LARGE ZSIGMONDY PRIMES

Ömer Avcı<br>Department of Mathematics, Boğaziçi University, Istanbul, Turkey<br>omeravci372742@gmail.com

Received: 7/11/23, Revised: 3/7/24, Accepted: 6/13/24, Published: 7/8/24


#### Abstract

If $a>b$ and $n>1$ are positive integers, and $a$ and $b$ are relatively prime integers, then a large Zsigmondy prime for $(a, b, n)$ is a prime $p$ such that $p \mid a^{n}-b^{n}$ but $p \nmid a^{m}-b^{m}$ for $1 \leq m<n$, and either $p^{2} \mid a^{n}-b^{n}$ or $p>n+1$. We classify all triples of integers $(a, b, n)$ for which no large Zsigmondy prime exists.


## 1. Introduction

Let $a>b$ be relatively prime positive integers and $n$ be a positive integer. A Zsigmondy prime for $(a, b, n)$ is defined as a prime $p$ such that $p \mid a^{n}-b^{n}$ but $p \nmid a^{m}-b^{m}$ for $1 \leq m<n$. Zsigmondy's theorem asserts that Zsigmondy primes exist for all triples $(a, b, n)$ except when $(a, b, n)=(2,1,6)$ or $n=2$ and $a+b=2^{k}$ for some positive integer $k$ (see [7]).

In [2], Feit deals with the special case of Zsigmondy's theorem when $b=1$ and defines a large Zsigmondy prime for the pair $(a, n)$ as a prime $p$ such that $p \mid a^{n}-1$ but $p \nmid a^{m}-1$ for $1 \leq m<n$ and either $p^{2} \mid a^{n}-1$ or $p>n+1$. In our paper, we present a generalized version of Feit's result.

Theorem 1. If $a>b$ are relatively prime positive integers and $n$ is an integer greater than 1, then there exists a large Zsigmondy prime for $(a, b, n)$ except in the following cases:
(i) $n=2$ and $a+b=2^{s}$ or $a+b=3 \cdot 2^{s}$ where $s$ is a non-negative integer.
(ii) $n=4$ and $(a, b)$ is $(2,1)$ or $(3,1)$.
(iii) $n=6$ and $(a, b)$ is one of $(2,1),(3,1),(3,2),(5,1),(5,4)$.
(iv) $n=10$ and $(a, b)$ is $(2,1)$ or $(3,2)$.
(v) $n=12$ and $(a, b)=(2,1)$.
(vi) $n=18$ and $(a, b)=(2,1)$.

Artin's results about orders of linear groups in [1] inspired Feit's work on the existence of large Zsigmondy primes. The motivation for Feit's work comes from the theory of finite groups [3]. Feit proved the existence of large Zsigmondy primes in all cases except for finitely many, as stated in [4], for the special case $a \geq 3$. Later on, he came up with a simpler proof of his result, which also includes the case where $a=2$, as presented in [2]. Roitman also provided a nice proof of Feit's result in [5].

For relatively prime positive integers $a>b$, we can generalize the definition of a large Zsigmondy prime as a prime $p$ such that $p \mid a^{n}-b^{n}$, but $p \nmid a^{m}-b^{m}$ for $1 \leq m<n$, and either $p^{2} \mid a^{n}-b^{n}$ or $p>n+1$. We show that there exists a large Zsigmondy prime for $(a, b, n)$ except in the cases presented in Theorem 1. Our proof is inspired by the elegant proof of Zsigmondy's theorem given by Yan Sheng Ang in [6].

