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Abstract

Let Sn be the set of all permutations of an n-element set. We investigate the se-
quence a(n, k, j), which counts the number of permutations, σ ∈ Sn, that have k cy-
cles and j fixed points. We prove that the polynomial associated with a(n, k, j), 1 ≤
k ≤ n, has only real zeros for each k ∈ {1, 2, . . . , n}. We improve an asymptotic ex-
pansion for Stirling numbers of the first kind; then, we use it to prove the asymptotic
normality of the sequence a(n, k, j) in a certain range of the integer k.

1. Introduction

The set of all permutations of n objects is denoted as Sn. Let

ŝ(n, k) = {f ∈ Sn} ,

where f has k cycles in its decomposition. Then,

|ŝ(n, k)| = c(n, k) = (−1)n+ks(n, k),

where c(n, k) is the signless Stirling number of the first kind, and s(n, k) is the

Stirling number of the first kind.

In this paper, the number of permutations σ ∈ ŝ(n, k) having j fixed points,

0 ≤ j ≤ k, denoted a(n, k, j), is investigated. First, we determine the sequence

a(n, k, j), as well as its generating function.

We define the random variable Xn,k associated with the sequence a(n, k, j) as

Pr(Xn,k = j) =
a(n, k, j)

c(n, k)
, 0 ≤ j ≤ k ≤ n.

The generating function of the sequence a(n, k, j) will help us to find the parameters

of the random variable Xn,k.
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Usually, when the generating polynomial, Pn(x) =

n∑
k=0

an,kx
k, associated with a

positive sequence, (an,k)nk=0 (where
∑n
k=0 an,k > 0), is known to have only negative

zeros, a central limit theorem is obtained by proving that the variance

σ2
n =

P ′′n (1)

Pn(1)
+
P
′

n(1)

Pn(1)
−

(
P
′

n(1)

Pn(1)

)2


grows infinitely with n.

In Section 3, we prove that the polynomial P (x) =

k∑
j=0

a(n, k, j)xj has only real

zeros. In Theorem 8, we show that the sequence a(n, k, j) is asymptotically normal

by proving that

lim
n−→∞

σ2
n = +∞,

and k satisfies k
lnn −→ +∞, k < n−O(nα), with 0 < α < 1.

Finally, we note that the asymptotic normality of the sequence a(n, k, j) can not

be deduced via the theory developed in [14, 15]. This is due to the fact that there

is no convenient recursion formula relating the a(n, k, j); hence, the real-rootedness

of the polynomial P (x) is obtained by brute force, that is to say, by applying (many

times) a classical result due to Schur.

2. Preliminaries

In this section, we give all the results that will be needed in this paper. All of this

material may be found in [9].

2.1. Permutations

Definition 1. Let c1, c2, . . . , cn be positive integers such that

n∑
i=1

ici = n. A per-

mutation is of type (c1, c2, . . . , cn) if it contains ci cycles of length i.

The number of permutations of type (c1, c2, . . . , cn) is given by the following

proposition.

Proposition 1 (Cauchy). The number of permutations of type c = (c1, c2, . . . , cn)

is given by

P (n, c1, c2, . . . , cn) =
n!

c1! · c2! · c3! · · · cn!1c1 · 2c2 · 3c3 · · ·ncn
.
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In the next proposition, we give an infinite generating function for the sequence

a(n, k, j).

Proposition 2 (Cauchy). Let P (n, k, c1, c2, . . . , cn) be the number of permutations

of type c with k cycles

(
n∑
i=1

ci = k

)
. The infinite generating function of

P (n, k, c1, c2, . . . , cn) is given by

Φ(z, u, x1, x2, . . . , ) =
∑

n,k,c1,c2,···≥0

P (n, k, c1, c2, . . . , cn)

n!
znukxc11 x

c2
2 · · ·

=
∑

n,k,c1,c2,···≥0

1

c1! · c2! · c3! · · · 1c1 · 2c2 · 3c3 · · ·
znukxc11 x

c2
2 · · ·

= expu

(
x1z + x2

z2

2
+ · · ·

)
,

where
∑

n,k,c1,c2,···≥0

means the multiple summation

+∞∑
n=0

+∞∑
k=0

+∞∑
c1=0

. . . .

Proof. Remembering that

P (n, c1, c2, . . . , cn) =
n!

c1! · c2! · c3! · · · cn!1c1 · 2c2 · 3c3 · · ·ncn
,

n∑
i=1

ci = k, and

n∑
i=1

ici = n, we obtain

Φ(z, u, x1, x2, . . . , ) =
∑

n,k,c1,c2,···≥0

P (n, k, c1, c2, . . . , cn)

n!
znukxc11 x

c2
2 · · ·

=
∑

n,k,c1,c2,···≥0

znukxc11 x
c2
2 · · ·

c1! · c2! · c3! · · · cn!1c1 · 2c2 · 3c3 · · ·ncn

=
∑

c1,c2,···≥0

zc1+2c2+3c3...uc1+c2+c3+...xc11 x
c2
2 · · ·

c1! · c2! · c3! · · · cn!1c1 · 2c2 · 3c3 · · ·ncn

=
∑

c1,c2,···≥0

zc1+2c2+3c3...uc1+c2+c3+...xc11 x
c2
2 · · ·

c1! · c2! · c3! · · · cn!1c1 · 2c2 · 3c3 · · ·ncn

=

∑
c1≥0

(ux1z)
c1

c1!

∑
c2≥0

(ux2
z2

2 )c2

c2!

∑
c3≥0

(ux3
z3

3 )c3

c3!

 . . .

= exp(ux1z). exp

(
ux2

z2

2

)
exp

(
ux3

z3

3

)
. . .

= expu

(
x1z + x2

z2

2
+ · · ·

)
. 2
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Definition 2. A permutation without any fixed point is called a derangement.

Let d(n) be the total number of derangements of n objects. Using the

inclusion–exclusion principle, one can prove that

d(n) = n!

(
1− 1

1!
+

1

2!
− 1

3!
− · · ·+ (−1)n

1

n!

)
.

