SUMS OF DISTINCT EISENSTEIN PRIMES

Elchin Hasanalizade ${ }^{1}$
School of IT and Engineering, ADA University, Baku, Azerbaijan
ehasanalizade@ada.edu.az

Received: 1/10/24, Accepted: 5/18/24, Published: 6/19/24

Abstract

Let \mathscr{E} be the set of all Eisenstein integers $a+b \omega$ with $a \geq 0$. $b \geq 0$, where $\omega=e^{\frac{2 \pi i}{3}}$. We prove that almost all numbers from \mathscr{E} are sums (empty sum allowed) of distinct primes belonging to \mathscr{E}.

1. Introduction

Richert [5], using elementary methods, proved that every integer greater than 6 is the sum of distinct primes (not necessarily odd). Riddell [6] proved a somewhat more precise result. Namely, if $n \geq 4$, then every integer in the closed interval $\left[7,3+\sum_{k=4}^{n} p_{k}\right]$ can be partitioned into distinct primes not exceeding p_{n}. Dressler [2], using a stronger Bertrand's postulate, showed that every positive integer, except 1, $2,4,6$ and 9 , is the sum of distinct odd primes. Kløve [3] extended these results to sums of Gaussian primes. In this short note we prove a similar theorem on sums of distinct Eisenstein primes.

The Eisenstein integers, denoted $\mathbb{Z}[\omega]$, is a subring of \mathbb{C} defined as follows

$$
\mathbb{Z}[\omega]=\left\{a+b \omega \mid a, b \in \mathbb{Z} \text { and } \omega=e^{\frac{2 \pi i}{3}}\right\} .
$$

Note that the minimal polynomial of ω is the quadratic $x^{2}+x+1$ or the third cyclotomic polynomial, and hence $\mathbb{Z}[\omega]$ like the Gaussian integers $\mathbb{Z}[i]$ is an imaginary quadratic integer ring. This ring is also a unique factorization domain.

Define $\mathscr{E}=\left\{a+b \omega \mid a, b \in \mathbb{Z}_{\geq 0}\right\}$ and let

$$
\begin{gathered}
A=\{1,3,4,6,8,9,10,12,14,15,20,21,26,27,32,37,38,44,50,67,79\}, \\
A^{*}=\{a \omega \mid a \in A\}, \quad \text { and } \quad B=A \cup A^{*} \cup\{1+\omega, 2+2 \omega, 2+4 \omega, 4+2 \omega\} .
\end{gathered}
$$

We prove the following theorem.

[^0]Theorem 1. Each element of $\mathscr{E} \backslash B$ may be expressed as a sum of distinct Eisenstein primes in \mathscr{E}.

2. Preliminaries

In this section we shall collect some auxiliary results.
It is well-known that every prime in \mathscr{E} falls into one of the three categories:
I $b=0$ and $a=p$ prime with $p \equiv 2(\bmod 3)$;
II $a=0$ and $b=p$ prime with $p \equiv 2(\bmod 3)$;
III $a+b \omega$ where the norm $N(a+b \omega)=a^{2}-a b+b^{2}=p$ is a prime such that $p=3$ or $p \equiv 1(\bmod 3)$.
We adopt the notation introduced by Kløve. The star operation $*$ is defined by

$$
(a+b \omega)^{*}=b+a \omega \text { for } a+b \omega \in \mathscr{E} .
$$

Note that this is equivalent to multiplication of $a+b \omega$ by the unit ω^{2} and taking a conjugate. Further, for any two subsets H_{1} and H_{2} of \mathscr{E} we write $H_{1} \S H_{2}$ if each element of H_{1} may be represented as a sum of distinct elements of H_{2}.

With the above notations, we have the following analogue of Kløve's lemma.
Lemma 1. Let H be a subset of \mathscr{E} containing a sequence $X=\left\{x_{1}, x_{2}, \ldots\right\}$ of distinct positive integers such that $x_{n+1} \leq 2 x_{n}$ for $n \geq 1$. If, for fixed b,

$$
\left\{m+b \omega: a<m \leq a+x_{1}\right\} \S H \backslash X
$$

then $\{m+b \omega: m>a\} § H$.
Proof. Let $M_{n}=\left\{m+b \omega \mid a<m \leq a+x_{n}\right\}$. Proof is by induction that $M_{n} \S H \backslash$ $\left\{x_{n}, x_{n+1}, \ldots\right\}$.

Since $\mathscr{E}^{*}=\mathscr{E}$, we immediately get the following.
Corollary 1. Let H be a subset of \mathscr{E} containing a sequence $Y=\left\{y_{1} \omega, y_{2} \omega, \ldots\right\}$ where y_{i} 's are distinct positive integers such that $y_{n+1} \leq 2 y_{n}$ for $n \geq 1$. If, for fixed a, we have $\left\{a+m \omega: b<m \leq b+y_{1}\right\} \S H \backslash Y$, then $\{a+m \omega: m>b\} \S H$.

