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Abstract

In this note, we consider asymptotic products of binomial and multinomial coeffi-
cients and determine their asymptotic constants and formulas. Among them, special
cases are the central binomial coefficients, the related Catalan numbers, and bino-
mial coefficients in a row of Pascal’s triangle. For the latter case, we show that it
can also be derived from a limiting case of products of binomial coefficients over the
rows. The asymptotic constants are expressed by known constants, for example, the
Glaisher–Kinkelin constant. In addition, the constants lie in certain intervals that
we determine precisely. Subsequently, we revisit a related result of Hirschhorn and
clarify the given numerical constant by showing the exact expression.

1. Introduction

The Glaisher–Kinkelin constant A occurs in many asymptotic formulas. It was

independently found by Glaisher [1] and Kinkelin [6] by considering the asymptotic

formula of the hyperfactorial :

n∏
ν=1

νν ∼ A× n(n+1
2 )+ 1

12 e−
1
4n

2

as n→∞. (1)

The notation c×f(x) means here that c is an asymptotic constant, f is an increasing

function, and log f(x) has no constant term for x → ∞. Regarding products of

factorials, the author [5, Theorem 12] showed for integers k ≥ 1 the asymptotic

formula

n∏
ν=1

(kν)! ∼ FkAk (2π)
1
4 ×

(
ke−

3
2n
)k(n+1

2 ) (
2πke

k
2−1n

)n
2

n
k2+3k+1

12k as n→∞

(2)
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with certain constants Fk obeying the limit behavior that lim
k→∞

Fk = 1.

The main purpose of this paper is to discuss certain types of asymptotic prod-

ucts of binomial and multinomial coefficients and to determine their asymptotic

constants and formulas. It turns out that formulas (1) and (2) play a major role in

this context, as well as the constants A and Fk.

The next section shows further properties of the constants Fk. Section 3 contains

the main results and supplementary examples. The subsequent section gives their

proofs. In the last section, we revisit a related result of Hirschhorn [4]. Well-known

results, which we use implicitly, can be found, e.g., in the book of Graham et al. [3].

The numerical values were computed by Mathematica with 30 decimal digit accu-

racy and truncated to 25 digits after the decimal point. All given intervals are the

best possible throughout the paper.

2. Properties of the Constants Fk

For a divergent series expansion of a function f : R+ → R, we use the notation

f(x) =
∑
ν≥1

′ fν(x) =

m−1∑
ν=1

fν(x) + θm(x)fm(x),

where the sum is truncated at a suitable index m ≥ 1 and θm(x) ∈ (0, 1). Let Bn
be the nth Bernoulli number defined by

z

ez − 1
=

∞∑
n=0

Bn
zn

n!
(|z| < 2π).

The Glaisher–Kinkelin constant A ≈ 1.2824271291006226368753425... is given by

logA = 1
12 − ζ

′(−1) = 1
12 (γ + log(2π))− ζ′(2)

2π2 ,

where γ = −Γ′(1) ≈ 0.5772156649015328606065120... is Euler’s constant, ζ is the

Riemann zeta function, and Γ is the gamma function. The constants Fk can be

expressed as follows.

Theorem 1 (Kellner [5, Theorems 12 and 13]). For k ≥ 1, we have

logFk = k
4 log(2π)− k2+1

k logA+ 1
12k (1− log k)−

k−1∑
ν=1

ν
k log Γ(νk ) (3)

=
γ

12k
+
∑
j≥2

′ B2j ζ(2j − 1)

2j(2j − 1) k2j−1
. (4)
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Clearly, it follows from (4) that lim
k→∞

Fk = 1 as mentioned before (for further

properties of Fk, see [5, Theorem 12]). We can make this limit behavior even more

precise (cf. Table 1).

Corollary 2. The sequence (Fk)k≥1 is strictly decreasing with limit 1.

