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Abstract

If a > b and n > 1 are positive integers, and a and b are relatively prime integers,

then a large Zsigmondy prime for (a, b, n) is a prime p such that p | an − bn but

p ∤ am − bm for 1 ≤ m < n, and either p2 | an − bn or p > n + 1. We classify all

triples of integers (a, b, n) for which no large Zsigmondy prime exists.

1. Introduction

Let a > b be relatively prime positive integers and n be a positive integer. A

Zsigmondy prime for (a, b, n) is defined as a prime p such that p | an − bn but

p ∤ am − bm for 1 ≤ m < n. Zsigmondy’s theorem asserts that Zsigmondy primes

exist for all triples (a, b, n) except when (a, b, n) = (2, 1, 6) or n = 2 and a+ b = 2k

for some positive integer k (see [7]).

In [2], Feit deals with the special case of Zsigmondy’s theorem when b = 1 and

defines a large Zsigmondy prime for the pair (a, n) as a prime p such that p | an− 1

but p ∤ am − 1 for 1 ≤ m < n and either p2 | an − 1 or p > n+ 1. In our paper, we

present a generalized version of Feit’s result.

Theorem 1. If a > b are relatively prime positive integers and n is an integer

greater than 1, then there exists a large Zsigmondy prime for (a, b, n) except in the

following cases:

(i) n = 2 and a+ b = 2s or a+ b = 3 · 2s where s is a non-negative integer.

(ii) n = 4 and (a, b) is (2, 1) or (3, 1).

(iii) n = 6 and (a, b) is one of (2, 1), (3, 1), (3, 2), (5, 1), (5, 4).

(iv) n = 10 and (a, b) is (2, 1) or (3, 2).

(v) n = 12 and (a, b) = (2, 1).
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(vi) n = 18 and (a, b) = (2, 1).

Artin’s results about orders of linear groups in [1] inspired Feit’s work on the

existence of large Zsigmondy primes. The motivation for Feit’s work comes from

the theory of finite groups [3]. Feit proved the existence of large Zsigmondy primes

in all cases except for finitely many, as stated in [4], for the special case a ≥ 3.

Later on, he came up with a simpler proof of his result, which also includes the case

where a = 2, as presented in [2]. Roitman also provided a nice proof of Feit’s result

in [5].

For relatively prime positive integers a > b, we can generalize the definition of

a large Zsigmondy prime as a prime p such that p | an − bn, but p ∤ am − bm for

1 ≤ m < n, and either p2 | an − bn or p > n + 1. We show that there exists a

large Zsigmondy prime for (a, b, n) except in the cases presented in Theorem 1. Our

proof is inspired by the elegant proof of Zsigmondy’s theorem given by Yan Sheng

Ang in [6].

2. Preliminaries

Lemma 1 ([2]). For any positive integer n, where ϕ(n) denotes Euler’s totient

function, it holds that

ϕ(n) ≥ 1

2

√
n.

Lemma 2. For a prime p and a positive integer n, let vp(n) denote the exponent

of p in the prime factorization of n. Let x and y be integers such that x ≡ y ̸≡ 0

(mod p).

(1) If p ≥ 3, then

vp(x
n − yn) = vp(x− y) + vp(n).

(2) If p = 2, then

v2(x
n − yn) =

{
v2(x

2 − y2) + v2(n)− 1 if n is even,

v2(x− y) if n is odd.

Definition 1. For any positive integer n, the n-th cyclotomic polynomial Φn(x) is

given by:

Φn(x) =
∏

gcd(k,n)=1
1≤k≤n

(x− e2iπ
k
n ).

It is known that Φn(x) is a monic polynomial with integer coefficients.
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Remark 1. There is a generalization of cyclotomic polynomials into two variables:

Φn(a, b) = bϕ(n)Φn

(a
b

)
.

We can also express Φn(a, b) as

Φn(a, b) =
∏

gcd(k,n)=1
1≤k≤n

( a− b e2iπ
k
n ).

It is clear that Φn(x, y) is a two variable polynomial with integer coefficients.

