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Abstract

This paper studies the logarithmic moments of the smallest denominator of all
rationals in a shrinking interval with random center. Convergence follows from the
more general results by the author, and the key point of this note is the derivation
of explicit formulas for the moments of the limit distribution in dimension one. This
answers questions raised by Meiss and Sander in their numerical study of minimal
resonance orders for torus maps with random rotation vectors.

1. Introduction

Consider the smallest denominator of all fractions in an interval of length δ centered

at x,

qmin(x, δ) = min
{
q ∈ N : ∃pq ∈ Q ∩ (x− δ

2 , x+ δ
2 )
}
. (1.1)

In their investigation of the breakdown of invariant tori in integrable systems, Meiss

and Sander [12, 13] carried out a numerical study of the distribution of log qmin(x, δ)

for random x (as well as higher dimensional variants, which we return to in Section

3), and asked for a proof of a limit law and specifically the convergence of its

expectation value as δ → 0. The asymptotics of the expectation value of qmin(x, δ)

(without taking the log) was already known due to work of Chen and Haynes [6].

We start with the following limit law, which is equivalent to [10, Proposition

1] (replace L by eL and take ηlog(s) = esη(es) = 6
π2 e2sH( 3

π2 e2s), where η(s) is

the limiting density of smallest denominators and H(s) is the Hall distribution as

defined in [10]):

Proposition 1. For any interval D ⊂ [0, 1] and L ∈ R, we have

lim
δ→0

vol
{
x ∈ D : log qmin(x, δ) > L− 1

2 log δ
}

= volD
∫ ∞
L

ηlog(s) ds (1.2)
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Figure 1: The limit density ηlog(s) compared to the distribution of the logarithm of
the smallest denominator of rationals in each interval [ j

3000 ,
j+1
3000 ), j = 0, . . . , 2999.

with the probability density

ηlog(s) = 6
π2×

×


e2s if s ≤ 0

−e2s + 2 + 4s if 0 ≤ s ≤ log 2

−e2s + 2 + 2e2s
√

1
4 − e−2s − 4 log

(
1
2 +

√
1
4 − e−2s

)
if s ≥ log 2.

(1.3)

Note that the mode of ηlog(s) is s = 1
2 log 2 (cf. Figure 1), and its tails are

ηlog(s)

{
= 6

π2 e−2|s| (s ≤ 0)

∼ 12
π2 e−2s (s→∞).

(1.4)

This follows from the tail estimates of the Hall distribution; see [10] for details.

We now turn to the convergence of logarithmic moments, which follows directly

from the convergence of moments proved in [10].

Proposition 2. For any interval D ⊂ [0, 1] and n ∈ Z≥0, we have

lim
δ→0

∫
D

(
log qmin(x, δ) + 1

2 log δ
)n
dx = µn volD, (1.5)

with

µn =

∫ ∞
0

snηlog(s) ds =

∫ ∞
0

(log s)nη(s) ds. (1.6)
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Proof. This follows by dominated convergence from [10, Proposition 2], as the mo-

ments of the logarithm are bounded above by the first positive plus first negative

moment of smallest denominators, both of which have a finite limit.

The above limit theorems for the distribution and logarithmic moments also

hold (with identical limits) when x is sampled over the discrete set x = x0 + j
N

(j = 1, . . . , N) with x0 fixed, provided N−1 = O(δ) as δ → 0 and N → ∞; see

Figure 1. This follows by the same argument as in the continuous sampling case,

using now [10, Propositions 5 and 6]. We refer the reader to [2, 10, 14] for more

background and results in this setting.

In higher dimensions, the proof of convergence of logarithmic moments of small-

est denominators of rational vectors follows similarly from the results in [10, Section

2]. Section 3 of this note provides the asymptotics for Meiss and Sander’s minimal

resonance orders [12, 13], a different higher dimensional variant of smallest denom-

inators.