The number of derangements with k cycles is denoted by d(n, k); this is also the

number of permutations with k cycles with a length of at least 2. We have

d(n+ 1, k) = n(d(n, k) + d(n− 1, k − 1)), n ≥ 1, and d(0, 0) = 1. (1)

The proofs of the previous relations may be found in [9].

2.2. Unimodal Log-Concave Sequences

Let us recall the following definitions and facts about unimodal sequences.

Definition 3. A real positive sequence (aj)
n
j=0 is said to be unimodal if there exist

integers k0 and k1, with k0 ≤ k1, such that

a0 ≤ a1 ≤ . . . < ak0 = ak0+1 = . . . = ak1 > ak1+1 ≥ . . . ≥ an.

The integers j, where k0 ≤ j ≤ k1, are the modes of the sequence.

Another property stronger than unimodality is described in the following defini-

tion.

Definition 4. A positive sequence, (aj)
n
j=0, is said to be log-concave if

a2
j ≥ aj−1aj+1 for 1 ≤ j ≤ n− 1.

A real sequence, (aj)
n
j=0, is said to have no internal zeros (NIZ) if i < j and

ai, aj are non-zero; then, al 6= 0 for every l, i ≤ l ≤ j. A NIZ log-concave sequence

is obviously unimodal; however, the converse is not necessarily true. In fact, the

sequence 1, 1, 3, 6, 7, 2, 1 is unimodal but not log-concave. The importance of the

NIZ property is illustrated by the following example: the sequence 1, 3, 2, 0, 0, 1 is

log-concave but not unimodal.

If inequalities in the log-concavity definition are strict, the sequence is said to be

strongly log-concave (SLC), and, in this case, it has at most two consecutive modes.

One important consequence of the real-rootedness of a polynomial is given by

the following classical result of Newton.

Theorem 1. If the polynomial

n∑
j=0

ajx
j, associated with the sequence (aj)

n
j=0, n ≥

2, has only real zeros, then

a2
j ≥

j + 1

j
.
n− j + 1

n− j
aj−1aj+1, 1 ≤ j ≤ n− 1. (2)
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Proof. The result is proved by induction on n. For n = 2, the polynomial

a0 + a1x+ a2x
2

has real zeros if and only if ∆ = a2
1 − 4a0a2 ≥ 0. This is Relation (2) for n =

2. Suppose now that the statement holds for (n − 1). Let L(x) =

n∑
j=0

ajx
j be

a polynomial with only real zeros. By Rolle’s theorem, its derivative L′(x) =∑n−1
j=0 bjx

j also has only real zeros (bj = (j + 1)aj+1, 0 ≤ j ≤ n − 1). Using

the induction hypothesis,

b2j ≥
j + 1

j
.
n− j

n− j − 1
bj−1bj+1, 1 ≤ j ≤ n− 2,

or

a2
j+1 ≥

j + 2

j + 1
.
n− j

n− j − 1
ajaj+2, 1 ≤ j ≤ n− 2.

The remaining relation, a2
1 ≥ 2n

n−1a2a0, is obtained by applying the induction hy-

pothesis to (Lr(x))′, the derivative of Lr(x) =
∑n
j=0 an−jx

j , which is the reciprocal

of L(x).

If the positive sequence (aj)
n
j=0, n ≥ 2, satisfies the hypothesis of the previous

theorem, more information about it is supplied by the following corollary.

Corollary 1. If the sequence (aj)
n
j=0 is positive and satisfies the conditions of the

previous theorem, then it is SLC, and, in this case, it has a single maximum or a

plateau of two elements.

Proof. We may suppose an = 1. So,

L(x) =

n∑
j=0

ajx
j =

n∏
j=1

(x− αi).

Since the coefficients (aj) are the elementary symmetric functions of αi, then, neces-

sarily, all αi are negative. If aj = 0 for one coefficient, then αi = 0 for all 1 ≤ i ≤ n,

because aj is the symmetric function of order (n− j) of αi. Now, we may suppose

that ai > 0 for all 1 ≤ i ≤ n. Newton’s inequalities yield

a2
j ≥

j + 1

j
.
n− j + 1

n− j
aj−1aj+1 > aj−1aj+1, 1 ≤ j ≤ n− 1.

The previous inequalities may be written as

a1

a0
>
a2

a1
>
a3

a2
> · · · > an

an−1
.
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Thus, the sequence (aj)
n
j=0 is either decreasing (if 1 > a1

a0
) or increasing (if an

an−1
>

1), or there exists an integer l, (1 ≤ l ≤ n− 1), such that

a1

a0
>
a2

a1
> · · · > al

al−1
> 1 ≥ al+1

al
· · · > an

an−1
.

This means that the sequence is unimodal with mode l. Note that we have at most

one integer l such that al+1

al
= 1. This is the case where we have a plateau of two

elements.

3. The Sequence a(n, k, j)

In the following proposition, the value of a(n, k, j) is explicitly given.

Proposition 3. Let n ≥ k ≥ 1 be positive integers. The number a(n, k, j) of

permutations with k cycles that have j fixed points satisfies the following:

(i) a(n, k, j) =
(
n
j

)
d(n− j, k − j), 0 ≤ j ≤ k;

(ii)
∑

n,k,j≥0

a(n, k, j)vjuk z
n

n! = ezu(v−1)

(1−z)u ;

(iii) ja(n, k, j) = na(n− 1, k − 1, j − 1), 1 ≤ j ≤ k;

(iv)

k∑
j=0

a(n, k, j) = c(n, k).

Proof. For (i), the number a(n, k, j) is computed as follows: we choose j fixed points

among n elements in
(
n
j

)
ways; there remain (n− j) elements, which will be placed

into (k−j) cycles that have a length of at least 2. This is performed in d(n−j, k−j)
ways. Therefore, the total number is

(
n
j

)
d(n− j, k − j). The generating function of

the sequence a(n, k, j) is a consequence of Proposition 2,

∑
n,k,j≥0

a(n, k, j)vjuk
jzn

n!
= Φ(z, u, v, 1, 1, 1, . . . , )

= exp

{
u

(
vz +

z2

2
+ · · ·

)}
= exp

(
uvz + u

(
ln

1

1− z
− z
))

.
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For (iii), note that for j ≥ 1 we have

a(n, k, j) =

(
n

j

)
d(n− j, k − j) =

n

j

(
n− 1

j − 1

)
d(n− j, k − j)

=
n

j

(
n− 1

j − 1

)
d(n− 1− (j − 1), k − 1− (j − 1))

=
n

j
a(n− 1, k − 1, j − 1).