Lemma 3 ([6]). Let a > b and n be positive integers. Then

(i) an − bn =
∏

d|n Φd(a, b);

(ii) (a− b)ϕ(n) ≤ Φn(a, b) ≤ (a+ b)ϕ(n);

(iii) if p is a prime then

Φpn(a, b) =

{
Φn(a

p, bp) if p | n,
Φn(a

p,bp)
Φn(a,b)

if p ∤ n;

(iv) if p is an odd prime not dividing a and b, and if k is the smallest positive

integer satisfying p | ak − bk then

vp(Φn(a, b)) =


vp(a

k − bk) if n = k,

1 if n = pβk, β ≥ 1,

0 otherwise;

(v) if a and b are odd, then

v2 (Φn(a, b)) =


v2(a− b) if n = 1,

v2(a+ b) if n = 2,

1 if n = 2β , β ≥ 2,

0 otherwise.

Corollary 1. Let p be a prime, a and b be distinct positive integers, and n = pβk

for some positive integers β, k with p ∤ k. Then

Φn(a, b) = Φpk(a
pβ−1

, bp
β−1

) =
Φk(a

pβ

, bp
β

)

Φk(ap
β−1 , bpβ−1)

.
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3. Results on Zsigmondy Primes

In this section, we prove Lemmas 8-11, then use these results to prove our main

theorem (Theorem 1).

Lemma 4. Let a > b be two relatively prime positive integers, n be a positive

integer, p be a prime divisor of Φn(a, b), and k be the smallest positive integer

satisfying p | ak − bk. Let gpf(n) denote the largest prime divisor of n, then one of

the following holds:

(i) p = 2 and n = 2β for some β ≥ 1.

(ii) p ≥ 3 and n = k thus p is a Zsigmondy prime for (a, b, n).

(iii) p = gpf(n) > 2 and n = pβk for some β ≥ 1 and vp(Φn(a, b)) = 1.

Proof. If p = 2, by Lemma 3, it follows that n = 2β for some β ≥ 1. If p > 2,

according to Lemma 3, there are two possibilities. Either n = k or n = pβk holds.

When n = k, it implies that p ∤ am − bm for all 1 ≤ m < n, which means that p is a

Zsigmondy prime for (a, b, n). Since k is defined as the smallest positive integer such

that p | ak−bk, it is evident that k | p−1 holds. Moreover, it is clear that any prime

divisor of k must be smaller than p. Consequently, when n = pβk, we can conclude

that p = gpf(n) since no prime divisor of n can be greater than p. Furthermore,

according to Lemma 3, we have vp(Φn(a, b)) = 1 in the case n = pβk.

Lemma 5. Let a and b be distinct, relatively prime positive integers, and let n ≥ 2

be an integer. If p is a Zsigmondy prime for (a, b, n), then p | Φn(a, b).

Proof. From Corollary 3 we have

an − bn =
∏
d|n

Φd(a, b).

Therefore, such a p divides Φd(a, b) for some d | n. If d < n, then p | Φd(a, b), which

implies p | ad − bd. This contradicts p being a Zsigmondy prime for (a, b, n). We

conclude that d = n, and hence p | Φn(a, b).

Lemma 6. Let a > b be relatively prime positive integers, and n ≥ 2 be an integer.

If q is a Zsigmondy prime for (a, b, n) but not a large Zsigmondy prime for (a, b, n),

then n = q − 1.

Proof. Since q is a Zsigmondy prime for (a, b, n), we have n | q − 1. If q > n + 1,

then it is a large Zsigmondy prime. Consequently, n = q − 1.
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Lemma 7. Let a and b be distinct, relatively prime positive integers, and let n ≥ 3

be an integer. Then there is a large Zsigmondy prime for (a, b, n) if (n+1) gpf(n) <

Φn(a, b).

Proof. Let us analyze the proof in two cases.

Case 1: If Φn(a, b) is even, then n = 2β for some β ≥ 2, and 4 ∤ Φn(a, b) from

Lemma 3. Since Φn(a, b) > 2(n + 1) > 2, it has at least one odd prime divisor.