The main point of the present paper is the calculation of explicit formulas for

the moments µn. We first note that the moment generating function of the limit

distribution ηlog(s) is, for |Reα| < 2, α 6= 0,

M(α) =
24

π2α(α+ 2)

(
2

α
+ 2αB

(
−α

2
,

1

2

))
(1.7)

where B(x, y) is the beta function (Euler’s integral of the first kind). Recall from

[10] that M(α) represents the (complex) α-moment of the density of the limit dis-

tribution η(s) of the small denominators, and are closely related to the moments

of the distance function for the Farey sequence determined by Kargaev and Zhigl-

javsky [8]. Indeed, M(α) has an analytic continuation to α = 0 and we have, for

n = 1, 2, 3, . . .,

µn =
dn

dαn

∫ ∞
0

sαη(s) ds

∣∣∣∣
α=0

=
dnM(α)

dαn

∣∣∣∣
α=0

. (1.8)

Furthermore, [10, Proposition 2] is synonymous with the convergence of the moment

generating function for the logs. In Section 2 we prove the following explicit formula

for µn,

µn =
n!

2

n∑
k=0

k∑
j=0

(log 2)n−k

(n− k)!

(−1)j

2j(k − j)!
ρk−j , (1.9)

where

ρn =
24

π2

 n!

2n+1

∞∑
j=1

(
2j − 1
j

)
1

22j−1jn+2
+

2(− log 2)n+2

(n+ 2)(n+ 1)

 . (1.10)
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For n = 1, 2, 3 this specializes to the surprisingly simple

µ1 =
6

π2
ζ(3)− 1

2
= 0.230763 . . .

µ2 =
3π2

40
+

1

2
− 6

π2
ζ(3) = 0.509457 . . .

µ3 =

(
9

π2
− 3

2

)
ζ(3) +

27

π2
ζ(5)− 3

4
− 9π2

80
= 0.269423 . . .

(1.11)

where ζ(s) is the Riemann zeta function. The proof of (1.11) uses a recursion

formula (cf. (2.22), Section 2) rather than a direct evaluation of (1.10). We thus

have for the standard deviation

σ =
(
µ2 − µ2

1

)1/2
=

(
3π2

40
+

1

4
− 36

π4
ζ(3)2

)1/2

= 0.67543 . . . (1.12)

and skewness

γ =
µ3 − 3µ1µ2 + 2µ3

1

σ3

= σ−3

(
432

π6
ζ(3)3 − 57

20
ζ(3) +

27

π2
ζ(5)− 1

4

)
= −0.190475 . . . .

(1.13)

Meiss and Sander [13] used log10 rather than log, and also intervals of length

2δ instead of δ. Hence δ1/2qMS
min(x, δ) = 2−1/2(2δ)1/2qmin(x, 2δ), and the necessary

adjustments lead to

µMS
1 =

µ1 − 1
2 log 2

log 10
= −0.0502959 . . . , (1.14)

σMS =
(µ2 − µ2

1)1/2

log 10
= 0.293336 . . . , (1.15)

which is compatible with the numerical results of [13], µMS
1 = −0.05 ± 0.001 and

σMS = 0.2935± 0.0006.

As noted in [10], the distribution of smallest denominators is closely related to the

void distribution for the Farey sequence [3, 8], as well as to the directional statistics

of Euclidean lattice points [4, 11]. All three have the same limiting statistics, so

our formulas for the moments apply in these settings. Similar limit distributions

also arise in the study of the free path length in the periodic Lorentz gas. The

connection between the two is explained in [11], and indeed the entropy formulas

established by Boca and Zaharescu [5] are similar to µ1, including the appearance

of ζ(3).
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2. Explicit Formulas for Logarithmic Moments

To calculate the limiting logarithmic moments µn in dimension one, it will be con-

venient to use a slightly different normalization, shifting the log of the smallest

denominator by log 2, so that

lim
δ→0

∫
D

(
log qmin(x, δ) + 1

2 log δ − log 2
)n
dx = µ̃n volD. (2.1)

The above convergence is implied by (1.5) with

µ̃n =

∫ ∞
0

(log s− log 2)nη(s) ds =

n∑
k=0

(
n
k

)
(− log 2)n−kµk. (2.2)

We can invert this relation to get a formula for the original moments,

µn =

n∑
k=0

(
n
k

)
(log 2)n−kµ̃k. (2.3)

Now set

Pn(x) = 2 (x− log 2)
n

+ n (x− log 2)
n−1

(2.4)

and observe that

Pn(log s) =
dn

dαn

[
(α+ 2)

