

#A57

SUMS OF DISTINCT EISENSTEIN PRIMES

Elchin Hasanalizade¹ School of IT and Engineering, ADA University, Baku, Azerbaijan ehasanalizade@ada.edu.az

Received: 1/10/24, Accepted: 5/18/24, Published: 6/19/24

Abstract

Let \mathscr{E} be the set of all Eisenstein integers $a + b\omega$ with $a \ge 0$. $b \ge 0$, where $\omega = e^{\frac{2\pi i}{3}}$. We prove that almost all numbers from \mathscr{E} are sums (empty sum allowed) of distinct primes belonging to \mathscr{E} .

1. Introduction

Richert [5], using elementary methods, proved that every integer greater than 6 is the sum of distinct primes (not necessarily odd). Riddell [6] proved a somewhat more precise result. Namely, if $n \ge 4$, then every integer in the closed interval $[7,3+\sum_{k=4}^{n}p_k]$ can be partitioned into distinct primes not exceeding p_n . Dressler [2], using a stronger Bertrand's postulate, showed that every positive integer, except 1, 2, 4, 6 and 9, is the sum of distinct odd primes. Kløve [3] extended these results to sums of Gaussian primes. In this short note we prove a similar theorem on sums of distinct Eisenstein primes.

The Eisenstein integers, denoted $\mathbb{Z}[\omega]$, is a subring of \mathbb{C} defined as follows

 $\mathbb{Z}[\omega] = \{a + b\omega \mid a, b \in \mathbb{Z} \text{ and } \omega = e^{\frac{2\pi i}{3}} \}.$

Note that the minimal polynomial of ω is the quadratic $x^2 + x + 1$ or the third cyclotomic polynomial, and hence $\mathbb{Z}[\omega]$ like the Gaussian integers $\mathbb{Z}[i]$ is an imaginary quadratic integer ring. This ring is also a unique factorization domain.

Define $\mathscr{E} = \{a + b\omega | a, b \in \mathbb{Z}_{\geq 0}\}$ and let

 $A = \{1, 3, 4, 6, 8, 9, 10, 12, 14, 15, 20, 21, 26, 27, 32, 37, 38, 44, 50, 67, 79\},\$

 $A^* = \{a\omega \mid a \in A\}, \quad \text{and} \quad B = A \cup A^* \cup \{1 + \omega, 2 + 2\omega, 2 + 4\omega, 4 + 2\omega\}.$

We prove the following theorem.

DOI: 10.5281/zenodo.12167517

¹This research was supported by ADA University Faculty Research and Development Funds

Theorem 1. Each element of $\mathscr{E} \setminus B$ may be expressed as a sum of distinct Eisenstein primes in \mathscr{E} .

2. Preliminaries

In this section we shall collect some auxiliary results.

It is well-known that every prime in $\mathscr E$ falls into one of the three categories:

- I $b \equiv 0$ and $a \equiv p$ prime with $p \equiv 2 \pmod{3}$;
- II a = 0 and b = p prime with $p \equiv 2 \pmod{3}$;
- III $a + b\omega$ where the norm $N(a + b\omega) = a^2 ab + b^2 = p$ is a prime such that p = 3 or $p \equiv 1 \pmod{3}$.

We adopt the notation introduced by Kløve. The star operation * is defined by

$$(a+b\omega)^* = b + a\omega$$
 for $a+b\omega \in \mathscr{E}$.

Note that this is equivalent to multiplication of $a + b\omega$ by the unit ω^2 and taking a conjugate. Further, for any two subsets H_1 and H_2 of \mathscr{E} we write $H_1 \S H_2$ if each element of H_1 may be represented as a sum of distinct elements of H_2 .

With the above notations, we have the following analogue of Kløve's lemma.

Lemma 1. Let H be a subset of \mathscr{E} containing a sequence $X = \{x_1, x_2, \ldots\}$ of distinct positive integers such that $x_{n+1} \leq 2x_n$ for $n \geq 1$. If, for fixed b,

$$\{m + b\omega : a < m \le a + x_1\} \S H \setminus X,$$

then $\{m + b\omega : m > a\} \S H$.

Proof. Let $M_n = \{m + b\omega | a < m \le a + x_n\}$. Proof is by induction that $M_n \S H \setminus \{x_n, x_{n+1}, \ldots\}$.

Since $\mathscr{E}^* = \mathscr{E}$, we immediately get the following.