## 2. Preliminaries

Lemma 1 ([2]). For any positive integer n, where $\phi(n)$ denotes Euler's totient function, it holds that

$$
\phi(n) \geq \frac{1}{2} \sqrt{n}
$$

Lemma 2. For a prime $p$ and a positive integer $n$, let $v_{p}(n)$ denote the exponent of $p$ in the prime factorization of $n$. Let $x$ and $y$ be integers such that $x \equiv y \not \equiv 0$ $(\bmod p)$.
(1) If $p \geq 3$, then

$$
v_{p}\left(x^{n}-y^{n}\right)=v_{p}(x-y)+v_{p}(n)
$$

(2) If $p=2$, then

$$
v_{2}\left(x^{n}-y^{n}\right)= \begin{cases}v_{2}\left(x^{2}-y^{2}\right)+v_{2}(n)-1 & \text { if } n \text { is even } \\ v_{2}(x-y) & \text { if } n \text { is odd }\end{cases}
$$

Definition 1. For any positive integer $n$, the $n$-th cyclotomic polynomial $\Phi_{n}(x)$ is given by:

$$
\Phi_{n}(x)=\prod_{\substack{\operatorname{gcd}(k, n)=1 \\ 1 \leq k \leq n}}\left(x-e^{2 i \pi \frac{k}{n}}\right)
$$

It is known that $\Phi_{n}(x)$ is a monic polynomial with integer coefficients.

Remark 1. There is a generalization of cyclotomic polynomials into two variables:

$$
\Phi_{n}(a, b)=b^{\phi(n)} \Phi_{n}\left(\frac{a}{b}\right)
$$

We can also express $\Phi_{n}(a, b)$ as

$$
\Phi_{n}(a, b)=\prod_{\substack{\operatorname{gcd}(k, n)=1 \\ 1 \leq k \leq n}}\left(a-b e^{2 i \pi \frac{k}{n}}\right)
$$

It is clear that $\Phi_{n}(x, y)$ is a two variable polynomial with integer coefficients.
Lemma 3 ([6]). Let $a>b$ and $n$ be positive integers. Then
(i) $a^{n}-b^{n}=\prod_{d \mid n} \Phi_{d}(a, b)$;
(ii) $(a-b)^{\phi(n)} \leq \Phi_{n}(a, b) \leq(a+b)^{\phi(n)}$;
(iii) if $p$ is a prime then

$$
\Phi_{p n}(a, b)= \begin{cases}\Phi_{n}\left(a^{p}, b^{p}\right) & \text { if } p \mid n \\ \frac{\Phi_{n}\left(a^{p}, b^{p}\right)}{\Phi_{n}(a, b)} & \text { if } p \nmid n\end{cases}
$$

(iv) if $p$ is an odd prime not dividing $a$ and $b$, and if $k$ is the smallest positive integer satisfying $p \mid a^{k}-b^{k}$ then

$$
v_{p}\left(\Phi_{n}(a, b)\right)= \begin{cases}v_{p}\left(a^{k}-b^{k}\right) & \text { if } n=k \\ 1 & \text { if } n=p^{\beta} k, \beta \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(v) if a and b are odd, then

$$
v_{2}\left(\Phi_{n}(a, b)\right)= \begin{cases}v_{2}(a-b) & \text { if } n=1 \\ v_{2}(a+b) & \text { if } n=2 \\ 1 & \text { if } n=2^{\beta}, \beta \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Corollary 1. Let $p$ be a prime, $a$ and $b$ be distinct positive integers, and $n=p^{\beta} k$ for some positive integers $\beta, k$ with $p \nmid k$. Then

$$
\Phi_{n}(a, b)=\Phi_{p k}\left(a^{p^{\beta-1}}, b^{p^{\beta-1}}\right)=\frac{\Phi_{k}\left(a^{p^{\beta}}, b^{p^{\beta}}\right)}{\Phi_{k}\left(a^{p^{\beta-1}}, b^{p^{\beta-1}}\right)}
$$

## 3. Results on Zsigmondy Primes

In this section, we prove Lemmas 8-11, then use these results to prove our main theorem (Theorem 1).

