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Abstract

In 2006, Briggs and Remmel gave a factorization theorem for m-level rook place-
ments on singleton boards, a special subset of Ferrers boards. Subsequently, Bar-
rese, Loehr, Remmel, and Sagan defined the m-weighted file placements to give
a combinatorial interpretation to the aforementioned factorization theorem for all
Ferrers boards. An unintended consequence of this definition is that the sum of the
m-weights of file placements that are not m-level rook placements on a singleton
board must be zero. In this paper, we attempt to illuminate this result by parti-
tioning the set of file placements that are not m-level rook placements. We do so
in such a way that it can be shown constructively that the sum of the m-weights
on each partition must be zero using induction.

1. Introduction

1.1. History of Rook Theory

In order to place this work in its historical context, we begin by tracing the relevant

portion of rook theory through history. The field of rook theory, as a formal,

academic subject, originated with a 1946 paper by Kaplansky and Riordan [6].

In 1975, Goldman, Joichi, and White were able to factor rook polynomials, the

generating functions for rook numbers, of Ferrers boards by redefining them to be

over the falling factorial basis of polynomials [5].

Briggs and Remmel defined a generalization of rook placements, called m-level

rook placements, in 2006 [3]. They also provided a factorization of the m-level rook

polynomial for a subset of Ferrers boards now called singleton boards. To factor m-

level rook polynomials of all Ferrers boards, we were forced to abandon the elegant

factorization which only depended on column heights, first introduced by Goldman,

Joichi, and White. In a 2013 paper, Barrese, Loehr, Remmel, and Sagan factored

m-level rook polynomials for all Ferrers boards [1]. The paper also introduced m-

weighted file placements to give meaning to the elegant factorization that no longer
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yielded the m-level rook polynomial for non-singleton Ferrers boards.

Because the m-level rook polynomial and the m-weighted file placement poly-

nomial agree on singleton boards, it turns out that the sum of the m-weighted file

placements must be zero over all file placements that are not m-level rook place-

ments. While this result is a consequence of the two factorizations yielding the same

polynomial for singleton boards, no constructive explanation was produced for this

phenomenon. The purpose of this paper is to explain why this is so, utilizing a new

partition of the file placements that are not m-level rook placements on a singleton

board. The new partition is constructed in such a way that the sum of the m-

weighted file placements on each set in the partition will be zero, illuminating why

the sum over the entire set of file placements that are not m-level rook placements

must also be zero.

1.2. Organization

Section 1 gives a brief overview of the history ofm-level rook placements and lays out

the goal of this paper before summarizing the structure of this paper. In Section 2 we

lay out the formal definitions of classical rook placements, in the sense of Kaplansky

and Riordan, and m-level rook placements, introduced by Briggs and Remmel.

Along the way we present the original factorization theorem of Goldman, Joichi,

and White, the factorization of m-level rook polynomials for singleton boards of

Briggs and Remmel, and two formulations of the factorization theorem of m-level

rook polynomials for general Ferrers boards by Barrese, Loehr, Remmel, and Sagan.

The second of which was introduced in their 2016 paper [2].

Section 3 introduces m-weighted file placements, including their motivation as

a combinatorial object. The second half of the section formally describes why

the sum of m-weighted file placements that are not m-level rook placements on a

singleton board must be zero. In the penultimate section, Section 4, we develop the

partition used to demonstrate whym-weighted file placements will sum to zero in the

context in question. The section concludes with the theorem that the m-weighted

file placements sum to zero on each individual set in that partition. Section 5

presents three open projects that would be ideal considerations for mathematicians

interested in taking the research presented in this paper further.

2. Rook Placements

2.1. Ordinary Rook Placements

Given a positive integer n, let Sqn denote an n× n array of square cells. A board,

B, is a finite subset of the cells of Sqn for some finite value of n. A rook placement

of k rooks on B is a subset of B containing k cells, such that no two cells are in the



INTEGERS: 24 (2024) 3

same row or column. Sometimes such a placement is called a non-attacking rook

placement, because if the rook chess piece were to be placed in each of the selected

cells, no two would be able to attack each other under the standard rules of chess.

Figure 1 gives an example of a rook placement of four rooks on Sq4.