(s
2

)α]
α=0

= 2
(

log
s

2

)n
+ n

(
log

s

2

)n−1

. (2.5)

By (1.5) we therefore have

lim
δ→0

∫
D
Pn
(
log qmin(x, δ) + 1

2 log δ
)
dx = ρn volD, (2.6)

where

ρn =

∫ ∞
0

Pn(log s) η(s) ds

=
dn

dαn

∫ ∞
0

(α+ 2)
(s

2

)α
η(s) ds

∣∣∣∣
α=0

=
dnM(α)

dαn

∣∣∣∣
α=0

,

(2.7)

and

M(α) = (α+ 2)2−αM(α). (2.8)

Relation (2.4) implies

ρn = 2µ̃n + nµ̃n−1, ρ0 = 2. (2.9)
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This can be inverted,

µ̃n =
n!

2

n∑
j=0

(−2)−j
ρn−j

(n− j)!
. (2.10)

Relation (1.9) now follows from (2.3) and (2.10).

The next task is thus to work out ρn. We organize the terms in M(α) as follows:

M(α) =
24

π2

1

α

(
2−α

2

α
+ B

(
−α

2
,

1

2

))
=

24

π2

[
1

α

(
2

α
− 2 log 2 + B

(
−α

2
,

1

2

))
+ 2

2−α − 1 + α log 2

α2

]
.

(2.11)

We will express ρn in terms of the coefficients bk of the Laurent expansion of the

beta function,

B

(
z,

1

2

)
=

∞∑
k=−1

bkz
k, (2.12)

that is,

b−1 = 1, bn =
1

n!

dn

dzn

[
B

(
z,

1

2

)
− 1

z

]
z=0

(n ≥ 0). (2.13)

Then
1

α

(
2

α
− 2 log 2 + B

(
−α

2
,

1

2

))
=

∞∑
k=0

(−1)k+12−k−1bk+1α
k (2.14)

and hence

dn

dαn

[
1

α

(
2

α
− 2 log 2 + B

(
−α

2
,

1

2

))]
α=0

= n!(−1)n+12−n−1bn+1. (2.15)

We view (2.12) and (2.14) here as a formal series (ignoring their convergence), and

may take (2.13) as the actual definition of the bn from which (2.15) follows.

In order to work out an explicit formula for bn, we note that by [7, 8.382.3] we

have

B

(
z,

1

2

)
=

1

z
+

∞∑
j=1

(2j − 1)!!

2jj!

1

z + j
, (2.16)

where the series converges (in view of Sterling’s formula) absolutely and uniformly

on compacta excluding z = −1,−2,−3, . . .. Using the nth derivative of this expres-

sion as an input to (2.13) yields

bn = (−1)n
∞∑
j=1

(2j − 1)!!

2jj!jn+1
= (−1)n

∞∑
j=1

(
2j − 1
j

)
1

22j−1jn+1
, (2.17)

which converges for all n ≥ 0, again by Sterling’s formula.
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We can alternatively calculate bn recursively with help from the formula

d

dz
B

(
z,

1

2

)
=
(
ψ(z)− ψ(z + 1

2 )
)

B

(
z,

1

2

)
=

(
−1

z
+ 2β(2z + 1)

)
B

(
z,

1

2

)
,

(2.18)

where ψ(z) is the polygamma function and β(z) = 1
2 (ψ( z+1

2 ) − ψ( z2 )). For the

second equality in (2.18) we have used ψ(z + 1) = ψ(z) + 1
z . For |z| < 1

2 we have

by [7, 8.373.1]

−1

z
+2β(2z+1) = −1

z
+2 log 2+2

∞∑
k=1

(−1)k(2k−1)ζ(k+1)zk =

∞∑
k=−1

ckz
k, (2.19)

where

c−1 = −1, c0 = 2 log 2, ck = 2(−1)k(2k − 1)ζ(k + 1) (k ≥ 1). (2.20)

With this, (2.18) gives

(n+ 1)bn+1 =

n+1∑
k=−1

cn−kbk (n ≥ −1), (2.21)

and we obtain the following recurrence relation for the Laurent coefficients of

B
(
z, 1

2

)
:

bn+1 =
1

n+ 2

n∑
k=−1

cn−kbk (n ≥ 0),

0∑
k=−1

c−k−1bk = 0. (2.22)