Lemma 4. Let $a>b$ be two relatively prime positive integers, $n$ be a positive integer, $p$ be a prime divisor of $\Phi_{n}(a, b)$, and $k$ be the smallest positive integer satisfying $p \mid a^{k}-b^{k}$. Let $\operatorname{gpf}(n)$ denote the largest prime divisor of $n$, then one of the following holds:
(i) $p=2$ and $n=2^{\beta}$ for some $\beta \geq 1$.
(ii) $p \geq 3$ and $n=k$ thus $p$ is a Zsigmondy prime for $(a, b, n)$.
(iii) $p=\operatorname{gpf}(n)>2$ and $n=p^{\beta} k$ for some $\beta \geq 1$ and $v_{p}\left(\Phi_{n}(a, b)\right)=1$.

Proof. If $p=2$, by Lemma 3, it follows that $n=2^{\beta}$ for some $\beta \geq 1$. If $p>2$, according to Lemma 3, there are two possibilities. Either $n=k$ or $n=p^{\beta} k$ holds. When $n=k$, it implies that $p \nmid a^{m}-b^{m}$ for all $1 \leq m<n$, which means that $p$ is a Zsigmondy prime for $(a, b, n)$. Since $k$ is defined as the smallest positive integer such that $p \mid a^{k}-b^{k}$, it is evident that $k \mid p-1$ holds. Moreover, it is clear that any prime divisor of $k$ must be smaller than $p$. Consequently, when $n=p^{\beta} k$, we can conclude that $p=\operatorname{gpf}(n)$ since no prime divisor of $n$ can be greater than $p$. Furthermore, according to Lemma 3, we have $v_{p}\left(\Phi_{n}(a, b)\right)=1$ in the case $n=p^{\beta} k$.

Lemma 5. Let $a$ and $b$ be distinct, relatively prime positive integers, and let $n \geq 2$ be an integer. If $p$ is a Zsigmondy prime for $(a, b, n)$, then $p \mid \Phi_{n}(a, b)$.

Proof. From Corollary 3 we have

$$
a^{n}-b^{n}=\prod_{d \mid n} \Phi_{d}(a, b)
$$

Therefore, such a $p$ divides $\Phi_{d}(a, b)$ for some $d \mid n$. If $d<n$, then $p \mid \Phi_{d}(a, b)$, which implies $p \mid a^{d}-b^{d}$. This contradicts $p$ being a Zsigmondy prime for $(a, b, n)$. We conclude that $d=n$, and hence $p \mid \Phi_{n}(a, b)$.

Lemma 6. Let $a>b$ be relatively prime positive integers, and $n \geq 2$ be an integer. If $q$ is a Zsigmondy prime for $(a, b, n)$ but not a large Zsigmondy prime for $(a, b, n)$, then $n=q-1$.

Proof. Since $q$ is a Zsigmondy prime for $(a, b, n)$, we have $n \mid q-1$. If $q>n+1$, then it is a large Zsigmondy prime. Consequently, $n=q-1$.

Lemma 7. Let $a$ and $b$ be distinct, relatively prime positive integers, and let $n \geq 3$ be an integer. Then there is a large Zsigmondy prime for $(a, b, n)$ if $(n+1) \operatorname{gpf}(n)<$ $\Phi_{n}(a, b)$.

Proof. Let us analyze the proof in two cases.
Case 1: If $\Phi_{n}(a, b)$ is even, then $n=2^{\beta}$ for some $\beta \geq 2$, and $4 \nmid \Phi_{n}(a, b)$ from Lemma 3. Since $\Phi_{n}(a, b)>2(n+1)>2$, it has at least one odd prime divisor. Let $p$ be the greatest prime divisor of $\Phi_{n}(a, b)$. Since $p>2$ and $p \nmid n$, we obtain $n \mid p-1$ from Lemma 3. If $p>n+1$, then $p$ is a large Zsigmondy prime for $(a, b, n)$. If $p=n+1$, then the only odd prime divisor of $\Phi_{n}(a, b)$ is $p$. Since $4 \nmid \Phi_{n}(a, b)$, and $\Phi_{n}(a, b)>2(n+1)$ we conclude that $p^{2} \mid \Phi_{n}(a, b)$, and therefore $p$ is a large Zsigmondy prime for ( $a, b, n$ ).