Proof. Let k ≥ 1. By Theorem 1, we have a truncated expansion

logFk =
γ

12k
+ θ̃k

B4 ζ(3)

12k3
with θ̃k ∈ (0, 1). (5)

Note that B4 = − 1
30 and the remainder term is relatively small. We compare the

infimum and supremum of the expansion of logFk and logFk+1, respectively. Since

γ

12k
− ζ(3)

360k3
>

γ

12(k + 1)
is equivalent to

k2

k + 1
>
ζ(3)

30γ
≈ 0.069416...,

it follows that logFk > logFk+1 for all k ≥ 1, implying the result.

We need the following lemmas later on.

Lemma 3. Define g(a, b) = 1
a + 1

b −
1
a+b . For a, b ∈ N and a + b ≥ 3, we have

7
6 ≥ g(a, b) > 0.

Proof. Note that g(a, b) = 1
a + a

b(a+b) > 0 for a, b ≥ 1. Further, we have g(a, b) =
1
a + 1

b −
1
a+b < 1 for a, b ≥ 2. By symmetry, there remains the case a = 1 and

a + b ≥ 3. Thus, g(a, b) = 1 + 1
b(b+1) has its maximum at b = 2, showing that

g(a, b) ≤ 1 + 1
6 .

Lemma 4. Let a > b ≥ 1 and ca,b = Fa
Fb Fa−b . Then ca,b ∈ [c2,1, 1).

Proof. Let a > b ≥ 1. By Corollary 2, we have min(Fb,Fa−b) > Fa > 1 and so

ca,b < 1. Letting a = 2b, we get the supremum by lim
b→∞

ca,b = lim
b→∞

F2b/F2
b = 1. Now,

set α = γ
12 and β = ζ(3)

360 . Following the proof of Corollary 2, we define logF+
k = α

k

and logF−k = α
k −

β
k3 as the supremum and infimum of (5), respectively. On the

one side, we have

log c2,1 < logF+
2 − 2 logF−1 = − 3

2α+ 2β = A.

Let a ≥ 3 and a > b ≥ 1, so ca,b 6= c2,1. On the other side, we have

log ca,b > logF−a − logF+
b − logF+

a−b = ( 1
a −

1
b −

1
a−b )α− a

−3β = B.

We show that B > A, which implies that ca,b > c2,1. The inequality turns into

B′ = 3
2 + 1

a −
1
b −

1
a−b > (2 + a−3)βα = A′. (6)

Using Lemma 3 with parameters a − b and b, we infer that B′ = 3
2 − g(a − b, b) ≥

3
2 −

7
6 = 1

3 . Since 3βα ≈ 0.208250... > A′, this implies (6) and shows the result.
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The first few constants Fk can be evaluated as in Table 1 below. By Euler’s

reflection formula

Γ(z) Γ(1− z) =
π

sin(πz)
(z ∈ C \ Z)

and Legendre’s duplication formula

Γ(z) Γ(z + 1
2 ) = 21−2z

√
π Γ(2z),

one can reduce terms of the form Γ( νk ) that occur in Fk using (3). Let φ =
√
5+1
2

be the golden ratio.

Constant Value

F1 = (2π)
1
4 e

1
12A−2 1.0463350667705031809809506...

F2 = (2π)
1
4 2

5
24 e

1
24A− 5

2 1.0239374116371184015779507...

F3 = (2π)
1
12 3

11
36 e

1
36 Γ( 1

3
)
1
3A− 10

3 1.0160405370646209912870365...

F4 = 2
7
12 e

1
48 Γ( 1

4
)
1
2A− 17

4 1.0120458980239446462423302...

F5 = (2π)−
3
20 5

1
3 φ− 1

10 e
1
60 Γ( 1

5
)
3
5 Γ( 2

5
)
1
5A− 26

5 1.0096399728364770508687282...

F6 = (2π)−
7
12 2

25
72 3

47
72 e

1
72 Γ( 1

3
)
5
3A− 37

6 1.0080336272420732654455927...