Relation (iv) is obvious. This concludes the proof.

The aim of the following section is to prove that the polynomial P (x) has only

real zeros. The proof is based on two results. The next theorem is due to Schur (a

proof of it may be found in [20]). The second one concerns the reality of zeros of

the generating polynomial associated with the number of derangements.

Theorem 2 (Schur). Let

n∑
k=0

akx
k and

m∑
k=0

ckx
k be two real polynomials having only

real zeros. Suppose that all the zeros of one of them are on the same side of the real

axis; then, the polynomial

d∑
k=0

k!akckx
k has only real zeros, where d = min(n,m).

The second result we need is as follows.

Theorem 3. For every integer n ≥ 2, the polynomial Dn(x) =

n∑
k=1

d(n+ k, k)xk−1

has only real zeros.

Proof. We proceed by induction on n. For n = 2, the polynomial reduces to

D2(x) = d(3, 1) + d(4, 2)x = 2 + 3x,

and the result holds trivially. Suppose the result holds for n ≥ 2, and consider

Dn+1(x) =

n+1∑
k=1

d(n+ k + 1, k)xk−1.

Using Equation (1), we obtain

Dn+1(x) =

n+1∑
k=1

(n+ k)(d(n+ k, k) + d(n+ k − 1, k − 1))xk−1

= ((n+ 2)x+ n+ 1))Dn(x) + x(x+ 1)D
′

n(x).

Let

Hn(x) = (x+ 1)xn+1Dn(x).
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By the induction hypothesis, the polynomial Hn has 2n + 1 real zeros. By Rolle’s

theorem, H
′

n has 2n real zeros; however, H
′

n(x) = xnDn+1(x), and the degree of

the polynomial Dn+1 is n. This means that all the zeros of Dn+1 are real.

The following theorem constitutes the principal result of this section.

Theorem 4. Let n ≥ k ≥ 1 be two positive integers. Then, the polynomial P (x)

has only real zeros.

Proof. First, suppose n = k. Then, a(n, n, j) =
(
n
j

)
d(n − j, n − j) = 0 except for

j = n. Thus,

P (x) =

k∑
j=0

a(n, k, j)xj = xn,

and its zeros are real. We know that d(n, k) = 0 if n < 2k. It follows then that

a(n, k, j) = 0 for n− j < 2(k − j) or j < 2k − n. For this, we consider two cases.

Case 1: n − k ≥ k. In this case, a(n, k, j) 6= 0 for all j, and 0 ≤ j ≤ k − 1. So,

using Theorem 3, the polynomial

Dl(x) =

l∑
j=1

d(l + j, j)xj−1 =

l−1∑
j=0

d(l + j + 1, j + 1)xj

has only real zeros for every l ≥ 2. Theorem 2 can be applied to Dn−k(x) and

(x+ 1)k−1 to obtain the polynomial

φ(x) =

k−1∑
j=0

d(n− k + j + 1, j + 1)

(k − j − 1)!
xj ,

which has only real zeros. Its reciprocal polynomial, φr(x) =

k−1∑
j=0

d(n−j,k−j)
j! xj , has

this property too. Once again, Theorem 2 can be applied to φr(x) and (x + 1)n.

The resulting polynomial is P (x), which has only real zeros.

Case 2: n − k < k. In this case, the coefficients a(n, k, j) equal 0 for j < 2k − n.

The polynomial P (x) =

k∑
j=0

a(n, k, j)xj becomes

P (x) =

k−1∑
j=2k−n

a(n, k, j)xj .

Theorem 2 applied to Dn−k(x) and (x+ 1)k−1 gives the polynomial

h(x) =

n−k−1∑
j=0

d(n− k + j + 1, j + 1)

(k − j − 1)!
xj ,
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which has only real zeros. The same property holds for its reciprocal polynomial

hr(x) =

n−k−1∑
j=0

d(2(n− k)− j, n− k − j)
(2k − n+ j)!

xj .

Apply Theorem 2 to hr(x) and (x+ 1)2n−2k. We obtain the polynomial

g(x) =

n−k−1∑
j=0

d(2(n− k)− j, n− k − j)
(2n− 2k − j)!(2k − n+ j)!

xj ,

which has only real zeros. This completes the proof since P (x) = n!x2k−ng(x).

The following corollary arises as a direct consequence of the previous theorem.

Corollary 2. The sequence (a(n, k, j))kj=0 is SLC in j, and it is unimodal with a

peak or a plateau with two elements.

4. A Central Limit Theorem for a(n, k, j)

In what follows, we study the distribution of the fixed points in the set of k-

permutations. For this, consider the family of random variables (Xn,k)1≤k≤n on

the set ŝ(n, k) of k-permutations defined by

Pr(Xn,k = j) =
a(n, k, j)

c(n, k)
, 0 ≤ j ≤ k.

We use a variant of Lindeberg’s theorem to establish the asymptotic normality of

the sequence (a(n, k, j))j . Proposition 3 is needed to compute the mean and the

variance of the random variable Xn,k. For a certain range of k = k(n), the variance

becomes infinitely large, ensuring the applicability of Lindeberg’s theorem. It is

pertinent to recall the relevant definitions.

Definition 5. A positive real sequence (b(n, k))
n
k=0 , with Bn =

n∑
k=0

b(n, k) 6= 0, is

said to satisfy a central limit theorem (or is asymptotically normal) with mean µn
and variance σ2

n, if

lim
n−→+∞

sup
x∈R

∣∣∣∣∣∣
∑

0≤k≤µn+xσn

b(n, k)

Bn
− (2π)−1/2

∫ x

−∞
e−

t2

2 dt

∣∣∣∣∣∣ = 0.