Case 2: If $\Phi_{n}(a, b)$ is odd, according to Lemma 3 , for any prime $p \mid \Phi_{n}(a, b)$, there are two cases: either $p$ is a Zsigmondy prime, so $n \mid p-1$, or $p=\operatorname{gpf}(n)$ and $p^{2} \nmid \Phi_{n}(a, b)$. If there exist two different Zsigmondy primes for $(a, b, n)$, then the larger one is a large Zsigmondy prime since it is greater than $n+1$. This implies that if there is no large Zsigmondy prime for $(a, b, n)$, then $\Phi_{n}(a, b)$ can have at most two different prime divisors, one being $n+1$ and the other being $\operatorname{gpf}(n)$. Also, each of them can divide $\Phi_{n}(a, b)$ at most once. But this contradicts the fact that $(n+1) \operatorname{gpf}(n)<\Phi_{n}(a, b)$.

Lemma 8. Let $n>1$ be a positive integer. If $n$ is not equal to any of the numbers $\{2,4,6,10,12,18\}$, then for any relatively prime positive integers $a>b$, there exists a large Zsigmondy prime for $(a, b, n)$.

Proof. Consider positive integers $a>b$ and $n>1$ with $\operatorname{gcd}(a, b)=1$. Let us assume that there is no large Zsigmondy prime for $(a, b, n)$. If there is no Zsigmondy prime for ( $a, b, n$ ), we can determine the possible values of $(a, b, n)$ based on Zsigmondy's theorem. We will specifically investigate the case where there is a Zsigmondy prime for ( $a, b, n$ ) but no large Zsigmondy prime for $(a, b, n)$.

Let $n \geq 3$ and let $q$ be a Zsigmondy prime for $(a, b, n)$ but that is not a large Zsigmondy prime for ( $a, b, n$ ). It follows that $n=q-1$ and $q^{2} \nmid a^{n}-b^{n}$. From Lemma 5, we know that it is necessary for $q \mid \Phi_{n}(a, b)$ to hold. From Lemma 4, $\Phi_{n}(a, b)$ can have at most one non-Zsigmondy prime divisor $p$ with the possibilities $p=2$ or $p=\operatorname{gpf}(n)$. Now, we have three cases to consider:
Case 1: If $\Phi_{n}(a, b)=2 q$ and $n=2^{\beta}$ where $\beta \geq 2$. In this case, we have $q=2^{\beta}+1$; therefore, it must be a Fermat prime, so $\beta=2^{s}$ for some $s \geq 1$. From Corollary 1 we have

$$
\Phi_{n}(a, b)=\Phi_{2}\left(a^{2^{\beta-1}}, b^{2^{\beta-1}}\right)=a^{2^{\beta-1}}+b^{2^{\beta-1}} \geq 2^{2^{\beta-1}}+1 .
$$

For $\beta \geq 4$ we have $2^{2^{\beta-1}}+1>2\left(2^{\beta}+1\right)$ therefore $\Phi_{n}(a, b)>2(n+1)=2 q$, leading to a contradiction with our assumption. We are left with two possibilities: $n=4$
or $n=8$. However, if $n=8$, then $q=n+1$ cannot be a prime, and therefore, the only possibility is $n=4$.

Case 2: If $\Phi_{n}(a, b)=p q$, where $p=\operatorname{gpf}(n)>2$, is the greatest prime divisor of $n$. Then $n=p^{\beta} k$, where $\beta$ is a positive integer and $k$ is the smallest positive integer satisfying $p \mid a^{k}-b^{k}$. Clearly, $k \mid p-1$. We can divide this case into two subcases. Case 2.a: If $\beta \geq 2$, then by combining Corollary 1 and Corollary 3, we can get

$$
\Phi_{n}(a, b)=\Phi_{p k}\left(a^{p^{\beta-1}}, b^{p^{\beta-1}}\right) \geq\left(a^{p^{\beta-1}}-b^{p^{\beta-1}}\right)^{\Phi(p k)}
$$