The kth rook number of B, denoted rk(B), is the number of rook placements of

k rooks that exist on B. For example, if B = Sq4 then r4(B) = 24 = 4!. Consider

that there are 4 cells to place a rook in the first column, then three non-attacked

squares in the second column, and so forth. The rook placement in Figure 1 is one

of the 24 rook placements of four rooks on Sq4.

Sq4 =
R

R

R

R

Figure 1: A non-attacking rook placement of four rooks on Sq4.

For the rest of this paper we will consider a specific subset of boards with nice

properties, called Ferrers boards. Given a non-negative integer partition 0 ≤ b1 ≤
b2 ≤ . . . ≤ bn, the Ferrers board B = (b1, b2, . . . , bn) consists of the bottom bi cells in

the ith column. Figure 2 gives an example of a board which is a Ferrers board and,

for contrast, another board which is not. The main advantage of Ferrers boards is

that their rook polynomials factor nicely.

B1 = B2 =

Figure 2: The board on the left is the Ferrers board B1 = (1, 1, 2, 4). The board on
the right is not a Ferrers board.

Given a Ferrers board B, the rook polynomial, as defined by Goldman, Joichi,

and White [5], of B is

p(B, x) =

n∑
k=0

rk(B)x↓n−k,

where n↓k is called the kth falling factorial of n and is defined by n↓k=
∏k−1

i=0 (n−i).
Defining the rook polynomial using the falling factorials allowed Goldman, Joichi,
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and White to factor the rook polynomials of Ferrers boards, with roots related to

the board’s column heights, as follows in Theorem 1.

Theorem 1 ([5]). If B = (b1, . . . , bn) is a Ferrers board, then

p(B, x) =

n∏
i=1

(x+ bi − (i− 1)).

Continuing the example illustrated on the left side of Figure 2, B1 = (1, 1, 2, 4).

This means that p(B1, x) = (x + 1 − 0) · (x + 1 − 1) · (x + 2 − 2) · (x + 4 − 3) =

x2(x+ 1)2 = x4 + 2x3 + x2. Two boards are called rook equivalent if they have the

same rook numbers for all values of k ≥ 0. If the two Ferrers boards have the same

number of columns, the boards are rook equivalent if and only if they have the same

rook polynomials. Therefore Goldman, Joichi, and White’s factorization theorem

provides a quick test to determine whether two Ferrers boards are rook equivalent

or not based only on their column heights.

2.2. m-Level Rook Placements

Briggs and Remmel defined a generalization of rook placements called m-level rook

placements [3]. Given positive integers m and n, let Sqn,m denote an mn×n array

of square cells. We will partition the rows of Sqn,m into sets of size m called levels,

where the first level contains the bottom m rows, the second level contains rows

m+1 through 2m, all the way up to the nth level. For the purposes of m-level rook

placements, we will consider a board to be a finite subset of the cells of Sqn,m.

An m-level rook placement of k rooks on B is a subset of B containing k cells,

no two of which are in the same level or column. Notice that an m-level rook

placement replaces the role of a row with that of a level, a set of rows. Clearly then

every m-level rook placement is also a rook placement, and a rook placement (an

ordinary rook placement) is equivalent to a 1-level rook placement. The kth m-level

rook number of B, denoted rk,m(B), is the number of m-level rook placements of k

rooks on B.

B =

Figure 3: B = (1, 2, 2, 3)

Many theorems regarding m-level rook placements are easiest to prove for a nice

subset of Ferrers boards, called singleton boards. To define a singleton board we

use the concept of the m-floor of n, denoted bncm, the largest multiple of m less
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than or equal to n. A Ferrers board B = (b1, b2, . . . , bn) is a singleton board if

bi − bbicm 6= 0 implies that bbicm < bbi+1cm. The descriptor, “singleton,” arises

because this is equivalent to requiring that for each level, there is at most a single

column of B that intersects that level in more than one cell but less than m cells.

Note that the set of singleton boards does depend on the value of m being

considered. For example, when m = 1, the set of singleton boards is equal to the

set of Ferrers boards. For m ≥ 2, singleton boards are a proper subset of Ferrers

boards. See Figure 3 for an example of a Ferrers board that is a singleton board

for m = 2 but is not a singleton board for m = 3. If m = 2, there are two different

columns that have heights that are not multiples of m, but there is a multiple of

m between their respective heights of 1 and 3. On the other hand, when m = 3

there are three columns that have heights that are not multiples of m, the column

heights are 1, 2, and 2, so there are two columns which have heights that are not

multiples of 3 and there is no multiple of 3 between the column heights.