Table 1: First few values of Fk.

3. Main Results and Examples

We first consider asymptotic products of multinomial coefficients. It becomes ap-

parent that the occurring asymptotic constants are intimately related to the con-

stants Fk.

Theorem 5. Let r ≥ 2. Let a = b1 + · · · + br and b = (b1, . . . , br) with bν ≥ 1.

Asymptotically, we have

m∏
n=1

(
an

bn

)
=

m∏
n=1

(
an

b1n, b2n, · · ·, brn

)
∼ Ca,b ×

Pa(m)

Pb1(m) · · ·Pbr (m)
as m→∞

with the functions

Pk(x) =
(
kk
)(x+1

2 ) ( 2πk
e x

) x
2 x

3k+1
12k (k ≥ 1),

where the asymptotic constant is

Ca,b = ca,b (2π)
1
4 (1−r) and ca,b =

Fa
Fb1 · · · Fbr

∈ (0, 1).



INTEGERS: 24 (2024) 5

The asymptotic products of binomial coefficients can be derived as a special case.

The occurring asymptotic constants lie in relatively small intervals.

Theorem 6. Let a > b ≥ 1 and c = a− b. Asymptotically, we have

m∏
n=1

(
an

bn

)
∼ Ca,b × Pa,b(m) as m→∞

with the function

Pa,b(x) =
(
aa

bb cc

)(x+1
2 )

x
1
12 (

1
a−

a
bc )−

1
4

/(
2π
e
bc
a x
) x

2

and the asymptotic constant

Ca,b = ca,b (2π)−
1
4 ∈ [C2,1, (2π)−

1
4 ), where ca,b =

Fa
Fb Fc

∈ [c2,1, 1)

and

c2,1 = F2/F2
1 ≈ 0.9352589011148368571152882...,

(2π)−
1
4 ≈ 0.6316187777460647012900105...,

C2,1 = c2,1(2π)−
1
4 ≈ 0.5907270839982808449347463....

As an application, we find formulas for the related products of the central bino-

mial coefficients
(
2n
n

)
, as well as of the Catalan numbers Cn = 1

n+1

(
2n
n

)
.

Corollary 7. Asymptotically, we have

m∏
n=1

(
2n

n

)
∼ C2,1 ×

2m
2( 4e

π

)m
2

m
m
2 + 3

8

and

m∏
n=1

Cn ∼ CCat ×
2m

2( 4e3
π

)m
2

m
3
2m+ 15

8

as m→∞

with

C2,1 =
2

5
24 A 3

2

(2π)
1
2 e

1
8

≈ 0.5907270839982808449347463...

and

CCat = C2,1(2π)−
1
2 ≈ 0.2356660099851628316196795...,

respectively.

Remark 8. See sequences A007685 and A003046 in the OEIS [7] for products of

consecutive central binomial coefficients and Catalan numbers, respectively. Similar

finite products appear in a table of Gould [2]. Zeilberger [8] gave a short proof of a

conjecture of Chan, Robbins, and Yuen that these products of the Catalan numbers

are connected to volumes of certain polytopes.

https://oeis.org/A007685
https://oeis.org/A003046
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The next example shows a further computation, where some gamma factors oc-

cur.

Example 9. Asymptotically, we have

m∏
n=1

(
5n

2n

)
∼ C5,2 ×

(
55

22 33

)(m+1
2 )

(
2π
e

6
5m
)m

2 m
109
360

as m→∞,

where

C5,2 =
5

1
3

2
5
24 3

11
36

A 19
30

(2π)
11
15 e

19
360φ

1
10

Γ( 1
5 )

3
5 Γ( 2

5 )
1
5

Γ( 1
3 )

1
3

≈ 0.6129670404054601065382712....

Coincidentally, the exponent 109
360 has a simple continued fraction expansion:

109
360 = [0; 3, 3, 3, 3, 3] = 1

3+
1

3+
1

3+
1

3+
1
3

.