Since $a>b$, we can derive the inequality

$$
\left(a^{p^{\beta-1}}-b^{p^{\beta-1}}\right)^{\Phi(p k)} \geq\left(2^{p^{\beta-1}}-1\right)^{\Phi(p k)} \geq\left(2^{p^{\beta-1}}-1\right)^{p-1} \geq\left(2^{p-1}-1\right)^{p^{\beta-1}}
$$

Since $k<p$, we have

$$
\Phi_{n}(a, b)=p q=p\left(p^{\beta} k+1\right)<p^{\beta+2}
$$

Since $p \geq 3$, we have $2^{p-1}-1 \geq p$, and thus,

$$
\Phi_{n}(a, b) \geq\left(2^{p-1}-1\right)^{p^{\beta-1}} \geq p^{p^{\beta-1}}
$$

Therefore, $\beta+2>p^{\beta-1}$ must hold, which is not possible when $\beta \geq 3$. Therefore, if $\beta \neq 2$, then a large Zsigmondy prime exists for $(a, b, n)$. Let us investigate the case $\beta=2$. By substituting $\beta=2$ into our previous inequalities, we obtain

$$
p^{4}=p^{\beta+2}>\Phi_{n}(a, b) \geq\left(2^{p^{\beta-1}}-1\right)^{p-1}=\left(2^{p}-1\right)^{p-1} \geq\left(2^{p}-1\right)^{2}
$$

It is not possible when $p \geq 5$. Moreover, there exists a large Zsigmondy prime for $(a, b, n)$ when $p \geq 5$. So, in the second case, if there is no large Zsigmondy prime for $(a, b, n)$, then $p=3, \beta=2$, and $k=1$ or $k=2$. Thus, the only exceptional values are $n=18$ and $n=9$. If $n=9$, then $n+1$ is not a prime, and $q=n+1$ is not a Zsigmondy prime for $(a, b, n)$. Therefore, the only possibility is $n=18$. We will find the pairs $(a, b)$ at the end of the proof.
Case 2.b: If $\beta=1$, then by combining Corollary 1 and Corollary 3, we can obtain,

$$
\Phi_{n}(a, b)=\Phi_{p k}(a, b)=\frac{\Phi_{k}\left(a^{p}, b^{p}\right)}{\Phi_{k}(a, b)} \geq\left(\frac{a^{p}-b^{p}}{a+b}\right)^{\phi(k)} \geq\left(\frac{2^{p}-1}{3}\right)^{\phi(k)}
$$

In this case, $\Phi_{n}(a, b)=(p k+1) p<p^{3}$ holds. Then either $\frac{2^{p}-1}{3}<p$ or $\phi(k)<3$. Which means either $p \leq 3$ or $k \leq 6$. If $p=3$, then $n=6$. If $p>3$, then $\phi(k) \leq 2$, thus $k=1,2,3,4$ or 6 .

If $\phi(k)=2$, then $k=3,4$ or 6 , and

$$
p^{3}>\Phi_{n}(a, b) \geq\left(\frac{2^{p}-1}{3}\right)^{2}
$$

holds. This is not possible when $p \geq 7$. If $p=5$, then $k=4$ must hold since $k \mid p-1$. But then $n=20$, so $q=n+1$ is not a Zsigmondy prime for $(a, b, n)$. If $\phi(k)=1$, then $k=1$ or $k=2$. We have the inequality

$$
p^{3}>\Phi_{n}(a, b) \geq \frac{2^{p}-1}{3}
$$

This is not possible when $p \geq 13$. If $k=1$, then $n=p$, but then $q=n+1$ cannot be a prime number. If $k=2$, then $n=2 p$. If $p=11$, then $q=23$, and $\Phi_{n}(a, b)=253$. However, this contradicts the fact that $\Phi_{22}(a, b) \geq \frac{2^{11}-1}{3}>253$. If $p=7$, then $n=14$, but then $q=n+1$ is not a prime number. Thus, $p=5$ and $n=10$ or $p=3$ and $n=6$ must hold. Ultimately, the only possible values are $n=6$ and $n=10$. Again, we will handle the determination of pairs $(a, b)$ at the end of the proof.