The sequence satisfies a local limit theorem on I ⊆ R, with mean µn and variance

σ2
n , if

lim
n−→+∞

sup
x∈I

∣∣∣∣σnb(n, µn + xσn)

Bn
− (2π)−1/2e−

x2

2

∣∣∣∣ = 0.
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The following theorem is a consequence of the Lindeberg central limit theorem;

for details, see [8].

Theorem 5. Let (Qn)n≥1 be a sequence of real polynomials with only real nega-

tive zeros. The sequence of the coefficients of the (Qn)n≥1 satisfies a central limit

theorem with µn =
Q
′
n(1)

Qn(1) and σ2
n =

Q′′n(1)

Qn(1)
+
Q
′

n(1)

Qn(1)
−

(
Q
′

n(1)

Qn(1)

)2
 provided that

lim
n−→+∞

σ2
n = +∞. If, in addition, the sequence of the coefficients of each Qn has

no internal zeros, then the sequence of the coefficients satisfies a local limit theorem

on R.

Let us evaluate the mean and the variance of Xn,k. We have the following.

Proposition 4. The mean µn,k and the variance σ2
n;k of the random variable Xn,k

are given by,

µn,k = n
c(n− 1, k − 1)

c(n, k)

σ2
n,k = n

c(n− 1, k − 1)

c(n, k)

(
1 + (n− 1)

c(n− 2, k − 2)

c(n− 1, k − 1)
− nc(n− 1, k − 1)

c(n, k)

)
= µn,k (1 + µn−1,k−1 − µn;k) .

Proof. Consider Assertion (3) of Proposition 3: ja(n, k, j) = na(n− 1, k− 1, j− 1).

Summing over j, we obtain

k∑
j=1

ja(n, k, j) =

k∑
j=1

na(n− 1, k − 1, j − 1) = nc(n− 1, k − 1);

then, we obtain

µn,k =

k∑
j=1

ja(n, k, j)

k∑
j=0

a(n, k, j)

= n
c(n− 1, k − 1)

c(n, k)
.

Recall that

σ2
n;k =

∑
j≥0

(µn,k − j)2 Pr(Xn,k = j)

= −µ2
n,k +

∑
j≥0

j2 Pr(Xn,k = j).
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To evaluate
∑
j≥1

j2a(n, k, j), differentiate the generating function in Proposition 3

with respect to v. We obtain

∑
n,k≥0

∑
j≥1

ja(n, k, j)vj−1

uk
zn

n!
=
zuezu(v−1)

(1− z)u
.

Multiplying by v and differentiating again with respect to v yields

∑
n,k≥0

∑
j≥1

j2a(n, k, j)vj−1

uk
zn

n!
=
zuezu(v−1) + z2u2vezu(v−1)

(1− z)u
.

Let v = 1 in the previous relation; one has

∑
n,k≥0

∑
j≥1

j2a(n, k, j)

uk
zn

n!
=
zu+ z2u2

(1− z)u
.

Equating the coefficients of uk z
n

n! on both sides gives∑
j≥1

j2a(n, k, j) = nc(n− 1, k − 1) + n(n− 1)c(n− 2, k − 2).

Finally,

σ2
n;k = −µ2

n,k +
∑
j≥0

j2 Pr(Xn,k = j)

= −
(
n
c(n− 1, k − 1)

c(n, k)

)2

+
nc(n− 1, k − 1)

c(n, k)
+
n(n− 1)c(n− 2, k − 2)

c(n, k)

=
nc(n− 1, k − 1)

c(n, k)

(
1− nc(n− 1, k − 1)

c(n, k)
+

(n− 1)c(n− 2, k − 2)

c(n− 1, k − 1)

)
= µn,k

(
1− µn,k + µn−1,k−1

)
.

The proof is concluded.

In order to apply the preceding theorem, we need explicit equivalents of µn,k
and σ2

n,k. To this end, we use an asymptotic expansion of c(n, k) due to Moser

and Wyman. When k is small or very large we obtain a degenerate law. For

an intermediate value of k we obtain a normal law. We recall the definition of a

degenerate law.

Definition 6. A random variable X is degenerate if P (X = a) = 1 for some real

constant a.
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In the following theorem, we show that the sequence of random variables (Xn,k)

is degenerate for the extreme values of k = k(n) (small and large values of k,

with n −→ +∞). It is noteworthy that convergence in probability is stronger than

convergence in distribution. However, if the the limit is constant (degenerate) then

convergence in distribution implies convergence in probability.

Theorem 6. The sequence (Xn,k) of random variables is degenerate in the two

following cases.

1) For k = o(lnn) or n − o(nα) ≤ k ≤ n, 0 < α < 1/2, (Xn,k) converges in

probability to a degenerate law at 0.

2) If k is large enough and lim
n−→+∞

(n−k)2

k = 0 then (Xn,k) converges in probability

to a degenerate law at n.

Proof. For k = o(lnn), c(n, k) ∼ (n−1)!(lnn+γ)k−1

(k−1)! (see [19]). We deduce that

µn,k ∼
k

lnn
−→ 0.

Consequently, P (Xn,k = 0) = (1 + o(1)) ∼ 1. This is expected. Indeed, if k is small

and n large enough, there is no place for fixed points. If n−o(nα) ≤ k, 0 < α < 1/2,

the asymptotic expansion of c(n, k) in this range is given by (see [19])

c(n, k) ∼
(
n

k

)(
k

2

)n−k
.

Since n − o(nα) ≤ k, 0 < α < 1/2, it follows that lim
n−→+∞

(n−k)2

k = 0; in this case,

we have

µn,k ∼ k
(

1− 1

k

)n−k
−→ k.

Thus, P (Xn,k = k) = (1 + o(1)) ∼ 1. In this situation, the result is expected; if k is

large, almost all cycles have a length of one, that is, they are fixed points.

