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Abstract

Let E be the set of all Eisenstein integers a+ bω with a ≥ 0. b ≥ 0, where ω = e
2πi
3 .

We prove that almost all numbers from E are sums (empty sum allowed) of distinct
primes belonging to E .

1. Introduction

Richert [5], using elementary methods, proved that every integer greater than 6 is

the sum of distinct primes (not necessarily odd). Riddell [6] proved a somewhat

more precise result. Namely, if n ≥ 4, then every integer in the closed interval

[7, 3 +
n∑

k=4

pk] can be partitioned into distinct primes not exceeding pn. Dressler [2],

using a stronger Bertrand’s postulate, showed that every positive integer, except 1,

2, 4, 6 and 9, is the sum of distinct odd primes. Kløve [3] extended these results to

sums of Gaussian primes. In this short note we prove a similar theorem on sums of

distinct Eisenstein primes.

The Eisenstein integers, denoted Z[ω], is a subring of C defined as follows

Z[ω] = {a + bω| a, b ∈ Z and ω = e
2πi
3 }.

Note that the minimal polynomial of ω is the quadratic x2 + x + 1 or the third cy-

clotomic polynomial, and hence Z[ω] like the Gaussian integers Z[i] is an imaginary

quadratic integer ring. This ring is also a unique factorization domain.

Define E = {a + bω| a, b ∈ Z≥0} and let

A ={1, 3, 4, 6, 8, 9, 10, 12, 14, 15, 20, 21, 26, 27, 32, 37, 38, 44, 50, 67, 79},

A∗ = {aω| a ∈ A}, and B = A ∪A∗ ∪ {1 + ω, 2 + 2ω, 2 + 4ω, 4 + 2ω}.

We prove the following theorem.
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Theorem 1. Each element of E \B may be expressed as a sum of distinct Eisenstein

primes in E .

2. Preliminaries

In this section we shall collect some auxiliary results.

It is well-known that every prime in E falls into one of the three categories:

I b = 0 and a = p prime with p ≡ 2 (mod 3);

II a = 0 and b = p prime with p ≡ 2 (mod 3);

III a+ bω where the norm N(a+ bω) = a2−ab+ b2 = p is a prime such that p = 3

or p ≡ 1 (mod 3).

We adopt the notation introduced by Kløve. The star operation ∗ is defined by

(a + bω)∗ = b + aω for a + bω ∈ E .

Note that this is equivalent to multiplication of a+ bω by the unit ω2 and taking a

conjugate. Further, for any two subsets H1 and H2 of E we write H1 § H2 if each

element of H1 may be represented as a sum of distinct elements of H2.

With the above notations, we have the following analogue of Kløve’s lemma.

Lemma 1. Let H be a subset of E containing a sequence X = {x1, x2, . . .} of

distinct positive integers such that xn+1 ≤ 2xn for n ≥ 1. If, for fixed b,

{m + bω : a < m ≤ a + x1} § H \X,

then {m + bω : m > a} § H.

Proof. Let Mn = {m + bω| a < m ≤ a + xn}. Proof is by induction that Mn § H \
{xn, xn+1, . . .}.

Since E ∗ = E , we immediately get the following.

Corollary 1. Let H be a subset of E containing a sequence Y = {y1ω, y2ω, . . .}
where yi’s are distinct positive integers such that yn+1 ≤ 2yn for n ≥ 1. If, for fixed

a, we have {a + mω : b < m ≤ b + y1} § H \ Y, then {a + mω : m > b} § H.

We will also need the following lemmata due to Breusch [1] and Makowski [4],

respectively.

Lemma 2. If x ≥ 7, then between x and 2x there is at least one prime of the form

6k − 1.
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Lemma 3. Every integer greater than 161 is the sum of distinct primes of the form

6k − 1.

3. Proof

Proof of Theorem 1. Let P be the set of primes of type III and let Q = {q1 = 2, q2 =

5, . . .} be the increasing sequence of primes congruent to 2 (mod 3). By Lemma 2

we have that qn+1 < 2qn for n ≥ 3. Now 2 + ω, 3 + ω, 4 + ω, 6 + ω, 7 + ω, 9 + ω ∈ P

and

5 + ω = (3 + ω) + 2, 8 + ω = (3 + ω) + 5, 10 + ω = (3 + ω) + 2 + 5,

11 + ω = (4 + ω) + 2 + 5 = (6 + ω) + 5 = (9 + ω) + 2, 12 + ω = (7 + ω) + 5.

Hence, {m + ω : 1 < m ≤ 12} § P ∪ {2, 5} and, by Lemma 1,

{m + ω : m > 1} § P ∪Q.

Similarly, we have 1 + 2ω, 3 + 2ω, 5 + 2ω, 9 + 2ω, 11 + 2ω ∈ P and

6 + 2ω = (1 + 2ω) + 5, 7 + 2ω = (5 + 2ω) + 2, 8 + 2ω = (1 + 2ω) + 2 + 5,

10 + 2ω = (5 + 2ω) + 5, 12 + 2ω = (5 + 2ω) + 2 + 5, 13 + 2ω = (11 + 2ω) + 2,

14 + 2ω = (9 + 2ω) + 5, 15 + 2ω = (6 + ω) + (9 + ω).

Thus, {m + 2ω : 4 < m ≤ 15} § P ∪ {2, 5} and, again by Lemma 1,

{m + 2ω : m = 1, 3 or m > 4} § P ∪Q.

In a similar manner we prove that

{m + 3ω : m ≥ 1} § P ∪Q and {m + 4ω : m = 1 or m > 2} § P ∪Q.

Adding 2ω or 5ω to each element in these sets we get

{m + nω : 0 < n ≤ 11} § P ∪Q ∪ {2ω, 5ω} for m > 4.

By the Corollary 1, we obtain {m+nω : n > 0,m > 4} § P ∪Q∪Q∗. Since P ∗ = P

we get

{n + mω : n > 0,m > 4} § P ∪Q ∪Q∗.

Combining, we get

{m + nω : n > 0,m > 0} \ {1 + ω, 2 + 2ω, 2 + 4ω, 4 + 2ω} § P ∪Q ∪Q∗.

By Lemma 3 {n : n > 161} § Q. Simple calculations show that {n : 1 ≤ n ≤
161, n 6∈ A} § Q. If N = {1, 2, . . .}, we have

N \A § Q, hence N∗ \A∗ § Q∗.

This completes the proof of the theorem.
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