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Abstract

Let σ(n) be the sum of the positive divisors of n. A number n is said to be 2-near
perfect if σ(n) = 2n + d1 + d2, where d1 and d2 are distinct positive divisors of n.
We give a complete description of those n which are 2-near perfect and of the form
n = 2kpi where p is prime and i ∈ {1, 2}. We also prove related results under the
additional restriction where d1d2 = n.

1. Introduction

A perfect number is a positive integer that is equal to the sum of its proper positive

divisors. Equivalently, a perfect number is an integer n such that σ(n) = 2n, where

σ(n) is the sum of all positive divisors of n. Perfect numbers have been studied

since antiquity. The idea of perfect numbers has been generalized in a variety of

ways. A classic generalization is the notion of a multiply perfect number, defined
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as an integer n which satisfies σ(n) = mn for some other integer m. Sierpiñski

[6] introduced the term pseudoperfect number to mean a number 2n such that n

is the sum of some subset of its divisors. Pollack and Shevelev [5] separated the

pseudoperfect numbers into separate types by introducing the idea of an s-near

perfect number. A number n is s-near perfect if 2n is the sum of all its positive

divisors excepting s of them. For example, while 12 is not perfect, it is 1-near

perfect, since 1 + 2 + 3 + 6 + 12 = 2(12). Here the divisor which has been removed

from the set is 4. We will refer to divisors removed from the set as omitted divisors.

Note that any pseudoperfect number is s-near perfect for some s, and one can think

of perfect numbers as 0-near perfect numbers. In some sense, multiply perfect

numbers are a multiplicative generalization of perfect numbers, while s-near perfect

numbers are a more additive generalization.

A number n is said to be abundant if it satisfies σ(n) > 2n. If n is s-near perfect

for some s > 0, then n must be abundant. However, it is possible for a number

to be abundant while not being s-near perfect for any s. An example is 70, where

σ(70) = 144. Numbers which are abundant but not s-near perfect for any s are said

to be weird. A classic open problem is whether there are any odd weird numbers.

In addition to the more general notion of s-near perfect numbers, Pollack and

Shevelev [5] also used the term near perfect number to mean 1-near perfect number.

Another classic open problem is whether there is any n such that σ(n) = 2n + 1.

Such numbers are called quasiperfect numbers. Note that any quasiperfect number

is a 1-near perfect number with omitted divisor 1.

Pollack and Shevelev constructed the following three distinct families of 1-near

perfect numbers:

1. 2t−1(2t − 2k − 1) where 2t − 2k − 1 is prime. Here 2k is the omitted divisor.

2. 22p−1(2p − 1) where 2p − 1 is prime. Here 2p(2p − 1) is the omitted divisor.

3. 2p−1(2p − 1)2 where 2p − 1 is prime. Here 2p − 1 is the omitted divisor.

Subsequent work by Ren and Chen [7] showed that all near perfect numbers with

two distinct prime factors must be either 40, or one of the three families above.

The only known near perfect odd number is 173369889 = (34)(72)(112)(192).

Tang, Ma, and Feng [8] showed that this is the only odd near perfect number with

four or fewer distinct prime divisors. Cohen, Cordwell, Epstein, Kwan, Lott, and

Miller proved general asymptotics for s-near perfect numbers for s ≥ 4. Recent work

by Hasanalizade [2] gave a partial classification of near perfect numbers which are

also Fibonacci or Lucas numbers. Li and Liao [3] classified all even near perfect

numbers of the form 2ap1p2 where p1 and p2 are distinct primes.

The main results of this paper are twofold. First, we give a complete description

of 2-near perfect numbers of the form 2kp or 2kp2 where p is prime. Second, we
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use these characterizations to introduce a closely related notion of strongly 2-near

perfect numbers, and give a characterization of those of the form 2kp.

In particular, we have the following two main results.

Theorem 1. Assume n is a 2-near perfect number with omitted divisors d1 and d2.

Assume further that n = 2kp where p is prime and k is a positive integer. Then

one must have, without loss of generality, one of four situations.

1. p = 2k − 1. Here we have d1 = 1 and d2 = p.

2. p = 2k+1 − 2a − 2b − 1 for some a, b ∈ N. Here d1 = 2a and d2 = 2b.

3. p = 2k+1−2a−1
1+2b

for some a, b ∈ N. Here d1 = 2a and d2 = 2bp.

4. p = 2k+1−1
1+2a+2b

for some a, b ∈ N. Here d1 = 2ap and d2 = 2bp.

Theorem 2. Assume that n is a 2-near perfect number with omitted divisors d1
and d2. Assume further that n = 2kp2 where p is prime. Then n ∈ {18, 36, 200}.