For k such that k
lnn −→ +∞ as n −→ +∞ and k ≤ n − O(nα), 0 < α < 1 by

the work of Moser and Wyman (see [19, Equation 5.7]) provided the first two terms

of a formula are convenient for calculations. More precisely, they gave

c(n, k) ' n!uk

k!(1− e−u)n
√

2πkK1

(
1 +

1

k

(
K3

8K2
1

− 5K2
2

24K3
1

))
,

with

eu − 1

u
=
n

k
= λ,

K1 = λ(eu − λ)),

K2 = λ
(
2λ2 − (3λ+ 1)eu + 2e2u

)
,

K3 = λ
(
−6λ3 − (12λ2 + 4λ+ 1)eu − (11λ+ 6)e2u + 6e3u

)
.
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In the next theorem, employing the same method (and the same notation) as in

[19], we give an asymptotic formula for c(n, k) of order three. This result is impor-

tant on its own, since, in the proof of Theorem 7, we give a complete asymptotic

expansion of the Stirling numbers of the first kind (which can be compared with

[16, 18, 19, 21, 22]).

Theorem 7 ([19]). For n and k such that k
lnn −→ +∞, n −→ +∞ and k ≤

n−O(nα), 0 < α < 1, we have

c(n, k) =
n!uk

k!(1− e−u)n
√

2πkK1

(
1 +

b1
k

+
b2
k2

+
b3
k3

+ o

(
1

k3

))
,

where u is the unique positive real root of
eu − 1

u
=
n

k
= λ, and

b1 =
K3

8K2
1

− 5K2
2

24K3
1

,

b2 =
35K2

3

384K4
1

+
7K2K4

48K4
1

− K5

48K3
1

− 35K2
2K3

96K5
1

+
385K4

2

1152K6
1

,

b3 =
K7

384K4
1

− 20K2K6 + 35K3K5 + 21K2
4

640K5
1

+
77K2

2K5

384K6
1

+
77K2K3K4

128K6
1

+
385K3

3

3072K6
1

−
(

5005K2
2K

2
3

3072K7
1

+
1001K3

2K4

1152K7
1

)
+

25025K4
2K3

9216K8
1

− 85085K6
2

82944K9
1

.

The constants Ki, 1 ≤ i ≤ 7, are given by

K1 = λ(eu − λ);

K2 = λ(2λ2 − (3λ+ 1)eu + 2e2u);

K3 = λ(−6λ3 + (12λ2 + 4λ+ 1)eu − (11λ+ 6)e2u + 6e3u);

K4 = λ{24λ4 − (60λ3 + 20λ2 + 5λ+ 1)eu + (70λ2 + 40λ+ 14)e2u

−(50λ+ 36)e3u + 24e4u};
K5 = λ{−120λ5 + (360λ4 + 110λ3 + 30λ2 + 6λ+ 1)eu

+(510λ3 + 300λ2 + 109λ+ 30)e2u + (450λ2 + 345λ+ 150)e3u

+(274λ+ 240)e4u + 120e5u};
K6 = λ{720λ6 − (λ5 + 840λ4 + 210λ3 + 42λ2 + 7λ+ 1)eu

+(4200λ4 + 2520λ3 + 938λ2 + 266λ+ 62)e2u

−(4410λ3 + 3542λ2 + 1624λ+ 540)e3u + (3248λ2 + 3066λ+ 1560)e4u

−(1764λ+ 1800)e5u + 760e6u};
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K7 = λ{−5040λ7 + (20160λ6 + 6720λ5 + 1680λ4 + 336λ3 + 56λ2 + 8λ+ 1)eu

− (38640λ5 + 23520λ4 + 8904λ3 + 2576λ2 + 615λ+ 126)e2u

+ (47040λ4 + 38976λ3 + 18564λ2 + 6476λ+ 1806)e3u

− (40614λ3 + 40376λ2 + 21944λ+ 8400)e4u + (26264λ2 + 29016λ+ 16800)e5u

− (13068λ+ 15120)e6u + 5040e7u}.

Proof. Using the generating function

∑
n≥k

(−1)ns(n, k)
zn

n!
=

lnk(1− z)
k!

,

and the Cauchy formula, we obtain

s(n, k) =
(−1)nn!

2πik!

∫
Γ

lnk(1− z)
zn+1

dz,

where Γ is a circle around the origin, and its radius will be determined later. Let

z = reiθ. Then,

s(n, k) =
(−1)nn!

2πk!rn

∫ π

−π

lnk(1− reiθ)
einθ

dθ

=
(−1)nn!

2πk!rn

∫ π

−π
exp(k ln(ln(1− reiθ))− inθ)dθ

=
(−1)nn!

2πk!rn

∫ π

−π
exp(F (θ)dθ,

where F (θ) = k ln(ln(1− reiθ))− inθ.
In order to find an asymptotic equivalent of c(n, k), we use the saddle point

method: the value of the integral is independent of the path of integration. We

choose one that passes through (or near) a saddle point z0 (F ′(z0) = 0, F (z0) 6= 0)

and along a neighbourhood of z0, the imaginary part of F , denoted ImF (z), is

constant. By this choice, the saddle point corresponds to a local maximum in this

neighborhood. Thus, the major contribution to the integral essentially comes from

the small part of the path containing z0. For a detailed discussion of this method,

see ([11], Chapter VIII). The calculations are very long as shown by the first few
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derivatives of F :

F ′(θ) = − ikreiθ

(1− reiθ) ln(1− reiθ)
− in;

F ′′(θ) = k
reiθ(1− reiθ) ln(1− reiθ) + r2e2iθ ln(1− reiθ) + r2e2iθ

(1− reiθ)2 ln2(1− reiθ)
;

F (3)(θ) =
ikreiθ

(1− reiθ) ln(1− reiθ)
+

3ikr2e2iθ

(1− reiθ)2 ln(1− reiθ)

+
3ikr2e2iθ

(1− reiθ)2 ln2(1− reiθ)
+

2ikr3e3iθ

(1− reiθ)3 ln(1− reiθ)

+
3ikr3e3iθ

(1− reiθ)3 ln3(1− reiθ)
+

2ikr2e3iθ

(1− reiθ)3 ln3(1− reiθ)
.