The last relation yields b0 = 2 log 2, and applying the recurrence we get

b1 = 2(log 2)2 − π2

6

b2 = 2ζ(3) +
4

3
(log 2)3 − π2

3
log 2

b3 = 4ζ(3) log 2− π4

40
+

2

3
(log 2)4 − π2

3
(log 2)2

b4 = 6ζ(5) +

(
4(log 2)2 − π2

3

)
ζ(3) +

4

15
(log 2)5 − 2π2

9
(log 2)3 − π4

20
log 2,

(2.23)

and so on.

As to the second term on the right-hand side of (2.11),

2−α − 1 + α log 2

α2
=

∞∑
k=0

(− log 2)k+2αk

(k + 2)!
(2.24)
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Figure 2: The first and second derivatives of M(α), respectively, representing the
generalized moments µ1,α and µ2,α in (2.30). The height of the graph represents
the function’s absolute value and the colour its argument.

and so
dn

dαn
2−α − 1 + α log 2

α2

∣∣∣∣
α=0

=
(− log 2)n+2

(n+ 2)(n+ 1)
. (2.25)

We conclude

ρn =
24

π2

(
n!(−1)n+1bn+1

2n+1
+

2(− log 2)n+2

(n+ 2)(n+ 1)

)
. (2.26)

In view of (2.26),

ρ1 =
12

π2
ζ(3)− 2 log 2 = 0.0752316 . . .

ρ2 =
3π2

20
+ 2(log 2)2 − 24

π2
ζ(3) log 2 = 0.415242 . . .

ρ3 = −3ζ(3) +
54

π2
ζ(5) +

36

π2
ζ(3)(log 2)2 − 2(log 2)3 − 9

20
π2 log 2 = 0.429262 . . . .

(2.27)

We now use the inversion formulas (2.3) and (2.10) (combined as in (1.9)) to

obtain

µ1 =
1

2
ρ1 +log 2− 1

2
, µ2 =

1

2
ρ2 +ρ1(log 2− 1

2 )− log 2+(log 2)2 +
1

2
, etc., (2.28)

and the relations stated in (1.11)–(1.13) follow.

The same denominated convergence argument used for logarithmic moments also

applies to more general test functions; again a direct corollary of [10, Proposition

2]. This shows that, for any interval D ⊂ [0, 1], 0 ≤ a < 2, C > 0 and F : R>0 → C
continuous with |F (s)| ≤ C max(sa, s−a), we have

lim
δ→0

∫
D
F
(
δ1/2qmin(x, δ)

)
dx = volD

∫ ∞
0

F (s)η(s) ds. (2.29)
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The same holds in the case of discrete sampling, and also in arbitrary dimension

d where 0 ≤ a < d+ 1, as corollaries of the results in [10, Sections 2 and 3].

Admissible test functions include the generalized moments F (s) = sα(log s)n

with n any non-negative integer and |Reα| < 2. This generalized moment gives

the standard moment for n = 0, and the logarithmic moment for α = 0. We have

for the limit

µn,α =

∫ ∞
0

sα(log s)nη(s) ds =
dn

dαn

∫ ∞
0

sαη(s) ds =
dnM(α)

dαn
. (2.30)

The graphs of these functions are displayed in Fig. 2 for n = 1 and 2; for n = 0 see

[10, Fig. 2]. Table 1 comprises examples of explicit values of µn,α computed from

(2.30) using Mathematica. The case α = 0 corresponds to the logarithmic moments

µn calculated “by hand” in the previous section.

3. Minimal Resonance Orders in Higher Dimensions

Let us now turn to questions posed in the conclusions of [13, Section 7]. Following

[12, 13] we define the minimal resonance order of a vector ω ∈ Rd by

M(ω, δ) = min
p∈Zd\{0}

{
‖p‖1 : min

q∈Z
∆p,q(ω) ≤ δ

}
, (3.1)

where

∆p,q(ω) =
|p · ω − q|
‖p‖2

. (3.2)

The quantity M(ω, δ) is a measure of how close ω is to a rational vector and

arises naturally in the characterization of breakdowns of invariant tori in integrable

systems under perturbation. In dimension one this reduces to qmin(ω, 2δ).