We recall the following basic facts about σ(n):

Lemma 1. The function σ(n) has the following properties:

1. σ(n) is multiplicative. That is, σ(ab) = σ(a)σ(b) whenever a and b are rela-

tively prime.

2. For a prime p, σ(pk) = pk + pk−1 + · · ·+ 1 = pk+1−1
p−1 .

2. Proof of Theorem 1

Let us now prove Theorem 1

Proof. Assume we have a 2-near perfect number of the form n = 2kp with two

omitted divisors d1, d2, d1 6= d2, and odd prime p. Because n is near perfect, we

have that

σ(n) = 2n+ d1 + d2. (1)

Using Lemma 1, we then have:

σ(n) = σ(2kp) = (2k+1 − 1)(p+ 1) (2)

So, setting Equation (1) equal to Equation (2), we have

(2k+1 − 1)(p+ 1) = 2n+ d1 + d2 = 2k+1p+ d1 + d2,

and hence

p = 2k+1 − 1− d1 − d2. (3)



INTEGERS: 24 (2024) 4

Because p is odd, we have that 2k+1 − 1− d1 − d2 is odd. Since 2k+1 − 1 is always

odd, we have that −(d1 + d2) must be even. If −(d1 + d2) is even, d1 and d2 must

be of the same parity. We thus need to consider two situations: where d1, d2 are

both odd, and where they are both even. We will call the first situation Case 1, and

we shall separate the second situation, Case 2, into three separate subcases without

loss of generality.

Case 1: In this case, d1, d2 are both odd. The only odd divisors of n are 1 and p, so

we can, without loss of generality, set d1 = 1 and d2 = p to find p = 2k+1−1−1−p,
and hence p = 2k−1. Thus, our first family of 2-near perfect numbers correspond to

the family of Mersenne primes and have the form 2k(2k − 1) (twice an even perfect

number).

We now consider the situation where d1 and d2 are both even. We shall break

this down into three subcases, depending on the types of values for d1 and d2.

Case 2.1: In this case we have d1 = 2a, d2 = 2b, where 0 < a < b ≤ k. We can then

use the definitions of d1 and d2 in Equation (3) to find that p = 2k+1− 2a− 2b− 1.

This is our second family of 2-near perfect numbers.

Case 2.2: In this case, d1, d2 are both even, and d1 = 2a, d2 = 2bp, and a, b ∈ (0, k].

We use a similar strategy, and plug our definitions of d1, d2 into Equation (3) to

obtain p = 2k+1 − 2a − 2bp− 1, so that p(1 + 2b) = 2k+1 − 2a − 1, which becomes

p = 2k+1−2a−1
1+2b

. This is our third family of 2-near perfect numbers.

Case 2.3: In this case, d1, d2 are both even and we have d1 = 2apd2 = 2bp, and 0 <

a < b ≤ k. Using the same technique, Equation (3) yields p = 2k+1− 1− 2ap− 2bp,

and hence, p(1 + 2a + 2b) = 2k+1 − 1, which implies that p = 2k+1−1
1+2a+2b

. This is the

fourth and final family of 2-near perfect numbers.

3. Proof of Theorem 2

One major technique we will use is what we call the discriminant sandwich method:

we show that a given Diophantine equation has only a restricted set of possible

solutions. We do so by showing that the equation is a quadratic equation in one

variable, and thus in order to have integer valued solutions, the discriminant must

be a perfect square. However, we will show that the discriminant must, except

in a limited set of cases, be shown to be strictly between two consecutive perfect

squares, and thus aside from those situations, we have no solution. Discriminant

sandwiching will be used extensively in what follows.

Lemma 2. Let a and k be positive integers such that D = 22k+2 + 2k+2− 2a+2− 7.
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If 0 ≤ a ≤ k and D is a perfect square, then k = a = 1.

Proof. Let us assume that D is a perfect square. For all a, note that

22k+2 + 2k+2 − 2a+2 − 7 < 22k+2 + 2k+2 + 2 = (2k+1 + 1)2.

Thus, if we have

D = 22k+2 + 2k+2 − 2a+2 − 7 > 22k+2 = (2k+1)2 (4)

then the quantity in question cannot be a perfect square because it is sandwiched

between two consecutive perfect squares. So we must have that

22k+2 + 2k+2 − 2a+2 − 7 ≤ 22k+2,

and therefore

2k+2 − 2a+2 ≤ 7. (5)

If k > a ≥ 1, then from Equation (5) we have that 2k+2 − 2k+1 ≤ 2k+2 − 2a+2 ≤ 7.

Thus, 2k+2 − 2k+1 = 2k+1 ≤ 7, which implies that k ≤ 1. However, given the

conditions for this case, no solutions are possible.