One theorem which is more straightforward for singleton boards involves factor-

ing the m-level rook polynomial of a singleton board B. In order to define the

m-level rook polynomial, first we need the m-falling factorial. Similarly to the

falling factorial, the m-falling factorial is defined by: n↓k,m=
∏k−1

i=0 (n−mi). Then,

given a Ferrers board B, the m-level rook polynomial of B is

pm(B, x) =

n∑
k=0

rk,m(B)x↓n−k,m.

As before, if two Ferrers boards with the same number of columns have the same

m-level rook polynomial, we say that the boards are m-level rook equivalent. Briggs

and Remmel gave the following factorization theorem for the m-level rook polyno-

mial of a singleton board.

Theorem 2 ([3]). If B = (b1, . . . , bn) is a singleton board for a fixed positive integer

m, then

pm(B, x) =

n∏
i=1

(x+ bi −m(i− 1)).

Notice that Theorem 1 is a special case of Theorem 2 when m = 1.

This factorization was extended to all Ferrers boards by Barrese, Loehr, Remmel,

and Sagan in a couple of ways. The first requires the definition of a zone, z = [s, t],

which is a maximal range of column indices of B such that bbscm = bbs+1cm =

. . . = bbtcm. The remainder of column i is ρi = bi − bbicm, and the remainder of

zone z is ρz =
∑t

k=s ρk. These definitions set up the following theorem.

Theorem 3 ([1]). If B = (b1, . . . , bn) is a Ferrers board, then

pm(B, x) =

n∏
i=1

{
x+ bbicm − (i− 1)m+ ρz if i is the last index in its zone z,

x+ bbicm − (i− 1)m otherwise.
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Another generalization to all Ferrers boards comes from letting lj be the j-th

level number of B, or the number of cells of B in the jth level from the top, that

is, level n + 1 − j since B consists of n levels in total. Using this definition yields

another factorization theorem.

Theorem 4 ([2]). If B = (b1, . . . , bn) is a Ferrers board, then

pm(B, x) =

n∏
j=1

(x+ lj −m(j − 1)).

While Theorem 4 is more concisely written than Theorem 3, in both cases you

will get the same set of factors, because pm(B, x) remains the same. And, in either

case, some information is lost for non-singleton boards, as they cannot be uniquely

determined by the roots of their factorization. This suggests the open question,

given an ordered set of level numbers: (l1, l2, . . . , ln), how many unique Ferrers

boards have those specific level numbers.

3. Weighted File Placements

3.1. Motivation

As noted in Theorem 2,
∏n

i=1(x+ bi−m(i−1)) only gives a factorization of the m-

level rook polynomial if the board in question is a singleton board. As such, Barrese,

Loehr, Remmel, and Sagan defined weighted file placements to give combinatorial

meaning to the product from Theorem 2 for a general Ferrers board. A file placement

on board B is a subset, F , of the cells of B such that no two are in the same column.

Note that, unlike a rook placement, any number of cells are allowed to be selected

from the same row, as long as there remains at most one per column. Figure 4

shows a file placement on B = (2, 2, 4, 4, 4, 4).

B =
R

R R

R

R

Figure 4: A file placement on B = (2, 2, 4, 4, 4, 4).

Let fj be the number of cells of F in row j of B and assume that there are

n rows in B. For a fixed m ≥ 1 we can define the m-weight of F as follows,

wtm(F ) =
∏n

j=1 1 ↓fj ,m. For example, the placement in Figure 4 has f1 = 0,
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f2 = 2, f3 = 0, and f4 = 3. If we pick m = 3 then

wt3(F ) = 1↓0,3 ·1↓2,3 ·1↓0,3 ·1↓3,3= [(1)] · [(1)(−2)] · [(1)] · [(1)(−2)(−5)] = −20.

If Fk denotes the set of all file placements of k rooks on a board, B, we define

the kth m-weighted file placement number of the board to be

fk,m(B) =
∑

F∈Fk

wtm(F ).

Using this definition yields the following theorem.