Let p be the greatest prime divisor of Φn(a, b). Since p > 2 and p ∤ n, we obtain

n | p−1 from Lemma 3. If p > n+1, then p is a large Zsigmondy prime for (a, b, n).

If p = n + 1, then the only odd prime divisor of Φn(a, b) is p. Since 4 ∤ Φn(a, b),

and Φn(a, b) > 2(n + 1) we conclude that p2 | Φn(a, b), and therefore p is a large

Zsigmondy prime for (a, b, n).

Case 2: If Φn(a, b) is odd, according to Lemma 3, for any prime p | Φn(a, b), there

are two cases: either p is a Zsigmondy prime, so n | p − 1, or p = gpf(n) and

p2 ∤ Φn(a, b). If there exist two different Zsigmondy primes for (a, b, n), then the

larger one is a large Zsigmondy prime since it is greater than n + 1. This implies

that if there is no large Zsigmondy prime for (a, b, n), then Φn(a, b) can have at

most two different prime divisors, one being n+1 and the other being gpf(n). Also,

each of them can divide Φn(a, b) at most once. But this contradicts the fact that

(n+ 1) gpf(n) < Φn(a, b).

Lemma 8. Let n > 1 be a positive integer. If n is not equal to any of the numbers

{2, 4, 6, 10, 12, 18}, then for any relatively prime positive integers a > b, there exists

a large Zsigmondy prime for (a, b, n).

Proof. Consider positive integers a > b and n > 1 with gcd(a, b) = 1. Let us assume

that there is no large Zsigmondy prime for (a, b, n). If there is no Zsigmondy prime

for (a, b, n), we can determine the possible values of (a, b, n) based on Zsigmondy’s

theorem. We will specifically investigate the case where there is a Zsigmondy prime

for (a, b, n) but no large Zsigmondy prime for (a, b, n).

Let n ≥ 3 and let q be a Zsigmondy prime for (a, b, n) but that is not a large

Zsigmondy prime for (a, b, n). It follows that n = q − 1 and q2 ∤ an − bn. From

Lemma 5, we know that it is necessary for q | Φn(a, b) to hold. From Lemma 4,

Φn(a, b) can have at most one non-Zsigmondy prime divisor p with the possibilities

p = 2 or p = gpf(n). Now, we have three cases to consider:

Case 1: If Φn(a, b) = 2q and n = 2β where β ≥ 2. In this case, we have q = 2β +1;

therefore, it must be a Fermat prime, so β = 2s for some s ≥ 1. From Corollary 1

we have

Φn(a, b) = Φ2(a
2β−1

, b2
β−1

) = a2
β−1

+ b2
β−1

≥ 22
β−1

+ 1.

For β ≥ 4 we have 22
β−1

+1 > 2(2β +1) therefore Φn(a, b) > 2(n+1) = 2q, leading

to a contradiction with our assumption. We are left with two possibilities: n = 4
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or n = 8. However, if n = 8, then q = n+ 1 cannot be a prime, and therefore, the

only possibility is n = 4.

Case 2: If Φn(a, b) = pq, where p = gpf(n) > 2, is the greatest prime divisor of n.

Then n = pβk, where β is a positive integer and k is the smallest positive integer

satisfying p | ak − bk. Clearly, k | p− 1. We can divide this case into two subcases.

Case 2.a: If β ≥ 2, then by combining Corollary 1 and Corollary 3, we can get

Φn(a, b) = Φpk(a
pβ−1

, bp
β−1

) ≥ (ap
β−1

− bp
β−1

)Φ(pk).

Since a > b, we can derive the inequality

(ap
β−1

− bp
β−1

)Φ(pk) ≥ (2p
β−1

− 1)Φ(pk) ≥ (2p
β−1

− 1)p−1 ≥ (2p−1 − 1)p
β−1

.

Since k < p, we have

Φn(a, b) = pq = p(pβk + 1) < pβ+2.