The fourth derivative of F , with respect to θ, is

F (4)(θ) = − kreiθ

(1− reiθ) ln(1− reiθ)
− 7kr2e2iθ

(1− reiθ)2 ln(1− reiθ)

− 7kr2e2iθ

(1− reiθ)2 ln2(1− reiθ)
− 12kr3e3iθ

(1− reiθ)3 ln(1− reiθ)

− 18kr3e3iθ

(1− reiθ)3 ln2(1− reiθ)
− 12kr3e3iθ

(1− reiθ)3 ln3(1− reiθ)

− 6kr4e4iθ

(1− reiθ)4 ln(1− reiθ)
− 11kr4e4iθ

(1− reiθ)4 ln2(1− reiθ)

− 12kr4e4iθ

(1− reiθ)4 ln3(1− reiθ)
− 6kr4e4iθ

(1− reiθ)4 ln4(1− reiθ)
.

The radius r is chosen such that F
′
(0) = 0 , or, explicitly,

− kr

(1− r) ln(1− r)
= n.

The equation F
′
(0) = F

′
(r) = 0 is equivalent to

eu − 1

u
=
n

k
= λ, with r = 1− e−u.

The value of F ′′(0) is given by

F ′′(0) = k
r(1− r) ln(1− r) + r2 ln(1− r) + r2

(1− r)2 ln2(1− r)

=
kr

(1− r) ln(1− r)
+

kr2

(1− r)2 ln(1− r)
+

kr2

(1− r)2 ln2(1− r)

= −n+
n2

k
ln(1− r) +

n2

k
= −n− n2

k
u+

n2

k
= −kK1.
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Using the notation of the theorem, we obtain

F (3)(0) = −λ(2λ2 − (3λ+ 1)eu + 2e2u)ik = −ikK2;

F (4)(0) =
(
λ(−6λ2 + (12λ2 + 4λ+ 1)eu − (11λ+ 6)e2u + 6e3u)

)
k = kK3;

F (5)(0) = −ikK4;

....

We write∫ π

−π
exp(F (θ))dθ =

∫ −ε
−π

exp(F (θ))dθ +

∫ ε

−ε
exp(F (θ))dθ +

∫ π

ε

exp(F (θ))dθ

= I1 + I2 + I3,

where ε = ln k/
√
k. We will prove that I1 and I3 are negligible, and then, the major

contribution to the integral comes from I2. The function |exp(F (θ))| attains its

(unique) maximum at θ = 0. In addition, exp (F (θ)) is strictly decreasing in the

interval [0, ε] since, around θ = 0, F is real and well approximated by F (0)+ F ′′(0)
2 θ2

(recall that F ′′(0) < 0). We have

Re
(
eF (θ)

)
= exp

(
k

2

(
ln

(
1

4
ln2
(
1− 2r cos(θ) + r2

)
+ arctan2

(
−r sin θ

2− r cos θ

))))

× cos

k arctan

 2 arctan
(
−r sin θ

2−r cos θ

)
ln2 (1− 2r cos(θ) + r2)

− nθ
 .

Let Re(exp (F (θ))) = g(θ) exp(kφ(θ)). Then,

|I3| ≤
∫ π

ε

|exp (F (θ))| dθ =

∫ π

ε

g(θ) exp(kφ(θ))dθ,

and since F has a unique critical point in [0, π] , the function g(θ) exp(kφ(θ)) is

monotonically decreasing in [ε, π]. An integration by parts yields∫ π

ε

exp(ReF (θ))dθ =

∫ π

ε

g(θ) exp(kφ(θ))dθ

=
g(θ)

kφ′(θ)
exp(kφ(θ))

∣∣π
ε
− 1

k

∫ π

ε

d

dθ

(
g(θ)

φ′(θ)

)
exp(kφ(θ))dθ

=
g(π)

kφ′(π)
exp(kφ(π))− g(ε)

kφ′(ε)
exp(kφ(ε))

− 1

k

∫ π

ε

d

dθ

(
g(θ)

φ′(θ)

)
exp(kφ(θ))dθ

= O

(
1

k

)
,
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because all the terms are bounded. It follows that

∫ π

ε

exp(ReF (θ))dθ is negligible

(as well as

∫ −ε
−π

exp(ReF (θ))dθ ). Thus,

s(n, k) ' (−1)nn!

2πk!rn

∫ ε

−ε
exp(F (θ))dθ. (3)

The next step is to evaluate the expression on the right-hand side of Relation (3).

For this, expand the function F (θ) about θ = 0 at any order l ≥ 2.

We use the notation ai =
F (i)(0)

i!
. Relation (3) is now

s(n, k) ' (−1)nn!

2πk!rn

∫ ε

−ε
exp(F (θ))dθ

=
(−1)nn!

2πk!rn

∫ ε

−ε
exp (F (θ)− F (0) + F (0)) dθ

=
(−1)nn! exp (F (0))

2πk!rn

∫ ε

−ε
exp (F (θ)− F (0)) dθ.

Since c(n, k) = (−1)n+ks(n, k) and exp (F (0)) = (−u)k, we have

c(n, k) ' n!uk

2πk!rn

∫ ε

−ε
exp (F (θ)− F (0)) dθ

=
n!uk

2πk!(1− e−u)n

∫ ε

−ε
exp

 l∑
j=2

ajθ
j +O(θl+1)

 dθ

=
n!uk

2πk!(1− e−u)n

∫ ε

−ε
exp(a2θ

2) exp

 l∑
j=3

ajθ
j +O(θl+1)

 dθ

=
n!uk

2πk!(1− e−u)n


∫ ε

−ε
exp(a2θ

2)

1 +
l∑
i=1

(
l∑

j=3

ajθ
j

)i
i!

 dθ +O(θl+1)

 .

If we rearrange the sum in the last integral and drop the terms of order greater

than l + 1, we obtain

c(n, k) =
n!uk

2πk!(1− e−u)n

∫ ε

−ε
exp(a2θ

2)

1 +

l∑
j=3

cjθ
j

 dθ +O(θl+1)

 ,

where

a2 = −kK1

2
, c3 = a3 = − ikK2

6
, c4 = a4 =

kK3

24
, c5 = a5 =

ikK4

120
,
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c6 = a6 + a2
3/2 = −kK5

720
− k2K2

2

72
, · · · .