Now, consider the case when k = a ≥ 1. In this case, we have

D = 22k+2 + 2k+2 − 2k+2 − 7 = 22k+2 − 7.

Given this, note that 22k+2 − 7 < 22k+2 = (2k+1)2. Using the same logic as earlier,

we see that if D > (2k+1− 1)2, then D will be sandwiched between two consecutive

perfect squares, and thus will not be a square itself. Thus, we can assume that

22k+2 − 7 ≤ (2k+1 − 1)2 = 22k+2 − 2k+2 + 1,

which implies that k ≤ 1. The bounds for this case require k ≥ 1, so the only

solution possible is (a, k) = (1, 1).

Essentially, Lemma 2 is the sandwiching part of the discriminant sandwich we

will use in the proof of Proposition 1 below.

Lemma 3. Let b and k be non-negative integers and p be an odd number such that

(2k+1 − 1)(p2 + p+ 1) = 2k+1p2 + 2bp+ 1. (6)

Then p | 2k − 1 and p+ 1 | 2b − 2.

Proof. Assume one has a solution to Equation (6). Then, if we take the equation

modulo p, we get that 2k+1 − 1 ≡ 1 mod p, and hence p | 2k+1 − 2 = 2(2k − 1).

Since p is odd, we have p | 2k − 1. To prove the second half, observe that we can

rewrite our initial equation as 2k+1(p + 1) = 2bp + p2 + p + 2, which implies that

p + 1 | 2bp + p2 + p + 2. Hence p + 1 | 2bp + p2 − p, and so p + 1 | p(2b + p − 1).

Since p and p+ 1 are relatively prime, we have then that p+ 1 | 2b + p− 1. Finally,

we take away another multiple of p+ 1 to get p+ 1 | 2b − 2.
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Lemma 4. The equation

(2k+1 − 1)(p2 + p+ 1) = 2k+1p2 + 2bp+ 1 (7)

has no solutions where p is odd and 2 ≤ b ≤ k − 1.

Proof. Assume we have a solution to the equation. From Lemma 3, we choose an

integer x such that x(p+ 1) = 2b − 2. Note that x must be odd since p+ 1 is even,

and 2b− 2 is not divisible by 4. We then have 2b = xp+x+ 2. When we substitute

this back into Equation (7), and solve for 2k+1, we get that 2k+1 = xp+ p+ 2. By

taking the difference of these two expressions, we obtain

2k+1 − 2b = (xp+ p+ 2)− (xp+ x+ 2) = p− x.

Because b ≤ k−1, it follows that 2k+1−2b > 2k, and hence we have p−x > 2k, and

hence p > 2k + 1. But this contradicts Lemma 3, since we must have p | 2k − 1.

Lemma 5. Let n be a 2-near perfect number of the form n = 2kp2 where p is an

odd prime. Assume further that the omitted divisors of n are d1 and d2. Then, we

have

d1 + d2 = −p2 + (2k+1 − 1)p+ (2k+1 − 1), (8)

and d1 and d2 are of opposite parity.

Proof. Assume the truth of the above hypotheses. Then we have σ(n)−d1−d2 = 2n.

This is equivalent to σ(2kp2)− d1− d2 = 2(2kp2) = 2k+1p2, which can be rewritten

as (2k+1 − 1)(p2 + p+ 1)− d1 − d2 = 2k+1p2, and hence

d1 + d2 = −2k+1p2 + (2k+1 − 1)(p2 + p+ 1).

This last line is equivalent to Equation (8). Since the right-hand side of Equation

(8) is odd, d1 and d2 must be of opposite parity.

Let us look at the possible divisors of n, assuming n = 2kp2. Every possible

divisor can be of one of three types. Type I divisors are powers of 2, that is, d = 2a

for some 0 ≤ a ≤ k. Type II divisors are p or p2, that is, d = pm where m ∈ {1, 2}.
Type III divisors are of the form d = 2bpj where 0 < b ≤ k and j ∈ {1, 2}.

We may then, without loss of generality, break down our situation into the follow-

ing six cases as listed in Table 1 below depending on all the possible combinations

of omitted divisor types, d1 and d2.

We will handle each of these six cases separately. But before we do, we will

observe that Cases 4 and 6 are both trivial since they require that both d1 and d2
are of the same parity, which contradicts Lemma 5. We thus only consider Cases 1,

2, 3, and 5.
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Case d1 d2
1 I I
2 I II
3 I III
4 II II
5 II III
6 III III

Table 1: The six possible cases

Proposition 1. If n is a 2-near perfect number of the form n = 2kp2, where p is

an odd prime, with omitted divisors of Case 1 form, then n = 18, and the omitted

divisors are 1 and 2.