Since p ≥ 3, we have 2p−1 − 1 ≥ p, and thus,

Φn(a, b) ≥ (2p−1 − 1)p
β−1

≥ pp
β−1

.

Therefore, β+2 > pβ−1 must hold, which is not possible when β ≥ 3. Therefore, if

β ̸= 2, then a large Zsigmondy prime exists for (a, b, n). Let us investigate the case

β = 2. By substituting β = 2 into our previous inequalities, we obtain

p4 = pβ+2 > Φn(a, b) ≥ (2p
β−1

− 1)p−1 = (2p − 1)p−1 ≥ (2p − 1)2.

It is not possible when p ≥ 5. Moreover, there exists a large Zsigmondy prime for

(a, b, n) when p ≥ 5. So, in the second case, if there is no large Zsigmondy prime

for (a, b, n), then p = 3, β = 2, and k = 1 or k = 2. Thus, the only exceptional

values are n = 18 and n = 9. If n = 9, then n+ 1 is not a prime, and q = n+ 1 is

not a Zsigmondy prime for (a, b, n). Therefore, the only possibility is n = 18. We

will find the pairs (a, b) at the end of the proof.

Case 2.b: If β = 1, then by combining Corollary 1 and Corollary 3, we can obtain,

Φn(a, b) = Φpk(a, b) =
Φk(a

p, bp)

Φk(a, b)
≥

(ap − bp

a+ b

)ϕ(k)

≥
(2p − 1

3

)ϕ(k)

.

In this case, Φn(a, b) = (pk + 1)p < p3 holds. Then either 2p−1
3 < p or ϕ(k) < 3.

Which means either p ≤ 3 or k ≤ 6. If p = 3, then n = 6. If p > 3, then ϕ(k) ≤ 2,

thus k = 1, 2, 3, 4 or 6.

If ϕ(k) = 2, then k = 3, 4 or 6, and

p3 > Φn(a, b) ≥
(2p − 1

3

)2
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holds. This is not possible when p ≥ 7. If p = 5, then k = 4 must hold since

k | p− 1. But then n = 20, so q = n+ 1 is not a Zsigmondy prime for (a, b, n).

If ϕ(k) = 1, then k = 1 or k = 2. We have the inequality

p3 > Φn(a, b) ≥
2p − 1

3
.

This is not possible when p ≥ 13. If k = 1, then n = p, but then q = n+1 cannot be

a prime number. If k = 2, then n = 2p. If p = 11, then q = 23, and Φn(a, b) = 253.

However, this contradicts the fact that Φ22(a, b) ≥ 211−1
3 > 253. If p = 7, then

n = 14, but then q = n+1 is not a prime number. Thus, p = 5 and n = 10 or p = 3

and n = 6 must hold. Ultimately, the only possible values are n = 6 and n = 10.

Again, we will handle the determination of pairs (a, b) at the end of the proof.

Case 3: Φn(a, b) = q, where q = n + 1, is an odd prime number. So, n must be

even. We will analyze this case in two steps.

If q − 1 is divisible by 4, then from Corollary 3 and Corollary 1, we obtain

Φn(a, b) = Φq−1(a, b) = Φ q−1
2
(a2, b2) ≥ (a2 − b2)ϕ(

q−1
2 ).

We can further refine the inequality as follows:

q = Φn(a, b) ≥ (a2 − b2)ϕ(
q−1
2 ) ≥ 3ϕ(

q−1
2 ).

From Lemma 1, we have ϕ(n) ≥ 1
2

√
n. If we substitute this into the previous

inequality, we get:

q ≥ 3ϕ(
q−1
2 ) ≥ 3

√
q−1

2
√

2 .

This is only possible when q ≤ 179. Substituting this back into the inequality, we

obtain

35 > q ≥ 3ϕ(
q−1
2 ).

This holds only when ϕ
(
q−1
2

)
≤ 4, which is only possible if q − 1 has no prime

divisors greater than 5. By manually checking all the remaining possibilities of q,

we can see that

q ≥ 3ϕ(
q−1
2 )

is satisfied only when q ≤ 13. If we look at all the cases, we find n = 4, 12, with

only n = 12 being new.