Let y =
√
kK1θ. The last integral becomes

c(n; k) = A

(∫ √K1 ln k

−
√
K1 ln k

e−y
2/2

(
1− i K3

6
√
kK

3
2
1

y3 +
K3

24kK2
1

y4 + . . .

)
dy +O(yl+1)

)
,

where

A =
n!uk√

kK12πk!(1− e−u)n
.

Note that

∫ a

−a
x2i+1e−x

2/2dx = 0, and

∫ +∞

√
K1 ln k

y2j exp(−y2/2) is small and may be

dropped. Hence, we can complete the bounds of the integral. With cn,k = c(n, k),

we obtain

cn,k = A

(∫ ∞
−∞

e−y
2/2

(
1 +

K3y
4

24kK2
1

−
(

K5y
6

720k2K3
1

+
K2

2y
6

72kK3
1

)
+ . . .

)
dy +O(yl+1)

)
.

Using the well-known values of the Ji,

Ji =

+∞∫
−∞

xie−x
2/2dx, J0 =

√
2π, J2 =

√
2π, J4 = 3

√
2π, . . . ,

we obtain a complete asymptotic formula for c(n, k):

c(n, k) =
n!uk

k!(1− e−u)n
√

2πkK1

 l∑
j=0

bi
ki

+O

(
1

kl+1

) ,

where

b0 = 1, b1 =
K3

8K2
1

− 5K2
2

24K3
1

, b2 =
35K2

3

384K4
1

+
7K2K4

48K4
1

− K5

48K3
1

−35K2
2K3

96K5
1

+
385K4

2

1152K6
1

, · · · .

This completes the proof.

Based on the previous sections, we can now establish the main result of this

section.

Theorem 8. For n and k such that

k

lnn
−→ +∞, n −→ +∞, k ≤ n−O(nα), 0 < α < 1,

the sequence a(n, k, j)j≥0 is asymptotically normal with mean

µn,k ∼ ne−u,
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and variance

σ2
n,k ∼

k

lnn
,

where u is the unique positive real root of
eu − 1

u
=
n

k
= λ.

Proof. The polynomial P (x) has only real zeros. So, by Theorem 5 the sequence

a(n, k, j) is asymptotically normal, provided that lim
n−→+∞

σn;k = +∞. We have

µn,k = n
c(n− 1, k − 1)

c(n, k)
.

Recall that u and v are, respectively, the positive real roots of the equations

f(u) =
eu − 1

u
=
n

k
= λ and f(v) =

ev − 1

v
=
n− 1

k − 1
= λ

′
.

Using Theorem 7, we obtain

µn,k = k

vk−1(1− e−u)n(kK1)1/2

(
1 +

b
′
1

k−1 +
b
′
2

(k−1)2 +
b
′
3

(k−1)3 + o
(

1
k3

))
uk(1− e−v)n−1((k − 1)K

′
1)1/2

(
1 +

b1
k +

b2
k2 +

b3
k3 + o

(
1
k3

)) .

To avoid long and tedious calculations, we use only the first terms of the asymptotic

formula proved in Theorem 7. This is enough to obtain a central limit theorem.

Let us evaluate (u− v). For this, let

f(u) =
eu − 1

u
=
n

k
= λ and f(v) =

ev − 1

v
=
n− 1

k − 1
= λ

′
;

u = g(λ) = f−1(λ) and v = g(λ
′
) = f−1(λ

′
).

The successive derivatives of g are

g′(λ) =
1

f ′(u)
, g
′′
(λ) = − f

′′
(u)

f ′3(u)
, g

(3)

(λ) = −f
(3)

(u)f
′
(u)− 3f

′′
(u)

f ′5(u)
, · · · .

Then,

v = g(λ
′
) = g(λ) + (λ

′
− λ)g

′
(λ) +

(λ
′ − λ)2

2
g
′′
(λ) +O

(
1

k3

)
.

We also have

λ
′
− λ =

n

k
− n− 1

k − 1
∼ λ− 1

k
,

and

f
′
(u) =

ueu − eu + 1

u2
, f
′′
(u) =

u2eu − 2ueu + 2eu − 2

u3
.
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Then,

v = g(λ
′
) = g(λ) +

λ− 1

kf ′(u)
− 1

2

(
λ− 1

k

)2
f
′′
(u)

f ′3(u)
+O

(
1

k3

)
.

With k = n
λ and g(λ) = u, we obtain

v = u+
λ− 1

kf ′(u)
− 1

2

(
λ− 1

k

)2
f
′′
(u)

f ′3(u)
+O

(
1

k3

)
.

Replace f
(i)

(u), i = 1, 2, with their values to obtain

v = u+
(λ− 1)u

λk(λu− λ+ 1)
− 1

2

(
(λ− 1)

k

)2
u2(1 + uλ)− 2u(1 + λu) + 2λu

(λu− λ+ 1)3
+O

(
1

k3

)
.

For the sake of simplicity let

v − u =
Bku

k
+O

(
1

k3

)
,

where

Bk =
(λ− 1)

λ(λu− λ+ 1)
−
(

(λ− 1)2

2k

)
u(1 + uλ)− 2(1 + λu) + 2λ

(λu− λ+ 1)3
.

Next, we evaluate vk

uk :

vk

uk
=

(
1 +

v − u
u

)k
= exp

(
k ln

(
1 +

v − u
u

))
= exp k

(
Bk
k
− B2

k

2k2
+O

(
1

k3

))
= exp

(
Bk −

B2
k

2k
+O

(
1

k2

))
.

The next quantity to compute is(
1− e−u

1− e−v

)n
= exp

{
−n ln

(
1− e−v − e−u

1− e−u

)}
.

We have e−v − e−u = −(v − u)e−u + (v−u)2

2 e−u +O
(

1
k3

)
. This yields(

1− e−u

1− e−v

)n
= exp

{
−n ln

(
1 +

(v − u)e−u

1− e−u
− (v − u)2e−u

2(1− e−u)
+O

(
1

k3

))}
= exp

{
−n ln

(
1 +

Bkue
−u

k(1− e−u)
− B2

ku
2e−u

2k2(1− e−u)
+O

(
1

k3

))}
.
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Since 1− e−u = λue−u and n = λk, we obtain(
1− e−u

1− e−v

)n
= exp

{
−λk ln

(
1 +

Bk
λk
− λ(λ− 1)2u

2k2(λu− λ+ 1)2
+O

(
1

k3

))}
= exp

(
−Bk +

λ2(λ− 1)2u

2k(λu− λ+ 1)2

)(
1 +O

(
1

k2

))
.