Proof. Assume we are in Case 1. In this case, both d1 and d2 must be distinct

powers of 2. Since d1 + d2 is odd, one of the omitted divisors must be odd (and

hence equal to 1). Without loss of generality, we will set d1 = 1, and d2 = 2a where

1 ≤ a ≤ k. Putting this into Equation (8), we get that

p2 − (2k+1 − 1)p− (2k+1 − 2a − 2) = 0. (9)

Equation (9) is a quadratic equation in p. Thus, in order to have a solution, its

discriminant, defined as D = 22k+2+2k+2−2a+2−7, must be a perfect square. From

Lemma 2, D is only a perfect square if k = a = 1. In this case, Equation (9) becomes

just p2 − 3p = 0. Thus, one must have p = 3, and so n = 18 with d1 = 1, d2 = 2.

One can verify this result by observing that 2(18) = σ(18)− (1 + 2).

Proposition 2. There are no 2-near perfect numbers of the form 2kp2 with omitted

divisors of the Case 2.

Proof. We will apply the discriminant sandwich method to this situation. Again we

are working with n = 2kp2, but we now have omitted divisors of the form d1 = 2a

and d2 = pm where a ∈ (0, k] and m ∈ [1, 2]. We will break Case 2 down into two

subcases, depending on whether m = 1 or m = 2.

We first consider the situation where m = 1. Applying this to Equation (8), we

obtain

0 = p2 − (2k+1 − 2)p− (2k+1 − 2a − 1). (10)

Equation (10) has an even discriminant D, which means that if D is a perfect

square, it must be divisible by 4. Thus, we can define

D′ =
D

4
= 22k − 2a,
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and just as well assume that D′ is a perfect square. Note that D′ is still even, so

we can skip over checks against odd squares. We have that 22k − 2a < (2k)2, and

so 22k − 2a ≤ (2k − 2)2. With a little algebra we then obtain that 2k+2 − 2a ≤ 4.

Without loss of generalization, we may write k = a + m,m ∈ [0, k), a > 0. We

then have that 2a(2m+2 − 1) = 2a+m+2 − 2a ≤ 4. It is evident after plugging in

the minimum values for a and m that no solution exists. We thus have shown that

when m = 1, no solution exists.

We now consider the case when m = 2. We then obtain from Equation (8),

0 = 2p2 − (2k+1 − 1)p− 2k+1 + 2a + 1. (11)

We then need that the discriminant D, defined as

D = 22k+2 − 2k+2 + 2k+4 − 2a+3 − 7.

is a perfect square. We thus must have D < (2k+1 + 3)2. Since D is odd, it cannot

be equal to the next smallest square, which is even. So, D ≤ (2k+1 + 1)2. We thus

have

22k+2 − 2k+2 + 2k+4 − 2a+3 − 7 ≤ 22k+2 + 2k+2 + 1,

which implies that 2k − 2a ≤ 1. Thus, we can only have a solution when k = a or

we have k = 1 and a = 0. However, since d1 and d2 must be of opposite parity,

we cannot have a = 0. Thus, we need consider only the case when k = a. Our

expression for D simplifies so that we have D = 22k+2 +2k+2−7. But this quantity

cannot be a perfect square since (2k+1)2 < 22k+2 + 2k+2 − 7 < (2k+1 + 1)2, and so

D is again sandwiched between two consecutive perfect squares. Thus, there are no

solutions for Case 2 when m = 2. Since no solutions exist for all possible cases for

m, Proposition 2 has been proven.

Lemma 6. If p is an odd number such that

(2k+1 − 1)(p2 + p+ 1) = 2k+1p2 + 2bp2 + 1 (12)

where k and b are positive integers, then p | 2k − 1.

Proof. Assume one has a solution to Equation (12). Then, if we take the equation

modulo p, we get that 2k+1 − 1 ≡ 1 mod p, and hence p | 2k+1 − 2 = 2(2k − 1).

Since p is odd, we have p | 2k − 1.

Lemma 7. If p is an odd number which is a solution to Equation (12), then p+ 1 |
2b + 2.

Proof. Assume one has a solution to Equation (12). We can rewrite this as

2k+1(p+ 1) = (2b + 1)p2 + p+ 2
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which implies that p+1 | (2b+1)p2+p+2, and hence Since p and p+1 are relatively

prime, p + 1 | (2b + 1)p − 1, and so by similar logic, p + 1 | 2b + 2, which is the

needed relation.

Note that Lemma 7 is distinct from Lemma 3, since the equations needed are

different, and one has a positive 2 on the right-hand side, and the other a negative

2 on the right-hand side.

Proposition 3. Let n = 2kp2 be a 2-near perfect number with omitted divisors of

the Case 3 form with omitted divisors 1 and 2bp2. Then n = 36, and our omitted

divisors are 1 and 18.