For L > 0, let

R(L) = µ{g ∈ Γ\G : (Zd+1 \ {0}) g ∩BL = ∅}, (3.3)

where G = SL(d+ 1,R), Γ = SL(d+ 1,Z), and

BL = {(x, y) ∈ Rd+1 : ‖x‖1 ≤ L, |y| ≤ ‖x‖2}. (3.4)

In [10] we defined R(L) using primitive lattice points, but given the shape of BL

both definitions are equivalent.

We will state the limit law for a general class of test functions F . We obtain

the asymptotic value distribution as in [10, Proposition 12] if we take F to be the

the indicator function of R>L, and the generalized moments for F (L) = Lα(logL)n

with |Reα| < d+ 1, n = 0, 1, 2, . . ..
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Proposition 3. Let D ⊂ [0, 1]d with boundary of Lebesgue measure, 0 ≤ a < d+ 1,

C > 0 and F : R≥0 → C continuous such that

|F (L)| ≤ C max(La, L−a). (3.5)

Then

lim
δ→0

1

volD

∫
D
F
(
δ1/(d+1)M(ω, δ)

)
dω =

∫ ∞
0

F (L) dR(L). (3.6)

Proof. We first assume F is the indicator function of an interval, and follow the

same steps as in [10, Proposition 12]. We note that

M(ω, δ) > Lδ−1/(d+1)

⇔
{

(p, q) ∈ Zd+1 : 0 < ‖p‖1 ≤ Lδ−1/(d+1), ∆p,q(ω) ≤ δ
}

= ∅

⇔
{

(p, q) ∈ Zd+1 \ {0} : ‖p‖1 ≤ Lδ−1/(d+1), |p · ω − q| ≤ δ‖p‖2
}

= ∅.

(3.7)

The last statement is in turn equivalent to

(Zd+1 \ {0}) ∩BL

(
δ−1/(d+1)1d

t0
0 δd/(d+1)

)(
1d

tω
0 1

)
= ∅. (3.8)

We can now directly apply [11, Theorem 6.5, α = 0] (cf. also [1]) to (3.8), which

yields statement when F is a indicator function of an interval. The extension to gen-

eral bounded continuous functions follows by a standard approximation argument

using finite linear combinations of indicator functions.

Turning now to unbounded F , first of all note that BL = LB1. This means the

lattice

Zd+1

(
1d − tω
0 1

)(
δ1/(d+1)1d

t0
0 δ−d/(d+1)

)
(3.9)

needs to avoid the ball LB0, where B0 is any choice of open ball contained in B1

and not containing the origin. By the argument in the proof of Proposition 4, after

(2.22) in [10] (replacing all matrices g by tg−1), we obtain the estimate, valid for

all L ≥ 1, 0 < δ ≤ 1 and some sufficiently large constant C,

vol
{
ω ∈ D : δ1/(d+1)M(ω, δ) > L

}
≤ CL−(d+1). (3.10)

A key input here, as explained in [10], is the escape-of-mass estimate provided in [9].

The next step is to control small values of L, and thus the measure of ω for which

LB1 contains a non-zero element of the lattice (3.9). Hence the shortest non-zero

vector of (3.9) has to have length � L, and following the relevant steps of [10] in

the proof of its Proposition 4, we obtain

vol
{
ω ∈ D : δ1/(d+1)M(ω, δ) ≤ L

}
≤ CLd+1, (3.11)
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valid for all 0 < L ≤ 1, 0 < δ ≤ 1 and a constant C; cf. [10, (2.31)]. The estimates

(3.10) and (3.11) now permit the extension of (3.6) to test functions F subject to

(3.5).

The density of R(L) corresponds to the histogram in Fig. 8(a) of [12] for d = 2.

The exponent of δ in Fig. 8(b) is approximately 0.334, which is consistent with the

theoretically predicted scaling with exponent 1/(d+ 1). Note furthermore that the

choice F (L) = logL gives the small δ asymptotics of the expectation

1

volD

∫
D

logM(ω, δ) dω = − log δ

d+ 1
+

∫ ∞
0

logL dR(L) + o(1), (3.12)

which is compatible with the numerics of [13] in dimension d = 2.
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