We note in passing that O
(

1
nl

)
= O

(
1
kl

)
for l ≥ 1. The ratio

(
1+

b′1
k−1

1+
b1
k

)
is asymp-

totically equal to 1 + O
(

1
k2

)
. To get an asymptotic equivalent of

(
kK1

(k−1)K
′
1

)1/2

,

substitute K1 and K2 with their values, to obtain:

Kλ =

(
kK1

(k − 1)K
′
1

)1/2

= exp

(
1

2n
+O

(
1

k2

))
exp

(
−1

2
ln

(
eu − λ
ev − λ′

))
.

Let

Eλ =

(
eu − λ
ev − λ′

)1/2

.

From

eu = λu+ 1, ev = λ
′
v + 1, λ

′
− λ =

λ− 1

k
+ o(1), v − u =

Bku

k
+O

(
1

k3

)
,

we obtain

Eλ = exp

(
−1

2
ln

(
λ
′
v − λ′ + 1

λu− λ+ 1

))

= exp

(
−1

2
ln

(
1 +

Bku

k(λu− λ+ 1)
+

(λ− 1)u

k(λu− λ+ 1)
− (λ− 1)

k(λu− λ+ 1)

))
+O

(
1

k3

)
.

Substituting Bk with its value yields

Eλ = exp

(
−1

2
ln

(
1 +

λ(λ− 1)u

k(λu− λ+ 1)2
+

(λ− 1)u

k(λu− λ+ 1)
− (λ− 1)

(λu− λ+ 1)

))
+Ø

(
1

k2

)
.

After expanding ln

(
1 +

λ(λ− 1)u

k(λu− λ+ 1)2
+ . . .

)
, we obtain

Kλ = exp

(
−1

2

(
λ(λ− 1)u

k(λu− λ+ 1)2
+

(λ− 1)u

k(λu− λ+ 1)
− (λ− 1)

k(λu− λ+ 1)

)
+

1

2n

)
+O

(
1

k2

)
.
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Recall that µn,k is given by

µn,k = (1− e−v)k
v

( v
u

)k (1− e−u

1− e−v

)n(
kK1

(k − 1)K
′
1

)1/2

(
1 +

b
′
1

k−1

)
(

1 +
b1
k

) (1 + o(1)).

Since u ∼ v and 1− e−u ∼ 1− e−v, we have

µn,k ∼ (1− e−u)
k

u

( v
u

)k (1− e−u

1− e−v

)n(
kK1

(k − 1)K
′
1

) 1
2

(
1 +

b
′
1

k−1

)
(

1 +
b1
k

) . (4)

Remembering that (1−e−u) = λue−u, and replacing each term in Relation (4) with

its asymptotic equivalent, we obtain

µn,k ∼ n exp

(
−u− λ(λ− 1)

2k(λu− λ+ 1)2
+

(λ− 1)u

2k(λu− λ+ 1)2
− (λ− 1)

2k(λu− λ+ 1)

)
.

Keeping just the first term in the previous relation yields µn,k ∼ ne−u for large n

and k in the indicated range. An equivalent value of σ2
n,k is deduced from µn,k as

follows:

σ2
n,k = µn,k (1 + µn−1,k−1 − µn;k) ∼ ne−u(1 + (n− 1)e−v − ne−u).

Using the facts that u ∼ v and e−v − e−u ∼ (−v + u)e−u leads to

σ2
n,k ∼ ne−u(1 + (n− 1)e−v − ne−u)

= ne−u(1− e−v + n(e−v − e−u))

= ne−u(λ′ve−v + n(e−v − e−u))

∼ ne−u(λue−u − n(v − u)e−u).

From v − u = Bk

k u+O
(

1
k3

)
and n = λk, we deduce

σ2
n,k ∼ ne−u(λue−u − λBkue−u)

= nλue−2u(1−Bk)

∼ nλue−2u

(
1− (λ− 1)

λ(λu− λ+ 1)

)
= kue−2u

(
λ2u− λ2 + 1

λ2u− λ2 + λ

)
.

For large enough n and k, as in Theorem 8,
λ2u− λ2 + 1

λ2u− λ2 + λ
∼ 1; hence,

σ2
n,k ∼ nuλe−2u = kλ2e−2u.
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The root u may be obtained by bootstrapping:

λ =
eu − 1

u
implies u ∼ lnλ+ ln(lnλ).

Substituting u with lnλ+ ln(lnλ) yields

σ2
n,k ∼

n

λ lnλ
=

k

lnλ
−→ +∞.

The proof is concluded.

5. Conclusions and Further Questions

The original motivation for this work stemmed from a finding in [17]: when factoring

a random n-digit number, the distribution of the number of digits in its prime factors

is almost the same as the distribution of the cycle lengths in a permutation of n

objects. In [6], we further explored the distribution of the exponent of the prime

number 2 in the factorization of the integer n, comparing it with the number of fixed

points in a k permutation of n objects. Additional instances of such similarities,

and intriguing parallels in other combinatorial models, can be found in [1, 12, 13].

There is another subject where a similitude may be observed. Let X be an

n-element set. Denote by T (n, j), 0 ≤ j ≤ n, the number of topologies one can

define on X, and having j open sets, which are singletons. For n = 2, we have

T (2, 0) = 1, T (2, 1) = 2, T (2, 2) = 1. More calculation gives T (3, 0) = 4, T (3, 1) =

15, T (3, 2) = 9, T (3, 3) = 1. Despite the challenging determination of this sequence,

it seems to be interesting and may have many nice properties. We conjecture that

the generating polynomial associated with (T (n, j))nj=0, n ≥ 2, has only real zeros.

A weaker conjecture is the log-concavity of the sequence (T (n, j))nj=0.
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