Case 3: $\Phi_{n}(a, b)=q$, where $q=n+1$, is an odd prime number. So, $n$ must be even. We will analyze this case in two steps.

If $q-1$ is divisible by 4 , then from Corollary 3 and Corollary 1 , we obtain

$$
\Phi_{n}(a, b)=\Phi_{q-1}(a, b)=\Phi_{\frac{q-1}{2}}\left(a^{2}, b^{2}\right) \geq\left(a^{2}-b^{2}\right)^{\phi\left(\frac{q-1}{2}\right)} .
$$

We can further refine the inequality as follows:

$$
q=\Phi_{n}(a, b) \geq\left(a^{2}-b^{2}\right)^{\phi\left(\frac{q-1}{2}\right)} \geq 3^{\phi\left(\frac{q-1}{2}\right)} .
$$

From Lemma 1 , we have $\phi(n) \geq \frac{1}{2} \sqrt{n}$. If we substitute this into the previous inequality, we get:

$$
q \geq 3^{\phi\left(\frac{q-1}{2}\right)} \geq 3^{\frac{\sqrt{q-1}}{2 \sqrt{2}}}
$$

This is only possible when $q \leq 179$. Substituting this back into the inequality, we obtain

$$
3^{5}>q \geq 3^{\phi\left(\frac{q-1}{2}\right)}
$$

This holds only when $\phi\left(\frac{q-1}{2}\right) \leq 4$, which is only possible if $q-1$ has no prime divisors greater than 5 . By manually checking all the remaining possibilities of $q$, we can see that

$$
q \geq 3^{\phi\left(\frac{q-1}{2}\right)}
$$

is satisfied only when $q \leq 13$. If we look at all the cases, we find $n=4,12$, with only $n=12$ being new.

If $q-1$ is not divisible by 4 , then from Corollary 1 , we obtain

$$
\Phi_{n}(a, b)=\Phi_{q-1}(a, b)=\frac{\Phi_{\frac{q-1}{2}}\left(a^{2}, b^{2}\right)}{\Phi_{\frac{q-1}{2}}(a, b)} .
$$

In this case, we need a stronger estimate than what we obtain in Corollary 3. It is easy to show that

$$
\frac{\left|a^{2}-b^{2} e^{i \theta}\right|}{\left|a-b e^{i \theta}\right|} \geq \frac{a^{2}+b^{2}}{a+b}
$$

Thus, we can derive the following estimate:

$$
\frac{\Phi_{\frac{q-1}{2}}\left(a^{2}, b^{2}\right)}{\Phi_{\frac{q-1}{2}}(a, b)} \geq\left(\frac{a^{2}+b^{2}}{a+b}\right)^{\phi\left(\frac{q-1}{2}\right)} \geq\left(\frac{5}{3}\right)^{\phi\left(\frac{q-1}{2}\right)}
$$

We know that $\Phi_{q-1}=q$, so by using Lemma 1, we obtain

$$
q \geq\left(\frac{5}{3}\right)^{\phi\left(\frac{q-1}{2}\right)} \geq\left(\frac{5}{3}\right)^{\frac{\sqrt{q-1}}{2 \sqrt{2}}}
$$

This is only possible when $q \leq 1667$. Substituting this back into the inequality, we obtain

$$
\left(\frac{5}{3}\right)^{15}>q \geq\left(\frac{5}{3}\right)^{\phi\left(\frac{q-1}{2}\right)}
$$

This condition holds only when $\phi\left(\frac{q-1}{2}\right) \leq 14$, which implies that $q-1$ has no prime divisors greater than 13. By further analysis, we find that this inequality is satisfied only when $q \leq 43$. When we manually check all the remaining possibilities of $q$, we observe that the inequality

$$
q \geq\left(\frac{5}{3}\right)^{\phi\left(\frac{q-1}{2}\right)}
$$

is satisfied only when $q \leq 11$. After examining all cases, we find $n=2,6,10$, but we have already found these values in other cases.