Corollary 1. Let H be a subset of \mathscr{E} containing a sequence $Y = \{y_1\omega, y_2\omega, \ldots\}$ where y_i 's are distinct positive integers such that $y_{n+1} \leq 2y_n$ for $n \geq 1$. If, for fixed a, we have $\{a + m\omega : b < m \leq b + y_1\}$ § $H \setminus Y$, then $\{a + m\omega : m > b\}$ § H.

We will also need the following lemmata due to Breusch [1] and Makowski [4], respectively.

Lemma 2. If $x \ge 7$, then between x and 2x there is at least one prime of the form 6k - 1.

Lemma 3. Every integer greater than 161 is the sum of distinct primes of the form 6k - 1.

3. Proof

Proof of Theorem 1. Let P be the set of primes of type III and let $Q = \{q_1 = 2, q_2 = 5, \ldots\}$ be the increasing sequence of primes congruent to 2 (mod 3). By Lemma 2 we have that $q_{n+1} < 2q_n$ for $n \ge 3$. Now $2 + \omega, 3 + \omega, 4 + \omega, 6 + \omega, 7 + \omega, 9 + \omega \in P$ and

$$5 + \omega = (3 + \omega) + 2, \ 8 + \omega = (3 + \omega) + 5, \ 10 + \omega = (3 + \omega) + 2 + 5,$$
$$11 + \omega = (4 + \omega) + 2 + 5 = (6 + \omega) + 5 = (9 + \omega) + 2, \ 12 + \omega = (7 + \omega) + 5.$$

Hence, $\{m + \omega : 1 < m \le 12\}$ § $P \cup \{2, 5\}$ and, by Lemma 1,

$$\{m+\omega:m>1\} \S P \cup Q$$

Similarly, we have $1 + 2\omega, 3 + 2\omega, 5 + 2\omega, 9 + 2\omega, 11 + 2\omega \in P$ and

$$6 + 2\omega = (1 + 2\omega) + 5, \ 7 + 2\omega = (5 + 2\omega) + 2, \ 8 + 2\omega = (1 + 2\omega) + 2 + 5,$$

$$10 + 2\omega = (5 + 2\omega) + 5, \ 12 + 2\omega = (5 + 2\omega) + 2 + 5, \ 13 + 2\omega = (11 + 2\omega) + 2,$$

$$14 + 2\omega = (9 + 2\omega) + 5, \ 15 + 2\omega = (6 + \omega) + (9 + \omega).$$

Thus, $\{m + 2\omega : 4 < m \le 15\}$ § $P \cup \{2, 5\}$ and, again by Lemma 1,

 ${m + 2\omega : m = 1, 3 \text{ or } m > 4}$

In a similar manner we prove that

$$\{m+3\omega: m \ge 1\} \S P \cup Q \quad \text{and} \quad \{m+4\omega: m=1 \text{ or } m>2\} \S P \cup Q.$$

Adding 2ω or 5ω to each element in these sets we get

$$\{m+n\omega: 0 < n \le 11\} \S P \cup Q \cup \{2\omega, 5\omega\} \text{ for } m > 4.$$

By the Corollary 1, we obtain $\{m + n\omega : n > 0, m > 4\}$ § $P \cup Q \cup Q^*$. Since $P^* = P$ we get

$$\{n+m\omega:n>0,m>4\} \S P \cup Q \cup Q^*.$$

Combining, we get

$$\{m + n\omega : n > 0, m > 0\} \setminus \{1 + \omega, 2 + 2\omega, 2 + 4\omega, 4 + 2\omega\} \ \S \ P \cup Q \cup Q^*.$$

By Lemma 3 $\{n : n > 161\}$ § Q. Simple calculations show that $\{n : 1 \le n \le 161, n \notin A\}$ § Q. If $N = \{1, 2, \ldots\}$, we have

$$N \setminus A \S Q$$
, hence $N^* \setminus A^* \S Q^*$.

This completes the proof of the theorem.

References

- [1] R. Breusch, Zur Verallgemeinerung des Bertrandschen Postulates, dass zwischen x und 2x stets Primzahlen liegen, *Math. Z.* **34** (1932), 505-526.
- [2] R. E. Dressler, A stronger Bertrand's postulate with an application to partitions, Proc. Am. Math. Soc. 33 (1972), 226-228.
- [3] T. Kløve, Sums of distinct Gaussian primes, Nord. Mat. Tidskr. 23 (1975), 20-22.
- [4] A. Makowski, Partitions into unequal primes, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys 8 (1960), 125-126.
- [5] H.-E. Richert, Über Zerfällungen in ungleiche Primzahlen, Math. Z. 52 (1950), 342-343.
- [6] J. Riddell, Partitions into distinct small primes, Acta Arith. 41 (1982), 71-84.