Theorem 5 ([1]). If B = (b1, . . . , bn) is a Ferrers board, then

n∑
k=0

fk,m(B)x↓n−k,m=

n∏
i=1

(x+ bi − (i− 1)m).

3.2. File Placements on Singleton Boards

Continuing the previous convention, we use F to denote a particular file placement,

F to denote the set of all file placements on B, and Fk to denote the specific

file placements on B which contain k rooks. Notice that, while the set of file

placements, F , of a given board does not depend on the choice of m, the m-weighted

file placement numbers certainly do. Furthermore, for a given m, if a file placement,

F , happens to also be an m-level rook placement on B, then wtm(F ) = 1 since each

fj will equal either 0 or 1 and 1↓0,m= 1↓1,m= 1.

Let Rm,k be the set of all m-level rook placements of k rooks on B and F ′k be the

set of file placements on B containing k rooks which are not m-level rook placements

on B. Since every m-level rook placement of k rooks on B is also a file placement

on B, we can express Fk as Fk = Rk,m

⋃
F ′k. This implies that

fk,m(B) =
∑

F∈Rk,m

wtm(F ) +
∑

F∈F ′
k

wtm(F )

= rk,m(B) +
∑

F∈F ′
k

wtm(F ),

where in the second line we used that wtm(F ) = 1 whenever F ∈ Rk,m as mentioned

above. If B is specifically a singleton board then it follows from a comparison of

Theorem 2 and Theorem 5 that
∑

F∈F ′
k
wtm(F ) = 0. From this we can establish

the following corollary.

Corollary 6. If B = (b1, . . . , bn) is a singleton board for some fixed positive integer

m, then
n∑

k=0

fk,m(B)x↓n−k,m=

n∑
k=0

rk,m(B)x↓n−k,m .
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While this result is clearly a consequence of

n∑
k=0

fk,m(B)x↓n−k,m

and
n∑

k=0

rk,m(B)x↓n−k,m

having the exact same factorization for a singleton board, it is not immediately clear

why the m-weights of all the file placements that are not m-level rook placements

should cancel out. The rest of this paper develops a method of partitioning these

file placements so that the m-weights cancel out on each partition. This provides a

constructive explanation for why they cancel out over the entire set.

4. Partitions of File Placements

For a fixed m ≥ 2, let B be a singleton board with regard to the choice of m. Let

F ′ denote the set of all file placements on B that are not m-level rook placements.

Partition F ′ as follows.

For F0 ∈ F ′ there is at least one level containing multiple rooks, since otherwise

F0 would be an m-level rook placement. Out of the levels containing multiple rooks,

identify the one containing the fewest rooks. If two or more such levels exist, choose

the lowest such level, simply to have a single, well-defined, level. We will call this

level l. The partition containing F0 contains another given file placement if and

only if both placements contain the same number of rooks, all the rooks outside

of level l are in the same cells in both placements, the leftmost rook in level l is

in the same cell in both placements, and the columns of the other rooks in level

l are the same in both placements. This is the same as allowing every rook but

the leftmost in level l to be placed in any cell in level l as long as it remains in its

original column. Call the partition containing F0, P(F0).

The choice to pick a level containing the fewest number of rooks greater than 1

is not essential, it simply serves to reduce the size of the partition containing F0.

Lemma 7. If F0 is a file placement on B that is not an m-level rook placement in

which level l contains n rooks, then P(F0) contains mn−1 file placements.

Proof. Level l contains n rooks, the leftmost of which must be fixed. The remaining

n− 1 rooks in level l can be placed in any of the m cells in its column. Since these

choices are independent, there are mn−1 ways to make them. All other rooks in the

placement are fixed.



INTEGERS: 24 (2024) 9

R

R

R

R

R

R R

R R

R

R

R

R

R

R

R

R

R R

R R

R

R

R

Figure 5: The four file placements together in their specific partition for m = 2 and
B = (1, 3, 4, 4, 4, 4, 4). The dashed line separates the two different levels.

Figure 5 shows the four file placements in the case where m = 2, l = 1, and

n+ 1 = 3.

The following lemma considers what occurs when l contains exactly two rooks. In

addition to providing the base case for the inductive argument of our main theorem,

it is illuminating in its own right to consider this case.