Proof. Assuming the hypotheses, from Equation (8), we have some b such b ≤ k,

and p prime such that

(2k+1 − 1)(p2 + p+ 1) = 2k+1p2 + 2bp2 + 1. (13)

By Lemmas 6 and 7, we have p | 2k − 1 and p+ 1 | 2b + 2. Thus, there is a positive

integer z such that z(p + 1) = 2b + 2, and z(p + 1) − 2 = 2b. If we take Equation

(13) modulo 2b we also get that 2b | p2 + p+ 2.

We also have

z(p+ 1)− 2 | p2 + p+ z(p+ 1)

z(p+ 1)− 2 | p(p+ 1) + z(p+ 1)

z(p+ 1)− 2 | (p+ 1)(p+ z). (14)

Let Q be some integer such that Q | z(p + 1) − 2 and Q | p + 1. Then Q will

divide any linear combination of those terms. Thus we have

Q | z(p+ 1)− 2− z(p+ 1) = −2.

Thus, the only possible common factors of z(p + 1) − 2 and (p + 1) are 1 and 2.

Hence Equation (14) may be strengthened to

z(p+ 1)− 2 | 2(p+ z). (15)

Therefore, we know that z(p + 1) − 2 ≤ 2(p + z), which implies that z ≤ 2p+2
p−1 =

2 + 4
p−1 .

Since p ≥ 3, we have z ≤ 3, and hence have only three cases, z = 1, z = 2,

or z = 3. One can easily check that if p = 3 then the only case which leads to

integer values is when z = 1 and b = 1. Here n = 36, and our omitted divisors are

d1 = 1, d2 = 18. Thus, we may assume that p > 3, which implies z = 1 or z = 2.

However, if b = 1, we get a contradiction if p > 3. Thus, we may assume that b > 1

which forces z to be odd, and so z = 1.
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From Equation (15), we have p − 1 | 2(p + 1). So there is some m such that

m(p− 1) = 2(p+ 1). If m = 1 then we get a negative value for p, and if m = 2, we

immediately get a contradiction. So we may assume that m ≥ 3. If m = 3, then we

have 3(p− 1) = 2(p+ 1), which yields p = 5 which quickly leads to a contradiction.

We thus must have m ≥ 4. However, if 4(p − 1) ≤ 2(p + 1), then one must have

p = 3, but we are in the situation where p > 3.

Thus, our only possibility is when n = 36.

Proposition 4. If n is a 2-near perfect number of the form n = 2kp2, where p is

an odd prime, with omitted divisors of Case V form, then n = 200.

Proof. Assume we have such an n, with omitted divisors d1 and d2. Then, without

loss of generality, we may assume that d1 = pj for j ∈ [1, 2] and d2 = 2bpg for some

g ∈ [1, 2], and 1 ≤ b ≤ k. We may break this down into four cases as outlined in

the table below.

Case d1 d2
1 p 2bp
2 p 2bp2

3 p2 2bp
4 p2 2bp2

Case 1: This case can be handled by the discriminant sandwich technique. Equa-

tion (8) becomes

p+ 2bp = −p2 + (2k+1 − 1)p+ (2k+1 − 1). (16)

The relevant discriminant from Equation (16) is

D = 22k+2 − 2k+b+2 + 22b + 2b+2.

We have then (2k+1−2b)2 < D < (2k+1−2b +1)2, so D cannot be a perfect square.

Thus the equation has no solutions.

Case 2: In this case Equation (8) becomes

p+ 2bp2 = −p2 + (2k+1 − 1)p+ (2k+1 − 1). (17)

The relevant discriminant from Equation (17) is

D = 22k+2 + 2k+b+3 − 2b+2. (18)

We wish to show that such a D is not a perfect square. We do so by splitting

into two subcases, when b is even and when b is odd. In both cases we will get a

contradiction from assuming that D is a perfect square.
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First, assume that b is even. Then 2b+2 is a perfect square, and so if D is a

perfect square, we may factor out 2b+2 from Equation (18). In that case, we have

then that D0 = 22k−b + 2k+1 − 1 must be a perfect square. However, if b < k, then

D0 ≡ 3 (mod 4), and thus D0 cannot be a perfect square. Thus, we must have

b = k. In that situation we have D0 = 2k + 2k+1 − 1. However, since b is even and

greater than 1, we must then have k ≥ 2. Thus, we still have D0 ≡ 3 (mod 4).

Now, for our second subcase, assume that b is odd. Then 2b+1 is a perfect square,

and so we may factor that quantity out of D and still have a perfect square. We

thus have that D1 = 22k−b+1 + 2k+2 − 2 must be a perfect square. However, we

have then that D1 ≡ 2 (mod 4), and so we have again reached a contradiction.