The asymptotic product of binomial coefficients in a row of Pascal’s triangle is

given, as follows.

Theorem 10. Asymptotically, we have

n∏
ν=0

(
n

ν

)
∼ Crow × Prow(n) as n→∞,

where

Prow(x) =
e
x2

2 +x

(2π)
x
2 x

x
2+

1
3

and

Crow =
(
F1 (2π)

1
4

)−1
=

A2

(2π)
1
2 e

1
12

≈ 0.6036486760360103196707021....

By Theorem 6, the constants Ca,b lie in the interval [0.590727..., 0.631618...). It

is no coincidence that Crow also lies in this interval. As shown below, Theorem 10

is a limiting case of Theorem 6. To make the products comparable, we need an

additional factor for convergence.

Theorem 11. Let n ≥ 1. We have

lim
a→∞

Ca,1 = Crow and lim
a→∞

a−(n+1
2 )

n∏
ν=1

(
aν

ν

)
=

n∏
ν=1

(
n

ν

)
,

implying that

lim
a→∞

a−(x+1
2 )Pa,1(x) = Prow(x).
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4. Proofs

Proof of Theorem 5. We rewrite the terms of (2) for m→∞, as follows:

m∏
n=1

(kn)! ∼ ck × fk(m).

Let r ≥ 2, and let a = b1 + · · ·+ br and b = (b1, . . . , br) with bν ≥ 1. By definition,

we get
m∏
n=1

(
an

b1n, b2n, · · ·, brn

)
∼ ca

cb1 · · · cbr
× fa(m)

fb1(m) · · · fbr (m)
.

Since a− b1−· · ·− br = 0, terms of the form ωτ vanish in the fractions above, when

ω is independent of τ , and τ is a placeholder for a and b1, . . . , br. Thus, we infer

from (2) that

Ca,b =
ca

cb1 · · · cbr
= ca,b (2π)

1
4 (1−r) with ca,b =

Fa
Fb1 · · · Fbr

.

Further, this provides

fa(m)

fb1(m) · · · fbr (m)
=

Pa(m)

Pb1(m) · · ·Pbr (m)
,

where terms are canceled out such that

Pk(x) =
(
kk
)(x+1

2 ) ( 2πk
e x

) x
2 x

3k+1
12k (k ≥ 1).

It remains to show the interval (0, 1) for ca,b. By Corollary 2, we have 1 > ca,b > 0,

since a > bν and Fbν > Fa > 1 for 1 ≤ ν ≤ r. We consider two limiting cases for the

infimum and supremum. First, for r ≥ 2, let a = r and b = (1, . . . , 1). Then we have

lim
r→∞

ca,b = lim
r→∞

Fr/Fr1 = 0. Second, Lemma 4 shows for r = 2 the supremum 1.

This completes the proof of the theorem.

Proof of Theorem 6. Let a > b ≥ 1 and c = a − b. Since
(
an
bn

)
=
(
an
bn,cn

)
, we use

Theorem 5 with parameters r = 2, a ≥ 2, and b = (b, c) to get the result. The

computation of Pa,b(x) = Pa(x)/(Pb(x)Pc(x)) follows directly. The interval [c2,1, 1)

for ca,b is given by Lemma 4, and the value of c2,1 is derived from Table 1.

Proof of Corollary 7. We first consider the product of central binomials. Therefore,

we have a = 2 and b = 1. By Table 1 and the function P2,1, we compute by

Theorem 6 that

C2,1 =
F2

F2
1

(2π)−
1
4 =

2
5
24 A 3

2

(2π)
1
2 e

1
8

and P2,1(m) =
2m

2( 4e
π

)m
2

m
m
2 + 3

8

. (7)
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For the product of the Catalan numbers Cn, we have to modify the terms in (7)

by considering the extra factor 1/(m + 1)!. By Stirling’s approximation, we have

m! ∼
√

2πm (me )m for m→∞. Thus,

(m+ 1)! ∼ (m+ 1)
√

2πm (me )m ∼
√

2πm
3
2 (me )m,

noting that m+ 1 = m (1 + 1
m ). Finally, we obtain the related terms

CCat = C2,1(2π)−
1
2 and P2,1(m)

em

mm+ 3
2

=
2m

2( 4e3
π

)m
2

m
3
2m+ 15

8

.