Lemma 8. Let F0 be a file placement on singleton board, B, in which the level, l,

defined as above contains exactly two rooks. Let P(F0) denote the set obtained by

allowing the rightmost rook in l to take any position in its original column that is

still in level l. Then ∑
F∈P(F0)

wtm(F ) = 0.

Proof. Since B is a singleton board, we know that there is at most one column of B

that intersects level l non-trivially but in fewer than m cells. Furthermore, if such

a column exists, it must be the leftmost column to intersect level l non-trivially,

because the column heights are weakly increasing. Since there is a rook to the left of

the rook we are moving, the rook we are moving must be in a column that intersects

level l in a full m cells.

Since there are exactly two rooks in level l, there will be one case in which the

rook we are moving occupies the same row as another rook, and m−1 cases in which

the rook we are moving is alone in its row. Any other rows in level l must be empty

and therefore the weight of those specific rows will be 1↓0,m= 1, if they exist. In the

m − 1 cases where the two rooks are in different rows, each row containing a rook

contributes 1↓1,m= 1 to the product determining the overall weight of the board.

In the unique case where the two rooks are in the same row, that row contributes

1↓2,m= 1 · (1−m) = 1−m to the overall weight.
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For F ∈ P(F0) let ŵtm(lC) be the product of the row weights for the rows not

in level l. Notice that since we are only moving rooks in level l, for any board in

P(F0), ŵtm(lC) will be some constant, W , for any placement in F′. Therefore,

when the two rooks in l are in different rows, wtm(F ) = W ·1 ·1 = W and when the

two rooks in l are in the same row wtm(F ) = W · (1−m), since level l contributes

(1−m) to the overall product.

Considering that P(F0) contains m− 1 file placements where the two rooks are

in different rows and a unique file placement where the two rooks are in the same

row, we obtain

∑
F∈P(F0)

wtm(F ) = (m− 1) ·W + 1 ·W · (1−m) = W (m− 1 + 1−m) = 0.

It would be nice if this argument generalized directly to file placements where

the level containing multiple rooks with the fewest rooks has more than two rooks.

Specifically, if we could pick one of the rooks in that row and allow that rook to

move to any cell in its original level and column, then sum the m-weights of all the

file placements we obtained and get 0, that would be nice and simple. We could

conclude that we can always group weighted file placements that are not m-level

rook placements into partitions of size m where the weight summed over the entire

partition equals to zero. Unfortunately, as the following example illustrates, this is

not the case.

Consider the file placement in the top left of Figure 5 and look at the rooks in

the first level. If you pick either of the two rooks to the right and allow that specific

rook to be in any cell in its original column and level, no matter where you put the

rook it will be in a row with one other rook. Since m = 2, each of those choices

will contribute 1↓2,2= −1 to the overall m-weight. Thus, summing over all possible

locations for the given rook, we get −2W which certainly will not be 0 when m 6= 1,

since m = 1 is the only case where 1↓k,m= 0 and therefore W = 0 is possible.

On the other hand, consider the leftmost rook in the bottom level of the file

placement. Left in its current position that level contributes 1 ↓2,2= −1 to the

overall product. However, if it moves to the only other cell in its current column

and level, it will be in a row of three rooks, which contributes 1↓3,2= 1·−1·−3 = 3 to

the overall weight. Therefore, summing over all possible locations for the rightmost

rook, in this specific example, yields−1W+3W = 2W . Clearly we cannot guarantee

partitions whose m-weight sums to zero if we restrict ourselves to moving a single

rook within a fixed column in a level which contains two or more rooks. This

illustrates the need to define P(F0) as was done at the start of this section. Recall

that, in general, P(F0) is defined to be the set of file placements where every rook
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in level l other than the leftmost one is allowed to move to any cell in its original

column and level.

Theorem 9. Let F0 be a file placement that is not an m-level rook placement and

P(F0) the partition that contains F0, then∑
F∈P(F0)

wtm(F ) = 0.

Proof. Let level l be the level containing a minimal number of rooks of those contain-

ing at least two rooks, as identified above. We proceed by induction on the number

of rooks in level l. If l contains exactly two rooks, we know
∑

F∈P(F0)
wtm(F ) = 0

by Lemma 8.