If q − 1 is not divisible by 4, then from Corollary 1, we obtain

Φn(a, b) = Φq−1(a, b) =
Φ q−1

2
(a2, b2)

Φ q−1
2
(a, b)

.

In this case, we need a stronger estimate than what we obtain in Corollary 3. It is

easy to show that
|a2 − b2eiθ|
|a− beiθ|

≥ a2 + b2

a+ b
.
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Thus, we can derive the following estimate:

Φ q−1
2
(a2, b2)

Φ q−1
2
(a, b)

≥
(a2 + b2

a+ b

)ϕ( q−1
2 )

≥
(5
3

)ϕ( q−1
2 )

.

We know that Φq−1 = q, so by using Lemma 1, we obtain

q ≥
(5
3

)ϕ( q−1
2 )

≥
(5
3

)√
q−1

2
√

2
.

This is only possible when q ≤ 1667. Substituting this back into the inequality, we

obtain (5
3

)15

> q ≥
(5
3

)ϕ( q−1
2 )

.

This condition holds only when ϕ
(
q−1
2

)
≤ 14, which implies that q−1 has no prime

divisors greater than 13. By further analysis, we find that this inequality is satisfied

only when q ≤ 43. When we manually check all the remaining possibilities of q, we

observe that the inequality

q ≥
(5
3

)ϕ( q−1
2 )

is satisfied only when q ≤ 11. After examining all cases, we find n = 2, 6, 10, but

we have already found these values in other cases.

Proof of Theorem 1. Now we will determine all the triples (a, b, n) such that there

is no large Zsigmondy prime for (a, b, n). From Lemma 8, we know that if there is

no large Zsigmondy prime for (a, b, n), then n must be equal to one of the numbers

{2, 4, 6, 10, 12, 18}. From Lemma 7, we know that if there is no large Zsigmondy

prime for (a, b, n), then Φn(a, b) ≤ (n+1) gpf(n). Furthermore, from Lemma 4, we

know that if there is no large Zsigmondy prime for (a, b, n), then Φn(a, b) = n + 1

or Φn(a, b) = (n+ 1) gpf(n). We have to analyze the following six cases.

Case 1: If n = 2 and there is no large Zsigmondy prime for (a, b, n), then no prime

greater than 3 can divide a2 − b2; furthermore, 9 ∤ a2 − b2. Then a + b = 2s or

a + b = 3 · 2s for non-negative integer s. The first case is also an exceptional case

of Zsigmondy’s theorem.

Case 2: If n = 4, then Φ4(a, b) = a2 + b2 ≤ 10 must hold. Furthermore, we have

a2+ b2 = 5, 10. We can easily check that the only possible values for (a, b) are (2, 1)

and (3, 1).

Case 3: If n = 6, then Φ6(a, b) = a2 − ab + b2 ≤ 21 must hold. Furthermore, we

have Φ6(a, b) = 7, 21. From this, we get (3, 1), (3, 2), (5, 1) and (5, 4) as suitable

values for (a, b). Also, we have one exceptional case of Zsigmondy’s theorem here

when (a, b) = (2, 1).
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Case 4: If n = 10, then Φ10(a, b) = a4 − a3b + a2b2 − ab3 + b4 ≤ 55 must hold.

Furthermore, we have Φ10(a, b) = 11, 55. We can easily check that the only possible

values for (a, b) are (2, 1) and (3, 2).

Case 5: If n = 12, then Φ12(a, b) = a4 − a2b2 + b4 ≤ 39 must hold. Furthermore,

we have Φ12(a, b) = 13, 39. We can easily check that the only possible value for

(a, b) is (2, 1).

Case 6: If n = 18, then Φ18(a, b) = a6 − a3b3 + b6 ≤ 57 must hold. Furthermore,

we have Φ18(a, b) = 19, 57. We can easily check that the only possible value for

(a, b) is (2, 1).

With this we have completed the classification of all triples of integers (a, b, n)

for which no large Zsigmondy prime exists.
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