Let (n)ν denote the falling factorial such that
(
n
ν

)
= (n)ν/ν!. We can neglect the

term
(
n
0

)
= 1 below. We give a very short and elegant proof of Theorem 10 by using

results of the former sections, as follows.

Proof of Theorem 10. Let n ≥ 1. First, note that

n∏
ν=1

(n)ν =

n∏
ν=1

νν , which implies

n∏
ν=1

(
n

ν

)
=

n∏
ν=1

νν
/ n∏

ν=1

ν!. (8)

Second, by (2) with k = 1, we have

n∏
ν=1

ν! ∼ F1A (2π)
1
4 ×

(
e−

3
2n
)(n+1

2 ) (
2πe−

1
2n
)n

2

n
5
12 as n→∞. (9)

Third, we need the asymptotic formula (1) of the hyperfactorial. By (8), we divide

each side of (1) by (9), respectively, which easily yields the result.

Proof of Theorem 11. Let a, n ≥ 1. Since lim
a→∞

Fa = 1, we deduce that

lim
a→∞

Ca,1 = lim
a→∞

Fa
F1 Fa−1

(2π)−
1
4 = Crow.

Note that

a−(n+1
2 )

n∏
ν=1

(aν)ν =

n∏
ν=1

(
a−ν(aν)ν

)
= 1 ·

(
2 · (2− 1

a )
)
·
(
3 · (3− 1

a ) · (3− 2
a )
)
· · ·
(
n · · · (n− n−1

a )
)
.

Hence, we infer from (8) that

lim
a→∞

a−(n+1
2 )

n∏
ν=1

(aν)ν =

n∏
ν=1

νν =

n∏
ν=1

(n)ν
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and thus

lim
a→∞

a−(n+1
2 )

n∏
ν=1

(
aν

ν

)
=

n∏
ν=1

(
n

ν

)
.

Since the asymptotic constants and products coincide, respectively, so do their

asymptotic formulas. Obviously, the equality of the asymptotic formulas can be

shown directly. We leave the details to the reader.

5. Hirschhorn’s Theorem Revisited

Hirschhorn [4] showed the following theorem, apparently unaware of [5] published

a few years before.

Theorem 12 (Hirschhorn [4, Theorem]). Asymptotically, we have for n ≥ 1 that

n∏
k=0

(
n

k

)
∼ C−1

en(n+2)/2

n(3n+2)/6(2π)(2n+1)/4
exp

−∑
ν≥1

Bν+1 +Bν+2

ν(ν + 1)

1

nν


as n→∞, where

C = lim
n→∞

n−
1
12

n∏
k=1

(
k!
/√

2πk

(
k

e

)k)
≈ 1.046335066770503180980950656977760....

He gave a very lengthy and technical proof of the above theorem, but deriving

an asymptotic expansion by using divergent sums that involve Bernoulli numbers.

The constant C was published by Hirschhorn as sequence A213080 on the OEIS [7].

By Theorem 10 and Table 1, it finally turns out that

C = F1 = (2π)
1
4 e

1
12 /A2.

Note that C−1 is not the complete asymptotic constant, compared with Theorem 10,

since one of the above terms has a constant factor, namely,

(2π)(2n+1)/4 = (2π)
1
4 × (2π)

n
2 .

Acknowledgement. We would like to thank the referee for useful suggestions that

improved the quality of the paper.

https://oeis.org/A213080
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