 3, there is an integer i such that

A0(η) = Ai,0. This means that si = iPn
n . Moreover, Ani,0 = Ai,0. This leads

to a contradiction. Indeed,

sni = (i− 1)Pn + Pn−1 =
niPn
n

.

Thus, Pn−1 = Pn. In other words, pn = 0. So,

η̃ = 0(p1, . . . , pn−1, 0)∞ = (0, p1, . . . , pn−1)∞.

4. Pascal’s Triangles of Binomial and Fibonomial Coefficients

Let p ∈ P and η = (ei)i where ei ∈ N ∪ {0}. Define pη := (pei)i. Let S(η) = (si)i
be the sequence of partial sums of η. Then[

n
k

]
pη

= psn−sk−sn−k .

By Lemma 1, the following holds.

Corollary 2. Let η = (ei)i<m be a finite binomid index with η̃ as its lex-minimal

extension. Then, for all n > m, there exists an integer k such that 1 ≤ k < n and[
n
k

]
pη̃

= 1.

On the other hand, suppose µ is not a lex-minimal extension of any binomid index.

Then there are infinitely many n such that, for all k with 1 ≤ k < n,[
n
k

]
pµ
≡ 0 (mod p).

The above corollary gives an alternative proof of a result concerning the rows

of Pascal’s triangle of the usual binomial coefficients when viewed modulo a prime

number.

Corollary 3. For any prime p, there are infinitely many n such that for all k with

1 ≤ k < n, [
n
k

]
≡ 0 (mod p).

Proof. Let I = (1, 2, 3, . . . ) be the sequence generating the usual binomial coeffi-

cients

[
n
k

]
. Let Ei := (0, 0, . . . , 0, 1) where the only nonzero element lies on the i-th
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position. For p ∈ P, let vp(I) be the p-adic valuation of I. Then

vp(I) =

∞∑
i=1

(Epi)
∞,

where (Epi)
∞ = EpiEpi . . . . Clearly, vp(I) is not eventually periodic. By Lemma

3 and Theorem 1, vp(I) is not a lex-minimal extension of any binomid index. The

result now follows from Corollary 2.

We can apply the above arguments to the sequence of Fibonacci numbers.

Corollary 4. Let F = (Fn)n be the Fibonacci sequence. For any prime p, there

are infinitely many n such that for all k with 1 ≤ k < n,[
n
k

]
F

≡ 0 (mod p).

Proof. As usual, define F0 = 0. For m ∈ N, the sequence (Fn mod m)n∈N∪{0}
of Fibonacci numbers modulo m is purely periodic with a period no bigger than

m2 (Theorem 1 of [7]). Let p ∈ P be fixed. For n ∈ N, there exists m ∈ N such

that pn|Fm because F0 = 0. This implies that the sequence (vp(Fn))n of p-adic

valuations contains an increasing infinite subsequence. As a result, the sequence

(vp(Fn))n is not eventually periodic. Thus, it cannot be the lex-minimal extension

of any binomid index.

5. Eventually Periodic Binomid Index

In this section, we consider the problem of characterizing the space of all eventually

periodic binomid indices. We begin by looking at purely periodic binomid indices.

Proposition 5. Let η be a purely periodic infinite binomid index. Then η is the

lex-minimal extension of some finite binomid index.

Proof. Let η = (e1, e2, . . . , em)∞ and let S(η) = (si)i. By periodicity,

skm+j = ksm + sj = kmAm,0 + jAj,0

for any j, k ≥ 1. By Lemma 2 (2), Am!,0 ≥ Aj,0 for all j ≤ m where m! is the

factorial of m. Thus,

(km+ j)Akm+j,0 = skm+j ≤ (km+ j)Am!,0.

This implies that A0(η) = Am!,0(η). Thus, η satisfies the Average Condition. The

result now follows from Theorem 1.
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Let I be the set of all infinite binomid indices and L be the set of all lex-minimal

extensions. For l ∈ N, let σl : I −→ I be the shift map given by σl(η) = 0lη, where 0l

is the concatenated l copies of 0. It is easy to see that σl is monoid homomorphism

of I with respect to componentwise addition. By Corollary 1, the image σl(L) of L is

a submonoid of I. The space σl(L) naturally inherits the results for L. In particular,

the sequences in σl(L) are eventually periodic. The next example illustrates that

L 6= σ(L).

Example 1. Since 1∞ = (1, 1, . . . ) ∈ L, we have σ(1∞) = (0, 1, 1, . . . ) ∈ σ(L). But

σ(1∞) 6∈ L. Indeed, take η = 01n where n ∈ N. The lex-minimal extension of η is

η̃ = η∞ = (0, 1, 1, . . . , 1, 0, 1, . . . ). Clearly, η̃ 6= σ(1∞). Thus, any finite prefix of

σ(1∞) cannot be extended lex-minimally to σ(1∞). Thus σ(1∞) 6∈ L.

Proposition 6. If l,m ∈ N ∪ {0} with l 6= m, then σl(L) ∩ σm(L) = {0∞}.

Proof. Since σ is injective, we only need to consider the case m = 0 and l ≥ 1. Let

η ∈ L ∩ σl(L) with µ ∈ L such that η = σl(µ). By Lemma 3, there are integers j

and k such that

A0(η) = Aj,0(η) and A0(µ) = Ak,0(µ).

Let S(η) = (si)i be the sequence of partial sums of η. Then s1 = s2 = · · · = sl = 0

and S(µ) = (si+l)i. By Lemma 2 (3), for all i ∈ N, we have

A0(η) = Aij,0(η) and A0(µ) = Aik,0(µ).

Thus,

sij = ijA0(η) and sik+l = ikA0(µ).

By the definition of A0(η), it follows that

A0(η) ≥ lim sup
i

sik+l
ik + l

= lim sup
i

ikA0(µ)

ik + l
= A0(µ).

Using the definition of A0(µ), we obtain A0(η) ≤ A0(µ). Therefore, A0(µ) = A0(η).

By way of contradiction, assume A0(η) 6= 0. By Lemma 2 (4), we have

A0(µ) = sup
m
Am,0(µ) ≥ sij

ij − l
=
ijA0(η)

ij − l
>
ijA0(η)

ij
= A0(η) = A0(µ)

for any i satisfying ij > l. This is a contradiction. Thus, A0(η) = 0, implying that

η = 0∞.

Since σl(L) is a submonoid of the set of all eventually periodic binomid indices,

we ask the following natural question.
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Question. Is the set of all eventually periodic binomid indices the sum∑
l∈N∪{0}

σl(L)?

Note that
∑
l∈N∪{0} σ

l(L) contains many eventually periodic binomid indices.

Consider η = 0l−1(e1, . . . , el)
∞. We claim that η ∈

∑
l∈N∪{0} σ

l(L); and, in partic-

ular, η is a binomid index. Let Ei := 0i−11. Then,

η = 0l−1(e1, . . . , el)
∞

= 0l−1(e1, 0, . . . , 0)∞ + 0l−1(0, e2, 0, . . . , 0)∞ + · · ·+ 0l−1(0, . . . , 0, el)
∞

= (0l−1, e1)∞ + σ((0l−1, e2)∞) + · · ·+ σl−1((0l−1, el)
∞)

= e1E
∞
l + e2σ(E∞l ) + · · ·+ elσ

l−1(E∞l ).

The fact that E∞l is the lex-minimal extension of El proves the claim.
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