Since both cases lead to a contradiction, we conclude that the relevant discrimi-

nant is never a perfect square, and thus the equation has no solutions.

Case 3: where d1 = p2 and d2 = 2bp2. Equation (8) then becomes

p2 + 2bp = −p2 + (2k+1 − 1)p+ 2k+1 − 1.

Hence,

−2p2 + (2k+1 − 2b − 1)p+ 2k+1 − 1 = 0. (19)

Equation (19) has a corresponding discriminant value given by

D = x2 − 2x(2b − 3) + 22b + 2b+1 − 7, (20)

where x = 2k+1. We note that if b = 1, then we get that either p = −1 or

p = 2k+1−1
2 , neither of which is a prime. Thus, we may assume that b > 1. Since

b > 1, we have 2b+3 > 16, which implies that2b+1− 7 > −6 · 2b + 9. We then obtain

that

x2 − 2x(2b − 3) + 22b + 2b+1 − 7 > x2 − 2x(2b − 3) + 22b − 6 · 2b + 9,

which implies that D > x2 − 2x(2b − 3) + (2b − 3)2 = (x− (2b − 3))2.

If we have a solution to our original equation, D must be a perfect square.

Equation (20) also shows that D must be odd. Thus, we cannot have D = (x −
(2b − 2))2, and thus we have

D ≥ (x− (2b − 1))2. (21)

Equation (21) then implies that

3 · 2b ≥ 2k+1 + 8, (22)

and hence,

4 · 2b > 2k+1. (23)
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Inequality (23) implies that b > k − 1. Since we have that b ≤ k, and b is a

natural number, we conclude that b = k. We thus may replace k with b in Equation

(19) to obtain p2 + 2bp = −p2 + (2b+1 − 1)p+ 2b+1 − 1, which is equivalent to

2b(p+ 2) = 2p2 + p+ 1. (24)

Thus, we have p+ 2 | 2p2 + p+ 1. We then have

p+ 2 | (2p2 + p+ 1) + (3− 2p)(p+ 2) = 7.

Since p+ 2 | 7, we must have p = 5. We then can solve to get that b = k = 3. This

yields n = (23)(52) = 200, which is in fact a 2-near perfect number of the desired

form. Here our omitted divisors are 25 and 40.

Case 4: We have d1 = p2 and d2 = 2bp2. In this situation Equation (8) becomes

(2k+1 − 1)(p2 + p+ 1)− 2k+1p2 = p2 + 2bp2,

which can be rewritten as

2k+1(p+ 1) = 2p2 + 2bp2 + p+ 1. (25)

Therefore, we have the following:

(p+ 1) | (2p2 + 2bp2 + p+ 1),

(p+ 1) | (2p2 + 2bp2 + p+ 1)− (p+ 1) = 2p2 + 2bp2,

and thus (p + 1) | p2(2 + 2b). Since p + 1 and p2 are relatively prime this implies

(p+ 1) | (2 + 2b).

Thus, there exists a positive integer z such that z(p+ 1) = 2 + 2b, and hence

2b = z(p+ 1)− 2. (26)

We note that p+ 1 is even and the only way which 2 + 2b can be divisible by 4

is if b = 1 (which does not lead to a solution). Thus, z is odd.

If we take Equation (25) modulo 2b, we obtain that

2b | 2p2 + p+ 1. (27)

We note that Equation (27) allows one to obtain a finite set of possible values b

for any given fixed choice of p, and then use each to solve for k. Thus, with only a

small amount of effort, we may verify that we must have p > 23. We may combine

Equation (27) with Equation (26) to obtain z(p+ 1)− 2 | 2p2 + p+ 1. We then have

zp+ z − 2 | 2p2 + p+ 1
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and

zp+ z − 2 | 2z(2p2 + p+ 1)− (4p− 2)(zp+ z − 2) = 4z + 8p− 4.

Hence,

zp+ z − 2 | 4(z + 2p− 1). (28)

Consider now the situation where we have equality in the relationship in Equation

(28). Then we have zp+z−2 = 4(z+2p−1), which is equivalent to z(p+1) = 8p+2.