Proof of Theorem 1. Now we will determine all the triples $(a, b, n)$ such that there is no large Zsigmondy prime for $(a, b, n)$. From Lemma 8, we know that if there is no large Zsigmondy prime for $(a, b, n)$, then $n$ must be equal to one of the numbers $\{2,4,6,10,12,18\}$. From Lemma 7, we know that if there is no large Zsigmondy prime for $(a, b, n)$, then $\Phi_{n}(a, b) \leq(n+1) \operatorname{gpf}(n)$. Furthermore, from Lemma 4, we know that if there is no large Zsigmondy prime for $(a, b, n)$, then $\Phi_{n}(a, b)=n+1$ or $\Phi_{n}(a, b)=(n+1) \operatorname{gpf}(n)$. We have to analyze the following six cases.

Case 1: If $n=2$ and there is no large Zsigmondy prime for $(a, b, n)$, then no prime greater than 3 can divide $a^{2}-b^{2}$; furthermore, $9 \nmid a^{2}-b^{2}$. Then $a+b=2^{s}$ or $a+b=3 \cdot 2^{s}$ for non-negative integer $s$. The first case is also an exceptional case of Zsigmondy's theorem.

Case 2: If $n=4$, then $\Phi_{4}(a, b)=a^{2}+b^{2} \leq 10$ must hold. Furthermore, we have $a^{2}+b^{2}=5,10$. We can easily check that the only possible values for $(a, b)$ are $(2,1)$ and $(3,1)$.
Case 3: If $n=6$, then $\Phi_{6}(a, b)=a^{2}-a b+b^{2} \leq 21$ must hold. Furthermore, we have $\Phi_{6}(a, b)=7,21$. From this, we get $(3,1),(3,2),(5,1)$ and $(5,4)$ as suitable values for $(a, b)$. Also, we have one exceptional case of Zsigmondy's theorem here when $(a, b)=(2,1)$.

Case 4: If $n=10$, then $\Phi_{10}(a, b)=a^{4}-a^{3} b+a^{2} b^{2}-a b^{3}+b^{4} \leq 55$ must hold. Furthermore, we have $\Phi_{10}(a, b)=11,55$. We can easily check that the only possible values for $(a, b)$ are $(2,1)$ and $(3,2)$.

Case 5: If $n=12$, then $\Phi_{12}(a, b)=a^{4}-a^{2} b^{2}+b^{4} \leq 39$ must hold. Furthermore, we have $\Phi_{12}(a, b)=13,39$. We can easily check that the only possible value for $(a, b)$ is $(2,1)$.
Case 6: If $n=18$, then $\Phi_{18}(a, b)=a^{6}-a^{3} b^{3}+b^{6} \leq 57$ must hold. Furthermore, we have $\Phi_{18}(a, b)=19,57$. We can easily check that the only possible value for $(a, b)$ is $(2,1)$.

With this we have completed the classification of all triples of integers $(a, b, n)$ for which no large Zsigmondy prime exists.

## References

[1] E. Artin, The orders of the linear groups, Comm. Pure and Appl. Math. 8 (3) (1955), 355-365.
[2] W. Feit, On large Zsigmondy primes, Proc. Amer. Math. Soc. 102 (1988), 29-36.
[3] W. Feit, G.M. Seitz, On finite rational groups and related topics, Illinois J. Math. 33 (1) (1988), 103-131.
[4] W. Feit, Extensions of cuspidal characters of $G L_{m}(q)$, Publ. Math. Debrecen 34 (3-4) (1987), 273-297.
[5] M. Roitman, On Zsigmondy primes, Proc. Am. Math. Soc. 125 (7) (1997), 1913-1919.
[6] Yan Sheng Ang, An elementary proof of Zsigmondy's theorem, preprint. https://angyansheng.github.io/blog/an-elementary-proof-of-zsigmondys-theorem
[7] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsch. Math. Phys. 3 (1892), 265-284.