We will also need the following lemmata due to Breusch [1] and Makowski [4], respectively.

Lemma 2. If $x \geq 7$, then between x and $2 x$ there is at least one prime of the form $6 k-1$.

Lemma 3. Every integer greater than 161 is the sum of distinct primes of the form $6 k-1$.

3. Proof

Proof of Theorem 1. Let P be the set of primes of type III and let $Q=\left\{q_{1}=2, q_{2}=\right.$ $5, \ldots\}$ be the increasing sequence of primes congruent to $2(\bmod 3)$. By Lemma 2 we have that $q_{n+1}<2 q_{n}$ for $n \geq 3$. Now $2+\omega, 3+\omega, 4+\omega, 6+\omega, 7+\omega, 9+\omega \in P$ and

$$
\begin{gathered}
5+\omega=(3+\omega)+2,8+\omega=(3+\omega)+5,10+\omega=(3+\omega)+2+5 \\
11+\omega=(4+\omega)+2+5=(6+\omega)+5=(9+\omega)+2,12+\omega=(7+\omega)+5
\end{gathered}
$$

Hence, $\{m+\omega: 1<m \leq 12\} \S P \cup\{2,5\}$ and, by Lemma 1,

$$
\{m+\omega: m>1\} \S P \cup Q
$$

Similarly, we have $1+2 \omega, 3+2 \omega, 5+2 \omega, 9+2 \omega, 11+2 \omega \in P$ and

$$
\begin{gathered}
6+2 \omega=(1+2 \omega)+5,7+2 \omega=(5+2 \omega)+2,8+2 \omega=(1+2 \omega)+2+5 \\
10+2 \omega=(5+2 \omega)+5,12+2 \omega=(5+2 \omega)+2+5,13+2 \omega=(11+2 \omega)+2 \\
14+2 \omega=(9+2 \omega)+5,15+2 \omega=(6+\omega)+(9+\omega)
\end{gathered}
$$

Thus, $\{m+2 \omega: 4<m \leq 15\} \S P \cup\{2,5\}$ and, again by Lemma 1,

$$
\{m+2 \omega: m=1,3 \text { or } m>4\} \S P \cup Q
$$

In a similar manner we prove that

$$
\{m+3 \omega: m \geq 1\} \S P \cup Q \quad \text { and } \quad\{m+4 \omega: m=1 \text { or } m>2\} \S P \cup Q
$$

Adding 2ω or 5ω to each element in these sets we get

$$
\{m+n \omega: 0<n \leq 11\} \S P \cup Q \cup\{2 \omega, 5 \omega\} \text { for } m>4
$$

By the Corollary 1, we obtain $\{m+n \omega: n>0, m>4\} \S P \cup Q \cup Q^{*}$. Since $P^{*}=P$ we get

$$
\{n+m \omega: n>0, m>4\} \S P \cup Q \cup Q^{*}
$$

Combining, we get

$$
\{m+n \omega: n>0, m>0\} \backslash\{1+\omega, 2+2 \omega, 2+4 \omega, 4+2 \omega\} \S P \cup Q \cup Q^{*}
$$

By Lemma $3\{n: n>161\} \S Q$. Simple calculations show that $\{n: 1 \leq n \leq$ $161, n \notin A\} \S Q$. If $N=\{1,2, \ldots\}$, we have

$$
N \backslash A \S Q, \text { hence } N^{*} \backslash A^{*} \S Q^{*}
$$

This completes the proof of the theorem.

References

[1] R. Breusch, Zur Verallgemeinerung des Bertrandschen Postulates, dass zwischen x und $2 x$ stets Primzahlen liegen, Math. Z. 34 (1932), 505-526.
[2] R. E. Dressler, A stronger Bertrand's postulate with an application to partitions, Proc. Am. Math. Soc. 33 (1972), 226-228.
[3] T. Kløve, Sums of distinct Gaussian primes, Nord. Mat. Tidskr. 23 (1975), 20-22.
[4] A. Makowski, Partitions into unequal primes, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys 8 (1960), 125-126.
[5] H.-E. Richert, Über Zerfällungen in ungleiche Primzahlen, Math. Z. 52 (1950), 342-343.
[6] J. Riddell, Partitions into distinct small primes, Acta Arith. 41 (1982), 71-84.

[^0]: DOI: 10.5281/zenodo. 12167517
 ${ }^{1}$ This research was supported by ADA University Faculty Research and Development Funds