Thus, p + 1 | 8p + 2, and hence p + 1 | 6p. Since p + 1 and p are relatively prime,

this forces us to have p+ 1 | 6, and hence we must have p = 5, which we can verify

does not work. Thus, we must have some integer m ≥ 2 such that m(zp+ z − 2) =

4(z + 2p− 1), and thus we have zp+ z − 2 ≤ 2(z + 2p− 1), which is equivalent to

z ≤ 4p

p− 1
. (29)

We have that p ≥ 7, and thus, Inequality (29) implies that z < 6. Since z is

odd, we must then have z = 1, z = 3, or z = 5. If we have z = 1, then Equation

(28) implies that p− 1 | 8p. But since p− 1 is relatively prime to p, we must have

p− 1 | 8, which is impossible since p > 23. Using similar logic, for z = 3, we obtain

from Equation (28) that

3p+ 1 | 4(2p+ 2) = 8(p+ 1)

3p+ 1 | 8p+ 8− 8(3p+ 1) = −16p.

Thus, 3p + 1 is relatively prime to p, so we must have that 3p + 1 | 16. But, once

again, we have p > 23, so there cannot be any solution. Finally, for z = 5, we

obtain, from Equation (28), that 5p+ 3 | 4(2p+ 4) = 8p+ 16, and thus

5p+ 3 | 3(8p+ 16) = 24p+ 48

and

5p+ 3 | 24p+ 48− 16(5p+ 3) = −56p.

Since p 6= 3, 5p + 3 and p are relatively prime, so we must have 5p + 3 | 56. But,

once again this contradicts p > 23.

Proof of Theorem 2. Theorem 2 now follows since Proposition 1, Proposition 2,

Proposition 3, and Proposition 4 exhaust all possible options for the omitted divi-

sors.

4. Strongly 2-Near Perfect Numbers

A slightly different way of defining a number to be pseudoperfect is to say that

a number n is pseudoperfect if there is a set S which is a subset of the positive
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n σ(n) d1 d2
156 392 2 78
352 756 8 44
6832 15376 4 1708
60976 122512 148 412
91648 184140 128 716
152812 306432 302 506
260865 539136 15 17391

Table 2: Strongly 2-near perfect numbers under one million

divisors of n such that the sum of the elements in S sums to 2n. The last author

and McCormack [4] studied what they called strongly pseudoperfect numbers. A

number n is said to be strongly pseudoperfect if there is a subset S of divisors of n

where the sum of the elements sums to 2n, and where we also have the property

that d ∈ S if and only if n
d ∈ S. It is natural to combine the notion of 2-near

perfect and strongly pseudoperfect as follows: we say that a number n is strongly

2-near perfect if n is strongly pseudoperfect and also 2-near perfect. Note that this

is equivalent to n having a divisor d such that

σ(n)− d− n

d
= 2n.

Table 2 gives all seven strongly 2-near perfect numbers less than one million.

In this section, we will give a description of all strongly 2-near perfect numbers

n of the form n = 2kp for a prime p.

Lemma 8. If n is a strong 2-near perfect number of the form 2kp for some odd

prime p and natural number k, then p = 2k+1−2a−1
1+2k−a .

Proof. Assume we have a strong 2-near perfect number. By looking at our four

families of numbers which arise from Theorem 1, we can see that only numbers in

the third family might possibly be strongly 2-near perfect. In the first family, the

product of omitted divisors d1d2 is odd, so one cannot have d1d2 = n since n is

even. In the second family, we have d1d2 is a power of 2, and thus is not n. In our

fourth family, we have p2 | d1d2 so d1d2 6= n.

Thus, we may assume that we have a number arising from the third family.

In that situation, from d1d2 = n we get that a + b = k, from which the result

follows.

Lemma 9. Assume that n is a strong 2-near perfect number of the form n = 2kp

with p = 2k+1−2a−1
1+2k−a . Then k < 2a.
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Proof. Assume that n is a strong 2-near perfect number of the form n = 2kp with

p = 2k+1−2a−1
1+2k−a , and that k ≥ 2a. Thus, we have 1 + 2k−a | 2k+1 − 2a − 1, which

implies that

1 + 2k−a | 2k+1− 2a− 1 + (1 + 2k−a) = 2k+1− 2a + 2k−a = 2a(2k+1−a + 2k−2a− 1).

Since k ≥ 2a, 2k+1−a + 2k−2a − 1 is a positive integer. We also have that (1 +

2k−a, 2a) = 1, so we have then that

1 + 2k−a | 2k+1−a + 2k−2a − 1. (30)

Consider the situation where k = 2a. Then Equation (30) becomes 1 + 2a | 2a+1,

which has no solutions. So, we may assume that k > 2a.

We have from Equation (30) that there is some m such that

m(1 + 2k−a) = 2k+1−a + 2k−2a − 1. (31)

Note that the right-hand side of the equation is odd, so m must be odd. If m = 1

then we have (1 + 2k−a) = 2k+1−a + 2k−2a − 1, which implies that

1 + 2k−a−1 = 2k−a − 2k−2a−1. (32)

The left-hand side of Equation (32) is odd, and the only way for the right-hand

side to be odd is if k − 2a− 1 = 0. The only solution of this system of equations is

when k = 3 and a = 1, which forces p = 13
5 which is not an integer. Thus, we have

m 6= 1, and so m ≥ 3.