Therefore, let us assume that level l contains n > 2 rooks. Since all the rooks

outside of level l remain unmoved across all file placements in P(F0), we will denote

their contribution to the m-weight as W = wtm(lC) as was done in the proof of

Lemma 8. Consider removing the rightmost rook in level l to obtain a file placement

with one fewer rook which we will denote as F̂ . The m-weight of this new placement

is wtm(F̂ ) = wtm(lC) ·1↓n1,m ·1↓n2,m · . . . ·1↓nm,m where ni is the number of rooks

in row i of level l once the rightmost rook in level l has been removed.

Reintroducing the rook we removed back into the first row of level l, and the

same column we removed it from, will change the m-weight to be

wtm(lC) · 1↓n1+1,m ·1↓n2,m · . . . · 1↓nm,m= wtm(F̂ ) · (1− n1m),

since 1↓n1+1,m= 1↓n1,m ·(1−n1m). Similarly, if we put the rightmost rook in level

l back into the second row of level l, the m-weight of the resulting placement will

be

wtm(lC) · 1↓n1,m ·1↓n2+1,m · . . . · 1↓nm,m= wtm(F̂ ) · (1− n2m).

Therefore, if we sum across all m possible places to put the rook back, we get

wtm(F̂ ) · ((1− n1m) + (1− n2m) + . . .+ (1− nmm)) which is the same as

wtm(F̂ ) · (m− (n1 + n2 + · · ·+ nm)m) = wtm(F̂ ) · (m− (n− 1)m)

= wtm(F̂ ) · (2m− nm)

= wtm(F̂ ) ·m(2− n),

because the sum of the number of rooks left in each row of the level after removing

the rightmost rook will be the total number of rooks left in the level, which is n−1.

In addition to verifying our base case, that the m-weight will be 0 if we allow

n = 2, this tells us that if we sum over all possible positions of the rightmost rook

in level l, preserving which column it is in, then what we get will be a constant

multiple of the m-weight of the placement where we simply remove the rightmost
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rook from level l. The constant will depend on the fixed values of m and n, but it

will be a constant over the partition P(F0).

To complete the proof that
∑

F∈P(F0)
wtm(F ) = 0, once again consider removing

the rightmost rook in the specified level. If we let F̂0 denote the specific placement

generated by removing the rightmost rook in the specified level of F0, we get

∑
F∈P(F0)

wtm(F ) =
∑

F̂∈P(F̂0)

m∑
i=1

wtm(F̂ ) · (1− nim) = m(2− n)
∑

F̂∈P(F̂0)

wtm(F̂ ).

By inductive hypothesis,
∑

F̂∈P(F̂0)
wtm(F̂ ) = 0. Therefore we acheive our goal

since ∑
F∈P(F0)

wtm(F ) = 0.

5. Open Questions

While this provides a more illuminating explanation of why the sum of all m-

weighted file placements that are not m-level rook placements on a singleton board

must come out to zero, it leaves three major questions open that I can see. The first

is the question of enumerating how many Ferrers boards have a given set of level

numbers mentioned at the end of Section 2. The second is whether we can reduce

the partition sizes. Finally, the third is whether a more combinatorial interpretation

of this result is possible. Since we have already discussed the first question, let us

move on to the second.

We know that the size of P(F ) will be mn−1 where n is the least number of rooks

in any level such that F includes multiple rooks in that level. However, for large

boards, n could be quite large. So, the question is whether we can find a different

partition of all the file placements such that the m-weight will be zero on each set

in the partition, but the largest set in the partition is smaller than mn−1?

When constructing P(F ), we held the position of rooks outside of a single, speci-

fied, level constant. While this simplified the calculation of the m-weights, perhaps

the partition sizes could be reduced by including placements where rooks change

positions in multiple levels. However, there is always the consideration of an m×n
board with a large n. Since that board only contains one level, any more efficient

partitioning of the relevant file placements would almost necessarily be a refinement

of the partitions presented in this paper. Alternatively, there is also the option of

changing which column a given rook is in, but since the column does not affect the

m-weight, this seems like it should not increase the possibilities, at first glance.
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The final question is fairly straightforward. In enumerative combinatorics it

is always nice when the numbers you are working with count something. Since

weighted file placements can be negative, that presents an obstacle. However, since

the objective is to show that a sum is zero, it is theoretically possible that the

positively weighted file placements and the negatively weighted file placements are

counting the same thing, and therefore must sum to zero together. A result of this

nature would be interesting.
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