We thus have 3(1 + 2k−a−1) ≤ 2k−a − 2k−2a−1, which is impossible.

Proposition 5. Assume that n is a strong 2-near perfect number of the form n =

2kp with p = 2k+1−2a−1
1+2k−a . Then k = a+ 2, and the omitted divisors are d1 = 2a and

d2 = 4p, with p = 2a+3−2a−1
5 , and a ≡ 3 (mod 4).

First, we need to prove the following lemma.

Lemma 10. If 2b + 1 | 3(2a) + 1, then b = 2.

Proof. Assume that 2b + 1 | 3(2a) + 1. We thus have for some positive integer m,

m(2b + 1) = 3(2a) + 1. (33)

Notice that 3(2a)+1 is never divisible by 3, and thus b must be even, and m cannot

be divisible by 3. If m = 1 then we have 2b + 1 = 3(2a) + 1 which would imply we

would have 3 | 2b, which cannot happen. Thus, we may assume that m ≥ 5. This

implies that a > b. Set a = bq + r where 0 ≤ r < b. We have

(3)(2qb+r + 1) = (3)((2b)q2r + 1) ≡ 3((−1)q2r + 1) (mod 2b + 1) ≡ 0. (34)
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Now, we separate into two cases, depending on whether q is even or odd. If q is

even, then Equation (34) yields that

3(2r) + 1 ≡ 0 (mod 2b + 1), (35)

and so

2b + 1 | 3(2r) + 1. (36)

Equation (36) implies that r ≥ b− 1. We thus have r = b− 1. Thus,

2b + 1 | 3(2b−1) + 1 = 2b + 1 + 2b−1

which is impossible.

We now consider the case where q is odd. Then Equation (34) implies that

−3(2r) + 1 ≡ 0 (mod 2b + 1). (37)

Thus, 2b + 1 | 3(2r)− 1, which similarly leads to a contradiction, unless b = 2 and

r = 1.

One might wonder if Lemma 10 can be strengthened to conclude that if p is a

prime where p | 2b + 1 for some even b and p | 3(2a) + 1 for some a, then one must

have p = 5. However, this is in fact not true. In particular, note that 29 | 214 + 1,

but it is also true that 29 | 3(29) + 1. We now prove Proposition 5.

Proof of Proposition 5. Assume that n is a strongly 2-near perfect number of the

form n = 2kp with p = 2k+1−2a−1
1+2k−a . Our proof is complete if we can show that

we must have k = a + 2. If we have k = a + b, then this is the same as 2b + 1 |
2a+b+1 − 2a − 1, which implies that 2b + 1 | 2a+b+1 − 2a + 2b. We have

2b + 1 | 2a+b+1 − 2a − 1− 2a+1(1 + 2b) = −3(2a)− 1

and so 2b + 1 | 3(2a) + 1, which allows us to apply Lemma 10, to conclude that

b = 2, and the rest follows from noting that all 2-near perfect of this form are in

Case 3.

We list in Table 3 the first few values of a where 2a+3−2a−1
5 is prime, and its

corresponding prime p, each of which corresponds to a strong 2-near perfect number

of the form 2a+2p. We do not include the last two primes as they are too big to fit

on one line. Standard heuristic arguments suggest that there should be infinitely

many primes of the form 2a+3−2a−1
5 .
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a p
3 11
7 179
19 734003
27 187904819
31 3006477107
39 769658139443
151 3996293539576687666963200714458586381871690547
199 –
451 –

Table 3: Primes of the form 2a+3−2a−1
5

5. Open Problems

One obvious direction is to try to extend the classification of 2-near perfect numbers

to classify all of the form 2kpm where m ≥ 3.

Conjecture 1. There are only finitely many 2-near perfect numbers of the form

2kpm where m ≥ 2.

A slightly weaker conjecture is the following.

Conjecture 2. For any fixed m ≥ 2, there are only finitely many 2-near perfect

numbers of the form 2kpm.

Another potential for further research is to change the signs in the relationship

σ(n) = 2n + d1 + d2. The two other options are σ(n) = 2n − d1 − d2 and σ(n) =

2n + d1 − d2. It seems likely that the main method used in this paper, including

the discriminant sandwich, would be successful for the first of these two situations,

but the situation with mixed signs on the divisors may be more difficult.

Acknowledgement. This paper was written as part of the Hopkins School Math-

ematics Seminar 2022-2023. Steven J. Miller suggested the problem of changing

signs as discussed in the final section. The referee helpfully identified a flaw in an
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